
Introduction

The accurate assessment of risks in order to evaluate 
their severity and to develop appropriate responses and 
compensations is a key function of managers in a range of 
fi elds. Nevertheless, it is often diffi cult to integrate risk 
assessment into the tools that managers use. Here we propose 
a new risk assessment method applicable to the results of 
System Dynamics simulations. This form of simulation has 
been applied to a range of business management and public 
policy cases (Arquitt and Johnstone 2008, Dangerfi eld and 
Roberts 2000, Dangerfi eld 1999). As a case study, in this 
section we will look at the results from a model designed 
to estimate infection levels of Cryptosporidiosis within 
communities. Cryptosporidium and similar waterborne 
pathogens such as Giardia have caused a large number of 
disease outbreaks. For instance, in 1993, a failure of treatment 
in Milwaukee, USA led to over 400 000 people falling ill and 
69 deaths. It is conservatively estimated that the direct costs 
(ignoring legal and capital investment costs) of that outbreak 
were $96.2 million dollars as for 1993 Corso et al. (2003). 
If the frequency of extreme weather events increases as 
predicted by global climate change, the risks from waterborne 
pathogens such as Cryptosporidium are expected to grow and 
the need for accurate methods to assess such risks will become 
increasingly important.

Procedure
The proposed method requires the execution of the following 
stages:
 I. Obtain time-based data series through simulation.
 II.  Specify a number of thresholds and costs associated 

with violating given thresholds. Both upper and lower 
bound thresholds may be specifi ed.

 III.  Determine the probability distribution that best models 
the data by one of two ways:
a. User specifi cation.
b. Kolmogorov-Smirnov Goodness of Fit tests. 

 IV.  Apply an autocorrelation analysis of the data. 
Locate the smallest separation interval at which 
the autocorrelation falls below a user-specifi ed 
parameter. Divide the total number of data-points by 
this separation to obtain the number of approximately 
independent data-points.

 V.  For each threshold, calculate the probability of the 
threshold being violated during the simulation period 
based on the probability distribution and number of 
independent observations.

 VI.  Calculate risk by multiplying probability of violation by 
cost for each threshold and integrating to arrive at total 
risk. Risks for time periods other than those used in the 
analysis may be determined by linear extrapolation.
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 VII.  Compare risk to acceptable levels and, if necessary, 
develop compensations to reduce risk.

Discussion
We will now explore at the steps of the DRAM procedure in 
more detail. For evaluation, the procedure was implemented 
using the software package Simgua (Simgua, v.2.8.2.) This 
implementation will be used to illustrate the use of DRAM. 
Fig. 1 is an illustration of Simgua’s DRAM interface. 

A simulation of a sample model will be used to 
illustrate the procedure. This model was the result of earlier 
research and predicts the level of infection of Cryptosporidium, 
a waterborne pathogen, within a community (Fortmann-Roe 
and Wójcik 2009). The variable that will be focused on in this 
analysis is the percent of the population that is infected with 
the pathogen.

Step 1
The infection model was implemented in Simgua and 
predicted infection levels for a specifi c community and set 
of conditions could be obtained by running the simulation. 
Figure 2 is an example of a portion of the simulation results 
from the model. It is important to note that the level of infected 
population includes all those infected with the disease. This 
value includes those with only mild symptoms in addition to 
asymptomatic individuals (approximately 65% of the number 
of infected).

Step 2
Thresholds based on the level of population infected and 
the associated costs to society were entered into the DRAM 
interface. Studies indicate that costs due to infection increased 
exponentially in relation to infection levels. All thresholds 
were upper bound thresholds given the nature of the problem. 
For other problems, such as the temperature or pressure of 
a boiler, one could conceivably have both upper and lower 
bound thresholds.

Step 3
The Simgua implementation of DRAM includes three 
probability models: Normal, Lognormal and Gamma 
Distributions. The user may specify which model to use or they 
may let the algorithm choose the best-fi t distribution based on 
Kolmogorov-Smirnov Goodness of Fit tests. The test works by 
comparing the theoretical probability distribution for a dataset 
against the actual Cumulative Distribution Function (CDF). 
Figure 3 contains two Kolmogorov-Smirnov Goodness of 
Fit diagrams for the infection level data and the Normal and 
Lognormal distributions. Clearly, the Lognormal Distribution 
better approximates the observed data, as the two curves are 
visibly closer together.

The KS parameter is determined by taking the maximum 
distance between the theoretical and empirical distributions. The 
results of this test are then reported as a hypothesis test where Fig. 1. A sample DRAM user-interface

Fig. 2. Simulated infection level data
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the null-hypothesis entails accepting the distribution, and the 
alternative hypothesis is rejecting it. Alpha is the probability of 
incorrectly rejecting the distribution. The current implementation 
of DRAM displays the results of this test for alphas of 20%, 10%, 
5% and 1%. When choosing the best distribution automatically, 
DRAM selects the distribution that results in the smallest KS 
value when the test is applied to the time series data.

Step 4
The fundamental problem encountered when applying random 
number statistical theory to dynamic simulation results is that 
the simulation results are not (in the vast majority of cases) 
random variables. There is often a high level of autocorrelation 
between sequential data points in the resulting time series. 
Thus the sequential observations are not strictly independent. 
To compensate for this fact, the DRAM algorithm analyzes 
the autocorrelation within the dataset to approximate the total 
number of independent observations.

