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COMPARISON OF SELECTED FORMULATIONS FOR MULTIBODY
SYSTEM DYNAMICS WITH REDUNDANT CONSTRAINTS

This paper compares selected optimization-based methods for the analysis of
multibody systems with redundant constraints. The following numerical schemes
are examined: direct integration method, Udwadia-Kalaba formulation, two types of
least-squares block solution method and Udwadia-Phohomsiri formulation. In order
to compare efficiency of the algorithms, a series of simulations is performed on
two exemplary McPherson struts. In the first variant, the mechanism has no redun-
dant constraints whereas the other is overconstrained. Three constraint stabilization
schemes are also compared in terms of integration errors.

1. Introduction

Equations of motion for constrained multibody systems can be derived
from various formalisms of mechanics, such as Lagrange, Hamilton or Ap-
pel’s equations (Bauchau and Laulusa, 2008). As a result, in many of these
formulations the equations of motions are written in the form of differential-
algebraic equations (DAEs) (Amirouche, 2006; de Jalón and Bayo, 1994). If
e.g. Lagrange’s equations of the first kind are used and constraints are for-
mulated on the position level then they can be considered as index-3 DAEs
(Gear, 1988). In addition, it is often assumed that redundant constraints do
not appear in the DAE system i.e. Jacobian matrix of the constraints equations
has a full row rank. There are several classes in variety of numerical methods
for DAE solution widely quoted in the literature, e.g. (Hairer and Wanner,
1996) originally formulated for such a case. Some of them rely on the direct
application of numerical integration schemes (e.g. BDF or IRK methods) to
the DAEs, in which the nonlinear algebraic equations are obtained and have
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to be solved with Newton-like iterative methods. Other methods may rely
on the transformation of DAEs into ordinary-differential equations (ODEs)
which can be numerically integrated using classical ODE solvers. This trans-
formation can be done e.g. through a suitable reduction to a minimal set of
(independent) coordinates (de Jalón and Bayo, 1994).

However, if the system is overconstrained (and constraints are consis-
tent), then a set of constraints equations is overdetermined, row rank of
the Jacobian matrix of the constraints is not full and some or all Lagrange
multipliers are not uniquely determined (Frączek and Wojtyra, 2011). As a
consequence, many of the numerical methods mentioned above fail. There
are a lot of proposals in literature on the subject to overcome this difficulty.
One of the ideas, which are often used, is to determine acceleration and
Lagrange multipliers vectors by means of optimization techniques which are
insensitive to degeneration of the Jacobian matrix and nonuniqueness of the
Lagrange multipliers. Methods for solving equations in the sense of least-
squares are useful in this case, and particularly numerical techniques with
direct application of pseudoinverse matrices or their suitable transformations
(Eich-Soellner and Führer, 1998) are proposed.

In this paper, a comparison of selected numerical methods based on op-
timization idea is presented as applied to a DAE system featuring consistent
redundant constraints. Numerical simulations are performed for two examples
of spatial automotive suspensions. The first mechanism does not have redun-
dant constraints, the second is overconstrained. Dependent-absolute (Carte-
sian) coordinates are used to represent kinematics of the systems. It results
in mathematical models having the form of DAEs of index-1 (constraints on
the acceleration level are taken). The following schemes are examined: direct
integration method (de Jalón and Bayo, 1994), Udwadia-Kalaba formulation
(de Falco et al., 2009; Pennestrı̀ and Valentini, 2007; Udwadia and Kalaba,
2001), two types of least-squares block solution method (de Falco et al.,
2009) and Udwadia-Phohomsiri formulation (de Falco et al., 2009; Udwadia
and Kalaba, 2001; Udwadia and Phohomsiri, 2006). For the mechanisms,
three simulation cases are analyzed: without constraint stabilization (exam-
ined only to obtain the reference results), with the Baumgarte stabilization
(Baumgarte, 1972), and with the coordinate partitioning method (Nikravesh,
1988). Moreover, all of the analyzes are carried out with various values of
integration error tolerance (four values of integration errors are taken into
consideration). In order to compare the efficiency of the mentioned methods,
average values of computational time from 10 simulations are taken.

