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INFLUENCE OF THE LONGITUDINAL AND LATERAL
SUSPENSION DAMPING ON THE VIBRATION BEHAVIOUR IN THE

RAILWAY VEHICLES

The paper focuses on the influence of the longitudinal and lateral suspension
damping in correlation with the velocity upon the vibration behaviour of the railway
vehicles while moving on a tangent track. The numerical simulations are developed
based on a linear model of a 17-degree of freedom vehicle that allows the evaluation
of the dynamic behaviour of the vehicle in a sub-critical velocity. Based on the
response frequency functions of the vehicle in a harmonic and in a random behaviour,
a series of basic properties of the stable behaviour of the forced lateral vibrations
has been made evident, as well as the opportunities to lower the level of the carbody
vibrations by changing the suspension damping.

1. Introduction

When a railway vehicle travels along a section of a tangent track, it
vibrates laterally, due to the tangent track deviations and the reversed conicity
of the wheels’ lateral rolling surface. These vibrations, known under the name
of hunting, intensify along with the speed increase, and when reaching a
certain speed, called the critical hunting speed (Vcrt), they become unstable
[1]. The instability of the lateral vibrations in the vehicle manifests itself
in large amplitude of the axles’ transversal movement while consuming the
track clearance, and extremely violent shocks affecting the riding safety and
the comfort of the passengers.

The instability of the lateral vibrations limits the vehicle velocity, hence
most studies are focused on this issue. Depending on the desired goal, there
are used either simpler models with 4 or with 6 degrees of freedom in order to
examine either the hunting of a bogie or of a 2-axle vehicle [2-7], or complex
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models considering the lateral movements of a 2-bogie vehicle [8-10] or
even its movements in the vertical plan [11]. The issue of the stability in
the vehicle lateral vibrations is particularly important during moving in high
radius curves, as seen in the papers of Zboinski and Dusza [12, 13], Dukkipati
and Swamy [14] or Lee and Cheng [11, 15]. These models have underlined
various problems concerning the vehicle stability and the influence of some
of its parameters upon the critical hunting speed. Many studies have examined
the linear theory [16-18], but a better evaluation of the vehicle stability is
derived when taking into account the non-linearities of the wheel-rail contact
and the bifurcation theory [19-23].

The linear theory may be applied when the relative lateral wheel/rail
displacements are enough small so that both geometry and tangential contact
forces may be described using linear equations. This theory allows finding
out the linear critical velocity based on the analysis of the sign of the real
part of the roots of the characteristic equation.

When the non-linearities of the wheel-rail contact are considered in the
model, the stability analysis points out that there is a non-linear critical
velocity (beside the linear critical velocity), which is smaller than the linear
one. It means that the lateral vibration of the vehicle can become unstable
when its velocity is smaller than the value of the linear critical velocity.
In terms of the bifurcation theory, the non-linear velocity is determined by
the saddle-node bifurcation, while the linear velocity is determined by the
subcritical Hopf bifurcation [12, 20]. However, in many applications, the
difference between the two critical velocities is not big so that the vehicle
is stable as long as its velocity is enough lower than the value of the linear
critical velocity [24].

Nevertheless, the solving of the stability in the lateral vibrations does
not provide an answer regarding the dynamic behaviour of the vehicle at the
standard running speeds that are sub-critical. It should be mentioned that
the behaviour of the vehicle in a sub-critical velocity is significant for its
dynamic performance in terms of the running quality and comfort of the
passengers.

To design a railway vehicle, it is important to know how various suspen-
sion parameters influence the dynamic behaviour in a sub-critical velocity.
There are several open discussions on this issue. One of them concerns
the influence of the longitudinal and lateral suspension damping upon the
vibrations behaviour of the railway vehicles, which is exactly the topic of this
paper. The starting point is that the relative displacements between the wheels
and the rails are small in the sub-critical range of velocities and, hence, the
influence of the contact non-linearities can be neglected and, consequently,
a linear model is recommended for studying the lateral vibrations of the
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vehicle. The influence of the velocity and of the longitudinal and lateral sus-
pension damping on the carbody vibrations level is examined based on the
frequency response functions of the vehicle in a harmonic and in a random
condition. A series of basic characteristics of the stable behaviour in the
forced vibrations in the horizontal plane is thus highlighted, as for instance
the geometric filtering due to the vehicle wheelbase or the dependence on the
dominant vibration modes of the vehicle on the velocity and on the random
nature of the track lateral irregularities.

