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IN THE REMOVAL OF C.I. ACID ORANGE 7 
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In this work, a design equation was presented for a batch-recirculated photoreactor composed of a 
packed bed reactor (PBR) with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a 
continuous-flow stirred tank (CFST). The photoreactor was studied in order to remove C.I. Acid 
Orange 7 (AO7), a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The 
effect of different operational parameters such as the initial concentration of contaminant, the 
volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the 
removal efficiency were examined. A rate equation for the removal of AO7 is obtained by 
mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of 
removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L). 
The represented design equation obtained from mathematical kinetic modelling can properly predict 
the removal rate constant of the contaminant under different operational conditions (R2 = 0.963). 
Thus the calculated and experimental results are in good agreement with each other. 

Keywords: heterogeneous photocatalysis, batch-recirculated photoreactor, design equation, 
mathematical kinetic modelling, TiO2-P25 nanoparticles, C.I. Acid Orange 7

1. INTRODUCTION 

Coloured wastewater generated by textile industries is an important source of environmental 
contaminations (Behnajady and Modirshahla, 2006; Daneshvar et al., 2007; Gupta et al., 2011; Sauer et 
al., 2002). It is estimated that about 1-20% of the total world production of dyes is lost during the 
dyeing process and is released into wastewater (Akpan and Hameed, 2009; Konstantinou and Albanis, 
2004). Colour removal from wastewater is often more important than its removal from other colourless 
organic substances (Grzechulska and Morawski, 2002). Heterogeneous photocatalysis seems to be an 
interesting treatment method for the removal of toxic pollutants from industrial wastewaters due to its 
ability to convert them into innocuous end products such as CO2, H2O and mineral acids (Damodar and 
Swaminathan, 2008). A variety of semiconductors such as TiO2, ZnO, CdS, and WO3 have been 
studied as photocatalysts (Gupta et al., 2007; Gupta et al., 2012; Ismail et al., 2011; Lin et al., 2005; Liu 
et al., 1998). TiO2 is the most extensively used effective photocatalyst, owing to its high efficiency, 
photochemical stability, non-toxic nature, and low cost (Ismail et al., 2011). In most cases, TiO2 is 
applied in the form of suspension or slurry (Behnajady et al., 2007a). From a practical point of view, 
using slurry systems involves several major problems such as: (a) separation of the catalyst from the 
slurry is difficult, (b) suspended particles especially in high concentrations tend to aggregate, (c) using 
the suspensions in systems with continuous flow is difficult, and (d) due to the high absorption by TiO2
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The whirlpool separator, used for hot trub separation, is prevalent in the brewing industry. It is a kind 
of a hydrocyclone inside of which a tea leaf effect occurs, which is sediment accumulation into a cone 
shape at the central part of the tank’s bottom. This manner of sediment accumulation is caused by 
the secondary flow occurring in the so-called Ekman boundary layer. This article is a summary of 
the research, which has been conducted for many years and involved observation, simulation and 
experimental research on the recognition and formation of the secondary flow accumulating the 
sediment cone. Secondary flows occurring in a whirlpool were identified through CFD simulation 
and PIV experiments, and are presented in this paper. Based on their location and direction, an attempt 
to determine their impact on the separation process taking place in the whirlpool has been made. The 
secondary flow identification methods proposed in this paper can be successfully applied in other 
solutions, e. g. structural ones, which involve rotational-flow-based separation.
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1. INTRODUCTION

Brewing techniques and technology have been evolving over the centuries, and this has led to 
the development of processing standards. One such standard is to use the so-called whirlpool (Fig. 1a) to 
separate hot trub from the beer wort.

Cycling vat (as a type of a hydrocyclone) is a prevalent as well as an effective solution. It has a form of 
a closed cylindrical tank. It is filled through an inlet placed tangentially in its wall. As a result, the primary 
flow is formed, which causes the clarified wort to rotate. Sedimentation of particles of the separated hot 
trub happens gravitationally and is amplified by the mixture rotational motion.

A secondary flow forms itself in the so-called Ekman boundary layer inside the separator (Denk and 
Dürholt, 1991). Due to sedimentation, along with an aggregate of secondary flows caused by rotational 
flow, the separated hot trub forms a cone in the centre of the tank. This way of forming and accumulation 
of solid phase was originally described by Albert Einstein and called the “Tea leaf effect” or “Tea leaf 
paradox” (Einstein, 1926).