First, a correlogram (autocorrelation plot) for 
the data series is constructed. The correlogram plots the 

autocorrelation within the dataset for different offsets. 
The algorithm then locates the fi rst place at which the 
autocorrelation falls below a set threshold (recommended 
to be 0.707, the point at which R2 is 0.5 indicating that the 
majority of an observation is no longer explained by the 
previous observations). The offset at this point is recorded. 
The total number of data-points is then divided by this 
critical offset. The result of this division is the number of 
approximately independent data points. Figure 4 illustrates 
such a correlogram for the disease model.

The success of the method is seen in the way the 
number of independent observations changes as we change the 
simulation time step. The simulation time step is a parameter of 
system dynamics models which is used by numerical solvers. 
The smaller the time step, the more accurate the resulting 
simulation but the longer it takes to complete the simulation. 
Theoretically, reducing the time step does not change the 
probability that thresholds will be exceeded (assuming it 
is already at a relatively fi ne-grained level and the level on 
randomness in the model is not based on the time step) thus 

 
Fig. 3. Two Kolmogorov-Smirnov Goodness of Fit Tests

 

 
Fig. 4. Sample correlogram; the critical offset in this analysis is found to be 10
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the number of independent data-points should remain constant. 
Cutting the time step in half (while holding constant the 
duration of the simulation) results in a doubling the number 
of observations. In our tests for the infection model, however, 
the number of independent observations calculated by DRAM 
only changed by approximately 0.5% when the number of real 
observations was doubled. 

Step 5
For a random variable, the probability of a lower bound 
threshold not being violated or crossed in one trial is denoted ql 
and is determined with Equation 1.

 ql = P(X ≥ x) = 1 – CDF(x) (1)

For an upper bound threshold, the probability of 
the threshold being violated is denoted qu and is defi ned in 
Equation 2.

 qu = P(X < x) = CDF(x) (2)

Where CDF is the Cumulative Probability Distribution 
with the parameters calculated from the time-series data and x 
is the user-specifi ed threshold. The probability of the threshold 
not being violated in n trials is denoted Q and is calculated 
using Equation 3.

 Q = qn (3)

Where q is either ql or qu depending on the threshold 
type, n is the number of independent events in the time series. 
Thus the probability of a threshold being violated in n trials is 
denoted P and is calculated using Equation 4.

 P = 1 – Q = 1 – qn (4)

Step 6
The probability of violation is calculated separately for each 
threshold. Combined risk is calculated using Equation 5.

 =
i

ii CPR  (5)

Where Pi is the probability of the ith threshold being 
violated and Ci is the cost of such a violation. This total risk 
that is calculated is for the simulation duration. For different 
durations the risk may be scaled linearly.

Figure 5 illustrates example results from a DRAM 
analysis for the disease simulation. Hypothetical costs were 
assumed for testing the algorithm. Calculated risk for the 
simulated community of 50 000 individuals over the course of 
5 years is R = $ 9 123.33. This cost may be scaled linearly for 
different time periods resulting in a yearly risk of: R = $ 1 824.66.

Step 7
To assess the potential risks, the value of R should be compared 
to the levels of acceptable risk (RA), tolerated risk (RT), and 
unacceptable risk (RN). The adoption of such benchmarks is one 
of the most diffi cult stages of risk analysis. For example, Rak 
(Rak 2009) proposed acceptable risk (RA) below 10-9 , tolerated 
risk (RT) between 10-9 and 10-6, and unacceptable risk (RN) 
above 10-6. The risk must be constantly monitored. In addition, 
if the costs of risk mitigation are not excessive, mitigation 
methods should be employed. The means of mitigation of the 
risks involved may include, for example, increasing levels of 
water disinfection or a change of the water source. 

Conclusions
The method of estimating risk is based on the simulation of 
the number of people infected during a period of time and at 
the cost of treating the illness. The longer period of time used 
for the simulation, the more reliable the results obtained. The 
cost of treatment and loss productivities depend on the level 
of the population that is affected. Risk assessment requires 
the adoption of benchmarks such as the levels of acceptable, 
tolerable, and unacceptable risks. The proposed method of 
risk assessment may be useful for assessing risks in data series 
generated through system dynamics simulation techniques.

Fig. 5. Sample results from DRAM analysis
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Metoda dynamicznego szacowania ryzyka 
– propozycja oceny ryzyka w systemie zaopatrzenia wody

Dynamika Systemów jest metodologią modelowania i analizy złożonych systemów. Taki złożony system może być charaktery-
zowany przez wzajemne proste połączenia elementów oraz istniejące sprzężenia zwrotne. Przeprowadzenie oceny ryzyka przy 
modelowaniu Systemów Dynamicznych jest trudnym wyzwaniem. Chociaż w niektórych przypadkach, uzyskane za pomocą symu-
lacji serie wyników mogą się wydawać przypadkowe, to jednak często istnieje wysoki stopień autokorelacji między tymi seriami 
wynikający z istnienia powiązań zwrotnych w systemie. Artykuł przedstawia propozycje Metody Dynamicznego Szacowania Ry-
zyka (MDSR), która pozwala oceniać ryzyko związane z hipotetycznymi kosztami zachorowań wywołanymi skażeniem systemu 
zaopatrzenia w wodę przez Cryptosporidium. 