It is worth noting that similar studies have been already presented in lit-
erature, e.g. (Mariti et.al., 2011, 2010; Pennestrı̀ and Valentini, 2007; Pękal,
2012). The results obtained in this paper are compared with the outcomes
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taken form two of them i.e. (Mariti et.al., 2011, 2010). The first major dif-
ference with respect to the mentioned papers is associated with the fact
that, in the citied papers, spatial systems are described using the set of four
Euler parameters. In such a parametrization, the matrix M became singular,
what did not allow one to obtain the results for several formulations like the
Udwadia-Kalaba formulation and the least-squares 1 method there. Through
the use of the three Euler angles for the rotation description of the spatial
multibody systems, the methods which do not work due to the singularity of
the inertia matrix M (the Udwadia-Kalaba formulation and the least-squares
1 method) are compared in this paper. In addition, three simulation cases
are considered and direct integration method is analyzed. The paper presents
in sequence: problem formulation, theoretical description of the considered
methods, numerical examples, results of numerical tests and final conclu-
sions.

2. Spatial multibody system dynamics

The general formulation of equations for multibody system dynamics
in absolute coordinates can be found in many publications. In the present
section, equations in the form analogous to e.g. (de Jalón and Bayo, 1994;
Frączek and Wojtyra, 2008; Haug, 1989) are used. Moreover, it is assumed
that the system may be overconstrained and constraints in the analytical form
are consistent on all levels i.e. on the position, velocity and acceleration
levels.

2.1. General equations of the dynamics

In the case of three-dimensional multibody system, absolute coordinates
define the position and orientation of the body by means of the Cartesian
coordinates of the origin of body-fixed local reference frame and by means
of three Euler angles describing orientation of the local frame with respect
to the inertial global reference frame. For constrained multibody systems,
the additional equations – constraints are introduced in order to impose the
motion requirements on the system. Using such description, the generalized
coordinates vector for the multibody system can be written in the following
form (Haug, 1989)

qn×1 = [q1 q2 . . . qn]T =
[
qT

1 qT
2 . . . qT

N

]T
, (1)

where qi = [xi yi zi αi βi γi]T , n is the number of generalized coordinates
and N is the number of bodies in the examined system. Coordinates: xi, yi,
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zi describe i-th body translations (from the origin of the global reference
frame to the origin of the i-th body local reference frame) and αi, βi, γi are
aforementioned Euler angles (zxz): precession, nutation and intrinsic rotation
angle respectively. They represent globally rotations of the i-th body.

The equation of motion can be written in the matrix form as (Udwadia
and Kalaba, 2001)

Mq̈ = Q + W (2)

or (de Jalón and Bayo, 1994; Haug, 1989)

Mq̈ + ΦT
qλ = Q, (3)

where M is the inertia matrix, Q is the generalized forces vector (containing
external and inertial terms), W = −ΦT

qλ is the generalized reactions vector,
Φq is the Jacobian matrix of the constraint equations described later and λ
is the Lagrange multipliers vector.

The generalized coordinates need to fulfil the constraint equations at the
position level (de Jalón and Bayo, 1994; Haug, 1989)

Φm×1 = Φ(q, t) = 0, (4)

where m is the number of constraints and t is time.
The foregoing constraint equations can be also expressed at the velocity level
by differentiation of Eq. (4) with respect to time (Haug, 1989)

Φ̇ = Φqq̇ + Φt = 0, (5)

where the Jacobian matrix has the following form (de Jalón and Bayo, 1994)

Φqm×n =
∂Φ

∂q
=



∂Φ1

∂q1

∂Φ1

∂q2
· · · ∂Φ1

∂qn
∂Φ2

∂q1

∂Φ2

∂q2
· · · ∂Φ2

∂qn
...

...
...

∂Φm

∂q1

∂Φm

∂q2
· · · ∂Φm

∂qn


m×n

. (6)

We denote the rank of the Jacobian matrix as r and let the Jacobian matrix
be rank deficient.
Constraint equations can be also written at the acceleration level by differ-
entiation of Eq. (5) with respect to time (Haug, 1989)
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Φ̈ = Φqq̈ − Γ = 0, (7)

where Γ = −(Φqq̇)qq̇ − 2Φqtq̇ −Φtt .
The Eq. (3) together with the twice-differentiated constraint equations (Eq. (7))
constitute index-1 differential-algebraic equations (de Jalón and Bayo, 1994;
Haug, 1989) 

M ΦT
q

Φq 0


︸         ︷︷         ︸

X

[
q̈
λ

]
=

[
Q
Γ

]
. (8)

Formula (8) is a linear equation with respect to the accelerations and
Lagrange multipliers. It has a unique solution only when the row rank of the
Jacobian matrix is full. This unique solution can be efficiently determined by
exploiting sparsity of the coefficient matrix X (Torres-Moreno et.al., 2013).
The linear system (8) can be solved directly with respect to the vector of
accelerations and Lagrange multipliers and the resultant accelerations can
be next integrated as an ODE system. However, it is well known that this
method of integration leads to the drift-off effect caused by the fact that Eqs
(4) and (5) are not incorporated into error estimator of the ODE solver used.