Apparatuses implementing the phenomenon of forming the sediment into a cone in order to separate 
the solid phase from the mixture are also used in other fields of food processing, chemical engineering 
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and medicine (e.g. for separation of red blood cells from blood plasma (Arifin et al., 2007)) and also in 
wastewater treatment (e.g. in Geiger, 1937).

The aim of this work was to identify secondary flows in terms of their location and impact on the sediment 
accumulation effect inside the whirlpool separator. An analysis allowed to verify opinions found in literature 
regarding the system of secondary flows present in centrifugal separators.

1.1. Flows inside the whirlpool

Apart from the primary flow (being a consequence to the specific manner of filling the tank) there are also 
secondary flows. They constitute a flow system, which thus far remains virtually unexplored. This system 
is in general unsteady. Secondary flows have a strong impact on the separation process and the position of 
sediment particles. The knowledge base in the form of e.g. diagrams depicting the position of secondary 
flows is for visual purposes only (e.g. Fig. 1b) and is derived from observation of their impact.

During the swirling of the fluid and dispersed phase mixture the flow becomes unsteady due to central, near-
wall Taylor-Görtler vortices and a vortex tube revolving around the centre of the primary flow paraboloid 
of revolution free surface. From the technological and processing standpoint, the most impactful secondary 
flow is the rotational flow near the separator bottom in the Ekman boundary layer (Denk and Dürholt, 
1991). This flow causes the separated sediment to form a cone.

1.2. The flow accumulating the sediment cone and the Ekman spiral

The formation of the secondary flow accumulating the sediment just above the surface to the whirlpool 
bottom is connected with the so-called rotating fluid’s boundary layer effect. At the core of this phenomenon 
lay frictional forces present in the layer of fluid being in contact with the tank bottom. Further away 
from that area the flow motion is not retarded and is oriented outward (in accordance with the rotational 
motion centrifugal force). It results in pressure increase in outer areas (near the shell-to-bottom joint). The 
consequence is that the fluid travels to the tank inner areas due to pressure drop at the central part of the 
tank bottom. And therefore the secondary flow occurrence is a result of pressure unsteadiness in the fluid 
boundary layer at the tank bottom and is dependent upon hydrostatic pressure (varying along the radius). 
Inside the whirlpool the prevailing flow direction is around the tank circumference, as a result of the filling 
manner. In the boundary layer at the tank bottom the value of circumferential flow velocity is much reduced 
due to breaking condition satisfaction. The aforementioned secondary flow is oriented inward in accordance 
with the radial component. The result of those flow directions colliding with each other is that near the 

Fig. 1 Whirlpool: a) a general view of the interior after hot trub separation; b) a diagram of secondary flows: 
1 –the flow accumulating the sediment cone, 2 – the central whirl, 3 – Taylor-Görtler vortices, 4 – vortex orbiting 

around the fluid’s rotation axis; c) particle trajectory at the tank’s bottom – Ekman spiral
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boundary layer the hot trub will travel along spiral trajectories towards the tank’s bottom’s center. This 
is what we call the Ekman spiral (Fig. 1c based on Dürholt (1988)). This phenomenon is widely known 
in the meteorology theory and is described as bending of streamlines above the spinning Earth surface.

2. MATERIAL AND METHODS

Presented below are methods and setups which were used in the visualisation of the sediment cone 
formation, CFD analysis and PIV measurements.

2.1. Employing substitute sediment

A test bench with a laboratory whirlpool tank (Fig. 2, on the right), made of methyl polymetacrylate 
(PMMA) was used for the visualisation of sediment cone formation stages. The tank diameter was  
D = 0.64 m and the nominal filling height was H = 0.64 m. In order to make the research on the impact 
of the inlet situation on the cone formation phenomenon possible the tank had a set of nine inlets, six of 
which were situated higher than we typically see in industrial apparatuses. The spectrum of this paper 
covers only the filling manner that used the inlet closest to the bottom.

Fig. 2. The test stand a) diagram: 1) the container for preparing the mixture, 2) pump type FAM GA-12,  3) 
flowmeter PM390, 4) laboratory whirlpool vat (view of inlets are presented on the right side)

The setup also provided a preliminary tank (equipped with a turbine impeller) used for preparing the model 
mixture. The setup had a flowmeter and an optional pump connected with pipelines. Figure 2 presents 
a diagram of the test stand.