2. The mechanical model and the movement equations

The mechanical model for the study of the lateral vibrations in a railway
vehicle, excited by the tangent track geometric deviations, is presented in
Fig. 1 and 2. There will be considered the case of a 4-axle, 2-level suspension
vehicle, which travels at a constant speed V on a tangent track, so that the
behaviour of the lateral vibrations is stable (V < Vcrt). It is about a model
with 17 degrees of freedom that includes 7 bodies representing the carbody,
the suspended masses of the bogies and the four wheelsets, connected among
them via Kelvin-Voigt systems, by which the elastic and damping elements
of the two suspension levels are modelled.

The vehicle carbody is assimilated to a 3-degree of freedom rigid body,
with the movements of lateral displacement yc, roll ϕc and yaw αc. The
following parameters of the carbody are of interest: wheelbase 2ac, mass mc
and the inertia moments around the longitudinal axis Jxc and the vertical
axis Jzc. The height of the carbody centre of mass referred to the plan of the
secondary suspension is hc.

The bogie is also considered a 3-degree of freedom rigid body, namely
lateral displacement ybi, roll ϕbi and yaw αbi, with i = 1 or 2. The main
parameters of the bogies are the wheelbase 2ab, its mass mb, the inertia
moment referred to the longitudinal axis Jxb and the inertia moment referred
to the vertical axis Jzb. The bogie centre of mass is at level hb1 to the primary
suspension plane and at distance hb2 to the secondary suspension plane.

As for the wheelsets, they are considered able to do the following in-
dependent movements: a translation movement – the lateral yo j,( j+1), and a
rotation movement – the yaw, αo j,( j+1), where j = 2i – 1, with i = 1 or 2,
while mentioning that the bogie i has the wheelsets j and j+1. The wheelsets
parameters of mass mo, and inertia moments Jyo and Jzo are taken into ac-
count.

The rigidities of the elastic elements of the secondary suspension are
denoted with kxc, kyc and kzc. To limit the yaw movement, each bogie is
fitted with an anti-roll bar, whose rigidity is kϕc. On the vertical direction,
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Fig. 1. The mechanical model of the vehicle for study of the lateral vibrations – front view

Fig. 2. The mechanical model of the vehicle for study of the lateral vibrations – side view

the secondary suspension of a bogie has two dampers, with the damping
constant czc each, while on the lateral direction, it has one damper with a
damping constant cyc. The anti-yaw dampers, mounted on the lateral sides of
the bogies, have the damping constant cxc. The lateral base of the secondary
suspension is noted with 2bc.

The primary suspension corresponding to a wheelset has the transversal
base 2bb and is modelled by three Kelvin-Voigt systems that operate on
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translation in the longitudinal, transversal and vertical direction. These have
the elastic constants kxb, kyb, kzb and the damping constants cxb, cyb and czb.

The tangent track geometric with reference to the wheelsets j and j+1
are described by the functions ζ j,( j+1), with j = 2i −1, for i = 1, 2.

The equations of motion of the vehicle carbody (lateral, roll and yaw)
are:

mcÿc + cyc
[
2(ẏc + hcϕ̇c) − (ẏb1 + ẏb2) + hb2(ϕ̇b1 + ϕ̇b2)

]
+

+2kyc
[
2 (yc + hcϕc) − (yb1 + yb2) + hb2(ϕb1 + ϕb2)

]
= 0.

(1)

Jxcϕ̈c + 2czcb2
c
[
2ϕ̇c − (ϕ̇b1 + ϕ̇b2)

]
+

+cychc
[
2(ẏc + hcϕ̇c) − (ẏb1 + ẏb2) + hb2(ϕ̇b1 + ϕ̇b2)

]
+

+(kϕc + 2kzcb2
c)

[
2ϕc − (ϕb1 + ϕb2)

]
+

+2kychc
[
2(yc + hcϕc) − (yb1 + yb2) + hb2(ϕb1 + ϕb2)

]−
−mcghcφc = 0

(2)

Jzcα̈c + 2cxcb2
c[2α̇c − (α̇b1 + α̇b2)]+

+cycac
[
2acα̇c − (ẏb1 − ẏb2) + hb2(ϕ̇b1 − ϕ̇b2)

]
+

+2kxcb2
c[2αc − (αb1 + αb2)]+

+2kycac
[
2acαc − (yb1 − yb2) + hb2(ϕb1 − ϕb2)

]
= 0.