Special methods are proposed in literature to improve accuracy of posi-
tion and velocity constraints. In this paper, the attention is focused on two of
them which are often used in computational practice during numerical inte-
gration of DAE. The Baumgarte stabilization method (Baumgarte, 1972), as
one of the simplest and efficient algorithms is the first. When this method is
used, the Γ vector is replaced by the modified expression (Haug, 1989)

Γ̄ = Γ − 2α̂Φ̇ − β̂2Φ, (9)

where α̂, β̂ are the Baumgarte stabilization parameters, which are chosen
heuristically. These parameters are usually taken as α̂ = β̂ ∈ 〈1, 20〉 (de Jalón
and Bayo, 1994).

The second scheme of constraint stabilization is incorporated into the
coordinate partitioning method that dates back to the paper (Wehage et.al.,
1981) used for DAE integration and implemented according to (Nikravesh,
1988). The coordinate partitioning is applied first. Redundant coordinates
are partitioned into dependent (u) and independent (v) coordinates. Then
only independent accelerations and velocities are integrated as ODEs. In
each integration step, the dependent coordinates are computed using Newton-
Raphson method based on the algorithm presented in e.g. (Haug, 1989) with
a predetermined accuracy. This step provides stabilization of the position
constraints violation error. Solving the linear equation (partitioned form of



98 MARCIN PĘKAL, JANUSZ FRĄCZEK

Eq. (5) with respect to u and v) yields the dependent velocities. This stabilizes
the velocity constraints. At the end of each integration step, the accelerations
are calculated and integration may be continued.

When the examined system contains consistent redundant constraints,
Jacobian matrix is rank deficient and values of the Lagrange multipliers (all
or some) are no longer unique, what may affect not only the joint reactions
but even the acceleration results for non-ideal systems e.g. when the friction
is considered (Frączek and Wojtyra, 2011). In this case, some methods fail.
The numerical methods analyzed in this paper operate also on rank deficient
Jacobian matrices.

3. Numerical algorithms

Theoretical basis of the selected numerical methods, which allow con-
straint redundancy, are presented in this section.

3.1. Direct integration

The direct integration method uses directly index-1 DAEs (8) provided
that the constraint equations are independent. During the integration process
the equations containing unknown accelerations and Lagrange multipliers
(included in the DAEs) are solved in each integration step, what may be
expressed as (de Jalón and Bayo, 1994)

[
q̈
λ

]
=


M ΦT

q

Φq 0


−1 [

Q
Γ

]
. (10)

Note that due to effectiveness reasons the inverse matrix presented in the
equation (10) is not calculated explicitly during simulations described below.
Numerical calculations are carried out using solver for linear systems present-
ed in (MATLABr, help). The direct integration method is not applicable to
overconstrained systems as for such systems the coordinate matrix X (See Eq.
(8)) is singular and standard factorization algorithms fail. However, a method
for overdetermined linear equations may be introduced to handle overcon-
strained systems. For example, the Moore-Penrose pseudoinverse matrix may
be used. Thereby, the problem converts to optimization task which can be
written in the form [

q̈
λ

]
=


M ΦT

q

Φq 0


+ [

Q
Γ

]
, (11)

where + stands for Moore-Penrose (MP) pseudoinversion. It should be point-
ed out that MP pseudoinversion is used further in this paper. Note that in
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many cases numerical cost of simulation is dominated by computation of the
pseudoinverse solution.

3.2. Udwadia-Kalaba formulation

The Udwadia-Kalaba formulation uses a block inverse of the coefficient
matrix appearing in Eq. (8) provided that there are no redundant constraints
in the system and the matrix M is non-singular. This inversion, at a given
claim, can be written in the form (Pennestrı̀ and Valentini, 2007)


M ΦT
q

Φq 0


−1

=


M−1 −M−1ΦT

q (ΦqM−1ΦT
q )−1ΦqM−1 M−1ΦT

q (ΦqM−1ΦT
q )−1

(ΦqM−1ΦT
q )−1ΦqM−1 −(ΦqM−1ΦT

q )−1

 .
(12)

Using expression (12), the solution of Eq. (8) takes the form
[
q̈
λ

]
=


M−1Q −M−1ΦT

q [(ΦqM−1ΦT
q )−1(ΦqM−1Q − Γ)]

(ΦqM−1ΦT
q )−1(ΦqM−1Q − Γ)

 . (13)