Polymeric particles (PA) were used as the substitute sediment. The filling was performed at a constant 
rate of ui = 1.7 m·s-1, with H/D = 1. Also, the inlet closest to the tank’s bottom was used. The sediment 
concentration was 1%. Table 1 compares sizes of typical process parameters of whirlpool tanks used in 
the research.

Table 1. Structural and process parameters of test tanks used in the research

parameter visualisation tank CFD tank PIV tank
D 0.64 0.196 0.196
H 0.64 0.196 0.196

H/D ratio 1 1 1
hi 0.08 0.0127 0.0127
�ϕi 0.05 0.007 0.007
ui 1.7 1.2 1.2
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2.2. CFD model

The simulation was performed using a commercial CFD code implemented in the ANSYS CFX 12.1 
environment. The simulation employed the control volume – finite element method (CV-FEM). It allows to 
solve numerically a set of balance equations which specify the motion of a liquid (Duarte and Cristianini, 
2012). Obviously, it is necessary to declare model boundary conditions as well as the simulation initial 
conditions. A geometrical model of the separator tank was designed, with an area declared as an inlet 
situated at the height corresponding with the inlet of the PIV tank, described later in this paper. Using the 
Mechanical APDL 12.1 software program model, a geometrical space was generated and its discretisation 
was performed (by meshing the cylindrical space – Fig. 3a) using structural FEM mesh (Fig. 3b) with 
a three-dimensional type of mesh element appropriate for the flow simulation.

Fig. 3. The CFD model: a) model geometry with marked division section, b) the FEM grid

The generated mesh consisted of approximately 1,800,000 elements, which in the area of the tank wall 
and bottom were packed particularly densely in order to ensure the correctness of the analysis of the flow 
phenomena occurring close to the boundary layer near the tank wall and bottom. The model depicted in 
Fig. 3b was designed to be versatile and applicable to simulation of filling with inlets situated at different 
heights as well as multi-sided filling. The filling rate ui = 1.2 m·s-1 was set as the initial condition of the 
simulation. It is whirlpool nominal filling rate, advised for the separation process in industrial operation 
(Kunze, 2014). This value was determined on the basis of the flow intensity in the experimental PIV 
research, presented below. The case was modeled as turbulent using an SST model (Škerlavaj et al., 2014) 
with coefficients modified on the basis of adaptation work based on the analysis of similar phenomena 
occurring in the rotational flow. The filling process was simulated as a flow with a free surface. This type 
of simulation is based on volume of fluid (VOF). At the inlet, there was inflow of two phases, the fraction 
of which was fluid=1 and air=0, as it was necessary to achieve the free surface. Air did not mix with the 
fluid, therefore the system had been previously specified as pseudo single-phase, even thougt CFD solver 
actually has to solve a system typical of a two-phase flow.

As for the inlet, the model had boundary conditions declared as delimited surfaces on the cylinder’s wall. 
The cylinder’s upper base’s surface had a condition of type open, in accordance with the assumption that 
the tank was initially completely filled with air at atmospheric pressure. As the filling progressed, the 
air was pushed from the tank by the inflowing fluid. The rest of the boundary conditions were declared 
at the tank’s wall. For more on the mathematical model, its boundary and initial conditions, choosing 
the simulation time step and testing the CFD model refer to Jakubowski et al. (2014) and Jakubowski 
et al. (2015).
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Because of the concentration level of the wort hot trub (under 1%) the flow was modelled, for simplicity, 
as single-phased. The fluid physical properties (as a material) corresponded to beer wort in a standard 
state. This simplification had to be declared in the model, in order to make sure that later experimental 
verification using PIV research would be possible to conduct under matching conditions.

2.3. The PIV test bench

The experimental research employed particle image velocimetry (PIV). It is a flow analysis method, 
which uses seeding particles. The particles are of a very small size (varying from a few to a few dozen 
micrometers) and they are introduced into the analysed medium. For the analysis of the fluid flow inside 
a whirlpool 20 µm polyamide (PA) particles were used. The seeding particles follow the flow and do 
not cause any interference in the analysed medium. During the measurement they are illuminated with 
a sheet of laser light, which is diffused on their surface. The shift of the seeding particles is captured with 
a camera (or cameras) as double frames (two expositions in one image separated by a short time interval) 
which later on serve as the base for the cross-correlation. Using the shift values the flow’s velocity vector 
can be determined.