(3)

The equations of motion of lateral displacement, roll and yaw are given by
the equations (3)–(5), for i = 1, 2 and j = 2i – 1:

mbÿbi + cyc(ẏbi − hb2ϕ̇bi − ẏc − hcϕ̇c − (−1)i+1acα̇c)+
+2cyb

[
2(ẏbi + hb1ϕ̇bi) − (ẏo j + ẏo( j+1))

]
+

+2kyc(ybi − hb2ϕbi − yc − hcϕc − (−1)i+1acαc)+
+2kyb

[
2(ybi + hb1ϕbi) − (yo j + yo( j+1))

]
= 0 ;

(4)

Jxbϕ̈bi + 2czcb2
c(ϕ̇bi − ϕ̇c) + cychb2(hb2ϕ̇bi−

−ẏbi + ẏc + hcϕ̇c + (−1)i+1acα̇c)+
+2cybhb1

[
2(hb1ϕ̇bi + ẏbi) − (ẏo j + ẏo( j+1))

]
+

+4czbb2
bϕ̇bi + (kϕc + 2kzcb2

c)(ϕbi − ϕc)+
2kychb2(hb2ϕbi − ybi + yc + hcϕc + (−1)i+1acαc)+
+2kybhb1

[
2(hb1ϕbi + ybi) − (yo j + yo( j+1))

]
+

+

[
4kzbb2

b − g
(
h12

mc

2
+ hb1mb

)]
ϕbi = 0,

(5)
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where h12 = hb1 + hb2;

Jzbα̈bi + 2cxcb2
c(α̇bi − α̇c) + 2cxbb2

b[2α̇bi − (α̇o j + α̇o( j+1))]+
+2cybab[2abα̇bi − (ẏo j − ẏo( j+1))] + 2kxcb2

c(αbi − αc)+
+2kxbb2

b[2αbi − (αo j + αo( j+1))] + 2kybab[2abαbi − (yo j − yo( j+1))] = 0.
(6)

For the wheelsets, the equations of motion of lateral displacement and yaw,
with i = 1, 2 and j = 2i – 1, are:

moÿo j, j+1 + 2cyb

[
ẏo j, j+1 − ẏbi − hb1ϕ̇bi ∓ abα̇bi

]
+

+2kyb

[
yo j, j+1 − ybi − hb1ϕbi ∓ abαbi

]
+

+2ϕ
χyQo

V
ẏo j, j+1 + 2

χsroQo

V
α̇o j, j+1+

+2Qoεs
1 − χsεo

eo
yo j, j+1 − 2χyQoαo j, j+1 =

= 2λ
χyQo

V
ζ̇ j, j+1 + 2Qoεs

1 − χsεo

eo
ζ j, j+1 ;

(7)

Jzoα̈o j, j+1 + 2cxbb2
b(α̇o j, j+1 − α̇bi) + 2kxbb2

b(αo j, j+1 − αbi) + Jyo
V
r2
o
λẏo j, j+1+

+2χxQo

(
eoγe

ro
yo j, j+1 +

e2
o

V
α̇o j, j+1

)
= Jyo

V
r2
o
λζ̇ j, j+1 + 2χxQo

eoγe

ro
ζ j, j+1 ,

(8)
where Qo is the static load on the wheel, χx, χy and χs – creep coefficients,
eo, ro – the coordinates of the wheel-rail contact points when the wheelset
is in a median position on the track, γe – the effective conicity. Also, the
following notations are used

λ =
roγo

eo − roγo
, ϕ =

eo

eo − roγo
, εs =

eo

ρw − ρr

eo + ρwγo

eo − roγo
, εo =

eo + ρrγo

eo + ρwγo
,

(9)
with ρw and ρr the radii of the wheel-rail rolling profiles and γo – the contact
angle in the median position of the wheelset on the track.