Assume that (Udwadia and Kalaba, 2001)

q̈ f = M−1Q (14)

is the solution of the unconstrained system

Mq̈ f = Q. (15)

Substituting Eq. (14) into Eq. (13) leads to
[
q̈
λ

]
=


q̈ f + M−1ΦT

q (ΦqM−1ΦT
q )−1(Γ −Φqq̈ f )

(ΦqM−1ΦT
q )−1(Φqq̈ f − Γ)

 . (16)

The next step is the inertia matrix M decomposition, what can be done using
Cholesky (Banachiewicz) decomposition (Fortuna et.al., 2005). Using the
aforementioned decomposition, one can decompose an arbitrary symmetric,
positive definite matrix A as the product of two matrices

A = LLT , (17)

where L is a lower triangular matrix. Taking M
1
2 =L matrix M can be written

as
M = M

1
2 (M

1
2 )T . (18)

(Note, that for the case of planar multibody systems the M matrix is diagonal
and matrix M

1
2 can be obtained directly).
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The received M
1
2 matrix is used to obtain the following matrix

M− 1
2 = M−1M

1
2 . (19)

Let (Pennestrı̀ and Valentini, 2007)

D = ΦqM− 1
2 . (20)

Using Eqs (16) and (20) yields (Pennestrı̀ and Valentini, 2007)

q̈ = q̈ f + M− 1
2 M− 1

2 ΦT
q︸   ︷︷   ︸

DT

(ΦqM− 1
2︸   ︷︷   ︸

D

M− 1
2 ΦT

q︸   ︷︷   ︸
DT

)−1(Γ −Φqq̈ f ). (21)

In order to simplify notation and due to the fact that inertia and Jacobian
matrices are not rank deficient, the right inverse matrix definition

DT (DDT )−1 = D† (22)

can be noticed in the above formula, hence (Pennestrı̀ and Valentini, 2007)

q̈ = q̈ f + M− 1
2 D†(Γ −Φqq̈ f ). (23)

Eventually final form of the equation can be written as
[
q̈
λ

]
=


q̈ f + M− 1

2 D†(Γ −Φqq̈ f )

(ΦqM−1ΦT
q )−1(Φqq̈ f − Γ)

 =


q̈ f + M− 1

2 D†(Γ −Φqq̈ f )
(DDT )−1(Φqq̈ f − Γ)

 . (24)

It should be emphasized that this formulation is valid only for systems
containing non-singular matrix M (then M−1 exists) (Mariti et.al., 2010)
and Jacobian with full row rank (then the right inverse matrix D† and ma-
trix (DDT )−1 exist). Therefore, for redundant multibody systems with non-
singular M matrices, the formulation requires small modifications. Firstly,
the MP pseudoinverse matrix will be used in the place of the right inverse
appearing in Eq. (21) (which can be used for non–overconstrained systems).
Secondly, the inversion (DDT )−1 in Eq. (24) should be replaced consequently
by MP pseudoinverse (DDT )+.

3.3. Least-squares block solution

Assume that the matrix M has full rank. Hence, it is possible to create
the following pseudoinverse matrix as (de Falco et al., 2009)


M ΦT

q

Φq 0


+

=


M−1 −M−1ΦT

q (ΦqM−1ΦT
q )+ΦqM−1 M−1ΦT

q (ΦqM−1ΦT
q )+

(ΦqM−1ΦT
q )+ΦqM−1 −(ΦqM−1ΦT

q )+

 .
(25)
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Note that this expression is analogous to Eq. (12).
The following assumption (de Falco et al., 2009)

QLS1 = ΦqM−1ΦT
q (26)

yields (de Falco et al., 2009)


M ΦT
q

Φq 0


+

=


M−1 −M−1ΦT

qQ+
LS1ΦqM−1 M−1ΦT

qQ+
LS1

Q+
LS1ΦqM−1 −Q+

LS1

 . (27)

Hence, the solution of Eq. (8) can be written as
[
q̈
λ

]
=


M ΦT

q

Φq 0


+ [

Q
Γ

]
, (28)

which, after applying Eq. (27), gives
[
q̈
λ

]
=


(I −M−1ΦT

qQ+
LS1Φq)M−1Q + M−1ΦT

qQ+
LS1Γ

Q+
LS1(ΦqM−1Q − Γ)

 , (29)

where I is the unit matrix. This form of the least-squares block solution will
be denoted as the least-squares 1 method.