The PIV method is particularly advantageous in the fields of flow velocity into which, for some reasons, we 
cannot introduce a measuring sensor – just like in the whirlpool case. When it comes to such a specific flow 
of fluid, an introduction of a measuring sensor into a tank would have generated disturbances of the flow, 
therefore the sensor would have measured a value encumbered with error resulting from the presence of the 
sensor itself. For this reason the most suitable method in the case of flows in a whirlpool was an optical one.

The test bench was built in R&D Philadelphia Mixing Solutions, Palmyra, PA. Figure 4a presents a sketch 
of the test bench with its key elements marked. The measurements employed a FlowSense 2M PIV camera 
and a NewWave Solo 120 TX double-pulsed YAG laser with a water-cooled controller. Synchronisation 
was done using System Hub DantecDynamics. A 6-liter (1.58-US-gallon) test tank (Fig. 4b) was designed 
and built. The tank was made of PMMA. The choice of the material was a compromise between durability 
and transparency – this material is of scarce hardness, which makes it scratch-prone. Deep scratches cause 
image distortions, in most cases rendering them useless for further processing.

Fig. 4. The test bench: a) the sketch of the test tank with a light-enter area marked, b) the diagram: 1) the tank for 
preparing the mixture of water and seeding particles, 2) the VANTON FLEX-I-LINER pump, 3) a rotameter, 4) 

the workbench for PIV measurements

The tank was filled using the inlet closest to the bottom. The filling with water and seeding particles was 
conducted at the rate of 0.8 gpm (which after conversion is equal to ui = 1.2 m·s-1). The water we used 
contained an additive of sugar increasing its density. This was done in order to match the mixture to the 
physical properties of wort at 25°C.
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Due to the specificity of this research (flow measurement for the radial component) it was necessary to 
use a sheet of laser light oriented vertically. To avoid image distortions a compensational tank was used 
on the surface of tank cylindrical wall, which reduced image deformation at the tank wall. The tank was 
placed inside a bigger, cuboidal tank filled with a test fluid, appropriate for the conducted PIV research.

For the horizontal orientation of the light sheet about 30 measurements were performed. Each 
measurement comprised two attempts, for which different time intervals between laser pulses were 
declared. The delay of the second pulse for this variant of exposition was declared between 1000 µs 
and 2800 µs. This was connected with the lack of ability to seamlessly alter the time interval between 
pulses. It is important in the case of a transient flow, occurring in the whirlpool. Such a time interval 
setting allowed us to measure the distance a particle travelled within the interrogation cell, which 
also guaranteed that we would get data appropriate for the analysis at the beginning and at the end of 
spinning. The whole PIV research plan covered over 250 measurements, yet the principle was to perform 
measurements only for the horizontal orientation of the light sheet. So, any further considerations were 
constrained to typical vertical exposure.

The obtained images of seeding particle shift were double frames exposed by two laser impulses. The 
time interval between them was varying. At the beginning of the spinning it was 1000 µs, and it gradually 
increased with every consecutive stage. The images were captured at 1 Hz frequency. For further analysis 
we chose images representing a full second of spinning. The time of the measurement was equal to the 
time of spinning. After saving them in databases they were initially processed. The applied technique was 
map image processing, the aim of which was to eliminate elements shared across all images. Thereby, 
light reflections at the tank wall were eliminated and the flare at the fluid-wall boundary was reduced. The 
material prepared in such a manner was then a subject to cross correlation analysis with the interrogation 
area size set to 64×64 pixels. Due to unsteadiness of the flow it was possible to analyse only one double 
frame at a time. The resulting maps of whirlpool flow vector fields depict only locally changing velocity 
values of the illuminated section.

3. RESULTS AND DISCUSSION

Below are presented the results of observation, simulation and experimental research on the formation and 
recognition of the secondary flow forming the sediment cone. The presented data are a part of an entity and, 
by the author’s intentions, they are to be regarded as a study of the secondary flow identification, which 
can be a starting point for seeking new solutions for the separator structure modification and separation 
technology. Therefore, some of the characteristic states of flow occurring inside a whirlpool have been 
presented in order to depict secondary flows. Some of the values were treated as of minor significance, e.g. 
dimensionless numbers which specify the flow, because they strongly depend on the filling velocity value 
and the investigated area of occurrence. For example, German authors claim that the critical value of the 
Reynolds number for the accumulating flow present in the Ekman layer is equal to Re = 0.7 (Dürholt, 1988). 
This value, except for the numerical expression, does not provide any information about the characteristics 
of the flow in this layer.