It is necessary to add that the least-squares 1 method is not valid for
equations with matrix M being singular. In order to overcome this prob-
lem, the second type of least-squares block solution method is used. This
formulation uses directly the fact that mass matrix is symmetric.
Assume that (de Falco et al., 2009)

R = MΦ+
q , (30)

E = I −Φ+
qΦq. (31)

Note that when the Φq is a full–rank matrix, then Φ+
qΦq = I and, as result,

E = 0.
Let also

QLS2 = (EME)+. (32)

Then (de Falco et al., 2009)


M ΦT
q

Φq 0


+

=


0 Φ+

q

(Φ+
q)T −(Φ+

q)TR

 +

[
I
−RT

]
QLS2[I − R]. (33)

Hence, Eq. (28) can be written as
[
q̈
λ

]
=


QLS2Q + (Φ+

q −QLS2R)Γ

[(Φ+
q)T − RTQLS2]Q + [−(Φ+

q)T + RTQLS2]RΓ

 . (34)



102 MARCIN PĘKAL, JANUSZ FRĄCZEK

This scheme will be denoted as the least-squares 2 method.
It is worth noting that both types of the least-squares block solution

method are applicable to redundant systems analysis.

3.4. Udwadia-Phohomsiri formulation

The Udwadia-Phohomsiri formulation was originally proposed for the
system with non-ideal constraints and for the matrix equation of motion in
the form of (2). The original form of these equations is maintained here
despite the fact that, in this paper, the systems with ideal constraints are
analyzed only.

According to d’Alembert’s principle for the ideal constraints, the work
done in virtual displacements is equal zero. However, when there are non-
ideal constraints in the system, the situation is more complex (Udwadia and
Phohomsiri, 2006)

(δw)TW = (δw)TC, (35)

where C is the vector which describes the nature of the non-ideal constraints
(for the ideal constraints C ≡ 0) and δw is the virtual displacement vector.
When constraints have the form (4), the virtual displacement vector fulfils
the following expression (Udwadia and Phohomsiri, 2006)

Φqδw = 0, (36)

for which the solution is (See Eq. (31)) (Udwadia and Phohomsiri, 2006)

δw = (I −Φ+
qΦq)δγ = Eδγ, (37)

where δγ is arbitrary.
Note that the above equation contains only the non-unique part of the

general solution of the linear system. This part results from the nullspace of
the Jacobian matrix Φq.
Substituting Eq. (37) into Eq. (35) and using ET = E yields (Udwadia and
Phohomsiri, 2006)

(δγ)TEW = (δγ)TEC. (38)

Note that δγ is independent, therefore the above equation can be simplified
to the form (Udwadia and Phohomsiri, 2006)

EW = EC. (39)

Left-side multiplying of Eq. (2) by E and using Eq. (39) yields the formula
which can be combined with Eq. (7) as (Udwadia and Phohomsiri, 2006)

[
EM
Φq

]
q̈ =

[
E(Q + C)

Γ

]
. (40)
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Denote (Udwadia and Phohomsiri, 2006)

M̄(n+m)×n =

[
EM
Φq

]
. (41)

Solving Eq. (40) yields (Udwadia and Phohomsiri, 2006)

q̈n×1 = M̄+
n×(n+m)

[
Q + C

Γ

]

(n+m)×1
+ (In×n − M̄+

n×(n+m)M̄(n+m)×n)ηn×1, (42)

where η is arbitrary.
The above statement has infinitely many solutions, in general. But, when M̄
has full rank, then M̄+M̄ = I, because the nullspace of M̄ is empty. Hence,
Eq. (42) becomes uniquely solvable and the solution takes the form (Udwadia
and Phohomsiri, 2006)

q̈ = M̄+

[
Q + C

Γ

]
. (43)

Note that this method is also suitable for redundant multibody systems.
Moreover, it is useful to add that, when ideal systems are considered, the
acceleration vector is always unique.

4. Numerical examples

4.1. Selected mechanisms

In order to compare the effectiveness of the considered methods, two au-
tomotive suspension mechanisms are examined. The simplified McPherson
strut shown in Fig. 1 is the first one and the overconstrained McPherson
strut presented in Fig. 2 is the second. This type of the McPherson strut is
taken from (Haug, 1989). The first mechanism is a variant of the second
system obtained by the elimination of the redundant constraints, i.e. by the
elimination of one of the revolute joints between the ground and the first
body. Absolute coordinates with the set of 3 Euler angles (zxz convention)
are used in the kinematic description of these mechanisms. Moreover, the
formulation with such coordinates and their derivatives q̇ and q̈ leads to
non-singular matrix M is used.

Both mechanisms consist of 5 rigid bodies and they have 4 degrees of
freedom (DOFs). Note that 2 of the DOFs are local mobilities of bodies
3 and 4. The characteristic points are depicted in Figs 1 and 2. The main
dimensions of the systems are: |P1P2| = 0.3 m, |P1P1A| = 0.025 m, |P1P1B| =
= 0.025 m, |P3P4| = 0.45 m, |P3P5| = 0.1 m, |P3P6| = 0.25 m, |P2P3| =

= 0.05 m, |P6P7| = 0.1 m, |P5P8| = 0.15 m, |P7P9| = 0.05 m, |P10P11| =
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Fig. 1. Simplified McPherson strut Fig. 2. Overconstrained McPherson strut

= 0.3 m, |P9P12| = 0.5 m, a |P12P13| = 0.2 m. In order to simplify the
description of the mechanisms, local coordinate systems are placed in the
bodies’ centres of masses. Moreover, the centres of masses for bodies 1-5
are located in the middle of the line segments: P1P2, P3P4, P10P11, P9P12
and P12P13 respectively. It is assumed that all bodies have equal masses
m = 1 kg and non-zero moments of inertia: Jxx = 0.1 kgm2, Jyy = 0.1 kgm2

and Jzz = 0.1 kgm2.
The mechanisms are loaded in the same manner, i.e., by means of Fz =

= 38 N force applied to the centre of mass of the body 1 and Fy = 2 + 0.01 ·
· sin(t) N force applied to the centre of mass of the body 5. The forces act
in the z and y directions of the global reference system respectively. Gravity
force is considered in the simulations. It acts in the z direction of the global
coordinate system with acceleration g = −9.80665 m/s2.

All examined algorithms were implemented in the MATLABr R2014b
package. Differential equations were integrated by ode45 function which is
a variant of the Runge-Kutta algorithm. Four values of the integration er-
ror tolerance were considered: AbsTol = RelTol ∈ {1.00e-3, 1.00e-6, 1.00e-8,
1.00e-10} (AbsTol is the absolute error tolerance and RelTol is the rela-
tive error tolerance (MATLABr, help)). The simulations for the time of
10 s motion were performed. These simulations can be divided into three
groups: without stabilization of the constraints, with the Baumgarte stabi-
lization method and with the coordinate partitioning method. It was taken
α̂ = β̂ = 10 for the Baumgarte stabilization. For the coordinate partitioning
method, which uses the Newton-Raphson scheme, tolerance of the norm of
the position constraints (NormTol) for the Newton-Raphson algorithm was
three orders of magnitude smaller than the integrator tolerance. For simplici-
ty, coordinates were partitioned only once, at the beginning of each analysis.
In order to assess the correctness of the partition, the conditioning of the
submatrix of the Jacobian matrix (which corresponds to the dependent co-
ordinates) was monitored during the simulation. Moreover, because of rank
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deficiency of the Jacobian matrix, its inversion occurring in the correction
phase of the Newton-Raphson method, was replaced with MP pseudoin-
verse.

MATLABr R2014b was run in the single thread mode in order to avoid
time measurement problems. The computational time was measured by tic
and toc functions. Ten simulations (integrations) were performed and the
average computation time was determined in each case.

The correctness of the obtained results was verified by comparing them
to results of independent dynamics simulations in the 64–bit version of the
AdamsTM 2014.0.1 program with appropriately selected integration error tol-
erances.

All the computations were performed using the computer equipped with
Intelr CORETM i5 CPU M520 @ 2.40 GHz 2.40 GHz processor, 4 GB
of RAM and 64-bit Microsoftr Windowsr 7 Home Premium operating
system.

4.2. Results

Absolute average computation time and number of right-hand side (RHS)
computations (carried out by the integrator) from 10 simulation runs (for
each case) are shown in the following figures. The outcomes from simula-
tions performed without constraint stabilization are presented in Figs 3 and
4. The Figs 5 and 6 show the results obtained using the Baumgarte stabi-
lization method, while Figs 7 and 8 depict outcomes received by applying
the coordinate partitioning method. Moreover, the exact numerical values of
the computation time from these figures are also presented in the Table 1,
which is placed in appendix A.