3.1. Cone formation visualisation

Figure 5 presents photographs depicting characteristic geometrical stages of sediment cone formation. 
Based on many observations and repeated filming of spinning it was determined that the cone formation 
manner is very specific, which allows to identify its characteristic stages. During swirling, sediment 
particles are initially clustered and they begin to form a torus-like circle (Fig. 5a). Then, the torus is fully 
formed (Fig. 5b), and we can observe a constant reduction of its internal diameter length, which leads to 
closing and forming a rudiment of a cone (Fig. 5c). At this stage (for some of the filling manner variants) 
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one could observe on the cone surface a temporary vortex tube (or two), which would cause the sediment 
to travel upward for a very short period. Afterward, the cone would spin with the fluid (Fig. 5d), and after 
it formed into stationary cone (Fig. 5e), but particles at the surface would spirally travel toward the tank 
centre. With time the liquid would stop spinning and the substitute sediment cone would form its final 
geometric shape (Fig. 5f).

Fig. 5. The stages of substitute sediment cone formation: a) the particles flowing in the tank’s outer regions  
(t = 40 s), b) the beginning of torus formation (t = 100 s), c) the torus has closed (t = 150 s), d) the spinning  
cone with a form encouraging vortex tube occurrence (t = 220 s), e) the spinning sediment cone (t = 430 s),  

f) the fully formed sediment cone – the end of spinning (t = 550 s).

Filming the spinning allowed to determine the timing of substitute cone formation stages. This made it 
possible to learn about the impact of particular modifications of the separation as a technological operation 
conduct on the formation and development the cone-accumulating flow. Thus far, the timing of cone 
formation characteristic stages was compared with its relation to the height of filling, filling rate, height 
of the poured fluid, inlet’s shape, tank bottom’s tilt angle, and the bottom’s shape (as a sediment plate or 
a cone-shape bottom).

3.2. The results of the simulation analyses

After a series of simulation computations the obtained output files were post-processed. As for the analysis, 
the flow close to the bottom was the interesting thing. Also an attempt to identify the near-wall vortices 
was made. To do so, vector maps of velocity field with zeroed velocity vector’s angular component – for 
the period of fluid’s rotation set as dominant – were generated. To achieve that, expressions based on the 
vector’s components were designed using the CFX language, and then the resultant was computed with the 
angular component set to zero. As a result, maps of velocity fields (in the form of isolines) of fluid motion 
paths were generated for both the radial and the height components. This allowed us to obtain images of 
secondary flows, the maximum velocity value which was ten times smaller than the average velocity value 
of a rotating fluid. Figure 6 presents maps of secondary flow’s velocity field occurring at the bottom of the 
whirlpool for the horizontally (Fig. 6a) and vertically (Figs. 6b and 6c) oriented sheets of light.

Figure 6 presents streamlines obtained in the layer typical of the accumulating flow occurrence. For all 
the velocity vector components with a dominant value of the circumferential component velocity set the 
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streamlines resemble the earlier described Ekman spiral. Figure 6b presents a vector map of velocity 
field with the velocity vector’s circumferential component set to zero. This allows to plot the radial and 
longitudinal components. Due to substantial differences in velocity values between the primary flow and 
secondary flows, obtaining images of them is only possible for this type of exposition. There is a velocity-
wise dominant flow present at the tank bottom. Its direction is from the shell-to-bottom joint to the bottom 
centre. This is the flow causing sediment particles to travel toward the separator centre. The flow shape 
analysis revealed it was much more stretched along the tank bottom than the literature suggests (e.g. Fig. b). 
This distinctive shape was also present in the 2D CFD model with swirl first approximation, presented in 
Jakubowski and Diakun (2007).

Fig. 6. Maps of secondary flows’ vector field in a whirlpool model for: a) accumulating flow – horizontal 
exposition t = 45 s, b) accumulating flow – vertical exposition t = 45 s, c) near-wall flow – vertical exposition  

t = 45 s (where: 1-accumulating flow, 2-the Taylor-Görtler vortices, 3-the central vortex)

Another thing was to determine the occurrence and situation of the central flow. Fig. 6b presents a map 
on which it is visible above the accumulating flow. It has a considerable size and a circular cross section. 
It occurs in the tank central area and it is distinguishable only during a selected time period. Yet, it 
does not change its position and it impacts a significant amount of the fluid volume. Its shape diverges 
from what is present in the literature. On the other hand, its velocity values are approximately ten times 
smaller when compared to the accumulating flow. The central and accumulating flows are intertwined. The 
former constitutes an extension of the latter toward the tank upper area. It also causes the torus formation 
(as presented in the section about visualisation and in Figs. 5b and 5c).