Fig. 3. Time and number of right-hand side
computations of simulations for simplified
McPherson strut without constraint stabiliza-
tion

Fig. 4. Time and number of right-hand
side computations of simulations for overcon-
strained McPherson strut without constraint
stabilization
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Fig. 5. Time and number of right-hand side
computations of simulations for simplified
McPherson strut with the Baumgarte stabiliza-
tion

Fig. 6. Time and number of right-hand
side computations of simulations for overcon-
strained McPherson strut with the Baumgarte
stabilization

The errors in constraints are expressed via Euclidean norms, as shown
in Figs 9, 10 and 11. These figures contain the constraint norms at the posi-
tion, velocity and acceleration level for all stabilization cases obtained from
simplified McPherson strut analysis by the least-squares 2 method for the
integration error tolerance AbsTol = RelTol = 1.00e-10. The Fig. 9 presents
results of simulation without constraint stabilization. The Figs 10 and 11
show the results of simulations when the Baumgarte and the coordinate
partitioning methods of constraint stabilization are applied respectively.

Fig. 7. Time and number of right-hand side
computations of simulations for simplified
McPherson strut with the coordinate partition-
ing method

Fig. 8. Time and number of right-hand
side computations of simulations for overcon-
strained McPherson strut with the coordinate
partitioning method

The computational time of simulation without constraint stabilization
is shorter than the corresponding time for analyses with stabilization. The
accuracy of the position and velocity constraints degrades quickly for the
unstabilized simulations, what can be observed in Fig. 9.
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Computational time for analyses with the coordinate partitioning method
is about half as long as simulations without stabilization and, in turn, twice
shorter than time of simulations with the Baumgarte stabilization. Note that
the above observation is valid provided that the coordinate partitioning is
made only once, at the beginning of each simulation. Additionally, it should
be added that Newton-Raphson method appearing in the coordinate parti-
tioning algorithm needs typically 3 or 4 iterations to achieve the assumed
accuracy of the position constraints. It should be also emphasized that the
norms for both stabilization methods do not reveal the drift-off effect, what
can be seen in Figs 10 and 11.

Fig. 9. Constraint norms for simplified
McPherson strut without constraint stabiliza-
tion for the selected case

Fig. 10. Constraint norms for simplified
McPherson strut with the Baumgarte stabiliza-
tion for the selected case

Fig. 11. Constraint norms for simplified McPherson strut with the coordinate partitioning method

for the selected case

According to the simulation results, the direct integration method turns
out to be the fastest for simplified McPherson strut. The Udwadia-Kalaba
formulation and the least-squares 1 method are slightly less effective than
the direct integration method there. Additionally, the least-squares 2 method
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gives slightly worse timing results. Moreover, the Udwadia-Phohomsiri
formulation gives the slowest timing results for this mechanism. For the
system with redundant constraints, the direct integration method is the least
efficient in most cases whereas the Udwadia-Kalaba formulation and the
least–squares 1 methods are the most effective (with slight differences).

As mentioned above, the number of RHS computations of simulations is
also presented in Figs. 3–8. Note that the RHS computations number is the
same for all considered methods in each computation case in general. There
is one exception. For overconstrained McPherson Strut with the Baumgarte
stabilization and error tolerance equal to 1e-3 there are differences in the
number of RHS computations between methods (See Fig. 6). It may be due
to numerical errors at a high error tolerance equal to 1e-3. The RHS data
may be used in order to show time relative to number of RHS computations.
Conducting this does not change the above observations about efficiency even
for the exceptional case.

Some of the results confirm suggestions formulated in the literature. Most
of the considered numerical methods were analyzed in (Mariti et.al., 2011,
2010), where Euler parameters were used to express angular orientation (in
the case of spatial multibody systems). In the formulation presented there,
matrix M was singular, therefore the Udwadia-Kalaba formulation and the
least–squares 1 could not be applied to spatial mechanisms. In the men-
tioned publications, the least-squares 2 method was faster than the Udwadia-
Phohomsiri formulation for the spatial system without redundant constraints.
This agrees with the results obtained in this paper.

5. Conclusions

Comparison of the selected methods for constrained multibody dynamics
with redundant constraints has been presented. The following methods have
been examined: direct integration method, Udwadia-Kalaba formulation, two
types of the least-squares block solution method and Udwadia-Phohomsiri
formulation. Two exemplary rigid body mechanisms: simplified McPherson
strut and overconstrained McPherson strut have been simulated. Three sim-
ulation sets have been considered: without constraint stabilization, with the
Baumgarte stabilization and with the coordinate partitioning method. All
analyses have been conducted for four different integration error tolerances.
The obtained results have been confronted with suggestions formulated in
the literature (Mariti et.al., 2011, 2010).