The last stage of simulation data analysis identifies the near-wall flows (the Taylor-Görtler vortices). 
Figure 6c presents cross sections of the area close to the tank wall. The occurrence of the Taylor-Görtler 
vortices is a consequence to the flow interaction with the whirlpool wall. Those flows appear as a series 
of vortex pairs, and their impact is local and changes over time. As presented in Jakubowski (2011) they 
appear early in the filling stage and with time vortices begin to travel along the tank wall to eventually 
fade away.
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3.3. The PIV measurement results

The in-whirlpool-spin fluid PIV measurement results were a reference point for the CFD model simulation 
data validation. Figure 7 presents sample images of secondary flows, including maps of vector fields 
where we can identify spiral lines (Fig. 7a) and the area of the accumulating flow (Fig. 7b). Just like the 
CFD analysis revealed, vertical exposure renders the accumulating flow’s shape as flattened. This flow is 
also perfectly visible in Figs. 7b and 7c. It also shows its tendency to evolve, which means that the flow 
maximum velocity values travel toward the tank centre.

Figure 7b is the flow state, a part of which is made up of the near-wall flows (the Taylor-Görtler vortices). 
They appear as vortex pairs and have a travelling pattern, which confirms the results of the simulation 
analyses presented by Diakun and Jakubowski (2010). The vortex pairs begin to arise near the shell-to-
bottom joint and travel toward the spinning fluid free surface. Their velocity values are over ten times 
smaller than those for the cone-accumulating flow. Taylor-Görtler vortices are transient, so they should be 
regarded as a part of the flow unsteadiness in the boundary layer near the tank wall.

Figure 7c presents the central vortex forming in the whirlpool flow. It has the same direction as the 
accumulating flow, which was earlier discussed in the CFD analysis section. This flow has also significantly 
smaller velocity values than the accumulating flow. The experimental verification confirms its direct 
connection with the accumulating flow, just like the CFD analyses did.

Comparing velocity field maps obtained from the PIV research to the maps resulting from the CFD 
simulation it should be noticed that in spite of some minor discrepancies in both cases distinguishable 
secondary flows are present. The flows taking place at the tank wall are transient, so their identification 
timing may be distinct from what is present in the results of the simulation.

Fig. 7. Maps of secondary flows’ velocity in a PIV whirlpool model at: a) t = 36s (horizontal exposition resulting 
in streamlines) b) t = 36 s, c) t = 85 s, d) t = 98 s (where: 1-accumulating flow, 2-the Taylor-Görtler vortices,  

3-the central vortex)
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The same principle applies to the comparison of the central flow. The only constantly present flow is the 
one accumulating the sediment cone (depicted in Fig. 7d). It should be taken into account that a simulation 
(even prepared and conducted in the most careful manner) is a mere approximation of the real world. This 
is especially true in the case of an unsteady flow with locally occurring secondary flows. This is the type 
of flow we dealt with while analysing whirlpool flows. Still, the results of the PIV measurements alone 
provide data allowing to conduct research on optimisation of this type of separator structures. Such results 
can be scaled up. To read more about this topic see Diakun and Jakubowski (2013).

3.4 Scale-up

An analysis of flows in whirlpools of identical or different dimensional proportions and diverse initial 
parameters, characteristic of flow and separation, requires scaling. Speaking of the presented results of the 
CFD simulation and the PIV measurement analysis, the researched object had the same dimensions and 
initial conditions as far as flow parameters were concerned. However, the whirlpool used for visualisation 
had greater dimensions, and the initial conditions differed from the ones declared in the analysis. 

When it comes to scaling, there are multiple approaches connected with dimensional similarity of 
whirlpools. The fundamental parameter is the H:D ratio, that is the relation between the liquid column and 
the tank’s diameter after it has been filled. In the cases of whirlpools presented in the paper, that ratio was 
equal to 1. The same is true for the situation and area of the inlet. And so the structural and dimensional 
similarity on its own does not provide means for full scaling of this type of separator. A more general 
approach should define similarity between whirlpools as a function of structural and process variables, 
and dimensionless criteria numbers specifying the flow system. 