Three methods: the Udwadia-Kalaba and both least-squares, have had
similar effectiveness measured by computational time in all the analyses. Di-
rect integration method (which seems to be the simplest) has been the fastest
in most cases for the simplified McPherson strut, whereas, for overconstrained
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system, this method has been least effective. Therefore, it is useful to take it
into consideration when analyzing non-overconstrained systems. Time of sim-
ulation for the Udwadia-Kalaba formulation and the least-squares 1 method
have been slightly shorter than in other methods for the overconstrained sys-
tem. It should be pointed out that for systems with singular matrix M, these
two methods cannot be applied. However, such systems can be analyzed using
the least-squares 2 method. Moreover, the Udwadia-Phohomsiri formulation
have had relatively weak effectiveness for both mechanisms. It seems that
this method is not a rival for systems containing ideal constraints only, but it
is appropriate for systems containing non-ideal constraints (according to its
authors) e.g. when there is friction in a mechanism. Note that such systems
are not considered in this paper.

As expected, the times of simulations with constraint stabilization were
longer than times of analyses without stabilization. In the case of the simu-
lation with constraint stabilization, additional computations have to be per-
formed, increasing the computational cost. On the other hand, the accuracy
of the position and velocity constraints decreases rapidly for the simulations
without stabilization. Hence, this approach is not suitable for practical appli-
cations (where the longer time is considered), however, it is used to provide
reference performance measures. In addition, simulations with the Baumgarte
stabilization turned out to be slower than analyses with the coordinate parti-
tioning. This conclusion is not consistent with the experience of other authors.
This outcome could results from the fact that the coordinate partitioning has
been performed once per simulation. Hence, the coordinate partitioning up-
dating process, which is numerically expensive, has been avoided. In practical
applications, covering large multibody systems, the coordinate partitioning
is carried out automatically and is updated during the simulation in general.
This can significantly reduce the efficiency of this stabilization algorithm.
Furthermore, in all calculations libraries dedicated to sparse matrices have
not been used. For the case of large multibody systems, sparse techniques
can significantly decrease computational cost.

The presented conclusions are true for the two exemplary mechanisms.
Therefore, they shall not be directly generalized into the case of more com-
plex, arbitrary multibody systems. However, the results may be useful for
method selection for solving the equations of motion of mechanisms without
or with redundant constraints.
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A Appendix

Table 1.
Exact numerical results presented in the figures
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Figure 3

1e-10 3.10 3.55 3.58 3.78 3.95

1e-8 1.33 1.45 1.41 1.50 1.59

1e-6 0.59 0.60 0.61 0.63 0.67

1e-3 0.29 0.27 0.27 0.27 0.29

Figure 4

1e-10 4.70 3.62 3.63 3.77 4.02

1e-8 1.92 1.46 1.48 1.52 1.64

1e-6 0.84 0.61 0.63 0.64 0.67

1e-3 0.40 0.27 0.27 0.28 0.30

Figure 5

1e-10 10.39 12.13 12.19 12.56 13.46

1e-8 4.35 5.00 5.01 5.17 5.52

1e-6 1.96 2.22 2.22 2.28 2.46

1e-3 0.88 0.94 0.94 0.97 1.04

Figure 6

1e-10 15.69 12.27 12.37 12.80 13.54

1e-8 6.51 5.09 5.14 5.31 5.67

1e-6 2.90 2.55 2.29 2.32 2.49

1e-3 1.27 1.00 0.95 0.98 1.33

Figure 7

1e-10 6.05 6.18 6.22 6.38 6.59

1e-8 2.45 2.52 2.51 2.59 2.65

1e-6 1.07 1.05 1.05 1.07 1.12

1e-3 0.48 0.45 0.47 0.46 0.47

Figure 8

1e-10 7.49 6.45 6.47 6.56 6.86

1e-8 3.11 2.66 2.64 2.69 2.87

1e-6 1.35 1.10 1.10 1.13 1.17

1e-3 0.60 0.46 0.47 0.48 0.49
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Porównanie wybranych metod analizy dynamiki układów wieloczłonowych z więzami
nadmiarowymi

S t r e s z c z e n i e

W pracy porównano wybrane metody analizy układów wieloczłonowych z więzami nadmia-
rowymi z zastosowaniem metod optymalizacji. Porównano następujące metody całkowania rów-
nań ruchu: metodę bezpośredniego całkowania, dwa rodzaje metody najmniejszych kwadratów
oraz trzy różne sformułowania przedstawione w piśmiennictwie. Przeanalizowano trzy przypadki
stabilizacji rozwiązania, przeprowadzono serie symulacji na dwóch przykładach mechanizmów
kolumny McPhersona. Sformułowano wnioski co do efektywności rozwiązania układów równań
ruchu mechanizmów, które mogą być przydatne dla doboru odpowiedniej metody całkowania.