Relations between dimension proportions allow to determine the similarity of two whirlpool separators 
of different capacity, provided that the proportion between dimensions is maintained. As far as similarity 
of flows is considered, the key parameter is the dominant (angular) velocity component. The function, in 
its general form, is identical to what other authors presented (Dürholt, 1988):

	 		  (1)

which after transformation is expressed as:

	 		  (2)

Dimensionless criteria numbers (Froude and Reynolds) for the formula are:

	 		  (3)

and:

	 		  (4)

Reynolds number modified specifically for the whirlpool (Denk and Dürholt, 1991) is:

	 		  (5)

Since it is possible to determine the scale for the time of swirling in the model and in the whirlpool of 
greater dimensions, in the form of:

	 		  (6)
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Another approach was an analysis based on a comparison of quotients of interactions (e.g. of forces) 
occurring in the flow inside the whirlpool. An analysis was carried out, which allowed to formulate a set 
of criteria numbers. A modified Reynolds number for the secondary flow was proposed:

	 		  (7)

where  and 

Strouhal number was introduced as the dimensionless number characterising the unsteady flow:

	 		  (8)

and also our own number, which characterises the ratio of inertial force to viscous dissipation force for 
the dissipation of the primary flow:

	 		  (9)

In the process of transformation, criteria numbers for swirling time and parameters of the secondary flow 
forming the sediment cone were identified. Two functions of criteria numbers were proposed. They allow 
to determine the swirling time and they also describe the parameters of the secondary flow accumulating 
the sediment cone.

The derived dependencies may turn out to be helpful in the process of designing whirlpool tanks, as well 
as in scaling the flow occurring inside them. For more information please refer to (Diakun and Jakubowski, 
2013).

4. THE PROSPECTS

In terms of learning about the nature of whirlpool flows there is PIV research being conducted on the impact 
of the introduction of a reduced baffle to the separator tank internal structure. As stated in the assumptions 
of the P.407021 patent application, a specifically shaped structural element attached to the tank bottom 
will allow to direct the primary flow in an advantageous manner toward the centre of the tank bottom, 
thereby allowing better utilisation of the rotational motion that would enhance the separation process 
(Sterczyńska et al, 2014).

5. CONCLUSIONS

The nature of the cycling vat secondary flows is very complex. Even a rough analysis suggests what their 
advantages and disadvantages on the whirlpool effect are. Apart from the clearly advantageous impact of 
the accumulating flow, which constitutes the essence of the whirlpool effect, also other secondary flow 
have been recognised.

When it comes to near-wall vortices, based on the CFD modelling and PIV measurement results, it has 
been determined that their impact is mediocre. These flows can carry hot trub from the separator wall to 
its central area, yet their upward travelling pattern may act against trub sedimentation. The last argument 
is the fact that near-wall vortices appear only during a narrow time period, mostly while the final-stage-
of-filling flow is stabilising.

The central flow is in general also very mediocre. It may encourage the sediment travelling toward the 
area of the accumulating flow impact. But it is characterised by steadiness, which means it may change 
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its position or even – temporarily – its direction. Therefore, when it happens above the forming sediment 
– after the torus has closed – it may cause the cone upper regions to diffuse.

Similar flow systems are also present in other types of separators having a cylindrical separation tank. 
Therefore, applying our considerations and suggested solutions onto other constructions, which take 
advantage of the rotational-motion-based separation, appears feasible.

This paper is a summary of the diversified research conducted as a part of the research project funded 
by the Polish Ministry of Science and Higher Education in 2010–2013 (grant number N N313 429639).

The author would like to express his gratitude to Józef Dresner, PhD (Eurotek International Ltd, Warsaw) 
as well as Dantec Dynamics GmbH Germany for the software support and help during the PIV research 
conducted in the United States.

SYMBOLS

D	 tank diameter, m
d	 inlet diameter, m
Fr	 Froude number
g	 gravitational acceleration, m·s-2

H	 filling height, m
h	 inlet height, m
K	 dimensionless number (in general),
R	 whirlpool radius, m
Re	 Reynolds number
St	 Strouhal number
t	 time, s
u	 velocity, m·s-1

Greek symbols
μ	 dynamic viscosity, Pa·s
v	 kinematic viscosity, m2·s-1

ρ	 density, kg·m-3

ϕ	 diameter, m

Subscripts
diss	 dissipation
i	 inlet, filling
m	 model (smaller whirlpool)
w	 whirlpool, bigger vessel
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