The creep coefficients are calculated by applying the Kalker’s linear
theory [16]

χx =
Gab
N

C11, χy =
Gab
N

C22, χs =
G(ab)1.5

roN
C23, (10)

where a and b are the semi-axes of the contact ellipse, G – the transversal
elastic modulus, N ≈ Qo the normal force and Ci j – the Kalker’s coefficients.
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3. The steady-state harmonic vibration behaviour

The track geometric deviations are considered have in a harmonic shape,
with the wavelength Λ and amplitude ζ0. With the reference to each wheelset,
the deviations are described by the functions below

ζ1,2(x) = ζo cos
2π
Λ

(x + ac ± ab); ζ3,4(x) = ζo cos
2π
Λ

(x − ac ± ab), (11)

where they are displaced, according to the vehicle wheelbases.
The functions ζ j,( j+1), with j = 2i – 1 for i = 1, 2, can be expressed as

time harmonic functions if considered that the position of the vehicle centre
is given in the equation x = Vt. It results in

ζ1,2(x) = ζo cosω
(
t +

ac ± ab

V

)
; ζ3,4(x) = ζo cosω

(
t − ac ∓ ab

V

)
, (12)

where ω = 2πV /Λ represents the angular frequency induced by the track
excitation.

As for the vehicle response, it is assumed that this is also harmonic, with
the same frequency as the track excitation. Under considered conditions, the
coordinates describing the movements of the vehicle can be written in a
general equation, as

pk(t) = Pk cos(ωt + ϕk), with k = 1 ÷ 17, (13)

where Pk is the displacement amplitude and ϕk the phase of the coordinate k
compared to the track deviation with respect to the vehicle centre; the vehicle
model has 17 degree of freedom.

To solve the equations of the steady-state harmonic vibration behaviour,
the complex quantities associated to the real ones will be adopted, as such:

– for the track deviations with the reference to the wheelsets

ζ̄1,2(t) = ζ0 · eiω ac±ab
V · eiωt = ζ̄1,2 · eiωt;

(14)
ζ̄3,4(t) = ζ0 · e−iω

ac∓ab
V · eiωt = ζ̄3,4 · eiωt ,

– for the coordinates of the vehicle movements

p̄k(t) = P̄keiωt , (15)

where the complex amplitudes of the track deviation with the reference to
the wheelsets are as below

ζ̄1,2 = ζ0 · eiω ac±ab
V ; ζ̄3,4 = ζ0 · e−iω

ac∓ab
V (16)
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and the complex amplitude of the coordinate k is

P̄k = Pkeiϕk , (17)

where i2 = –1.
Upon introducing the complex quantities (14-15) into the vehicle move-

ment equations (1-8), a linear system of nonhomogeneous algebraic equations
is obtained, with the complex amplitudes P̄k of the vehicle movement coor-
dinates being unknown, written under the matrix-like form

XP̄ = Ȳ, (18)

where P̄ is the vector of the complex amplitudes of the vehicle movement
coordinates, X – the system matrix, and Y – the vector of the nonhomoge-
neous terms, of the excitation respectively.

Solving this system of equations allows one to determine of the vehicle
frequency response factor. Thus, in some point P located in the carbody
longitudinal symmetry plane, whose coordinates are x and h (see Fig. 3) in
reference to the carbody centre of mass, the frequency response factor for
the movement in a horizontal plane is calculated by the relation

H̄c(ω, x, h) = H̄yc(ω) + xH̄αc(ω) + hH̄ϕc(ω). (19)

where: H̄yc(ω) – the frequency response factor for the lateral movement,
H̄ϕc(ω) – the frequency response factor for the roll movement and H̄αc(ω)
the frequency response factor for the yaw movement.

Fig. 3. The carbody longitudinal symmetry plane

Three reference points are defined – at the carbody centre and above
the two bogies, located along the carbody longitudinal symmetry axis, at
the floor level. To calculate the carbody response factors in these points, the
following relations are used:

– for the response factor in the reference point at the carbody centre,

H̄cm = H̄c

(
ω, 0, hp

)
= H̄yc(ω) + hpH̄ϕc(ω); (20)
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– for the response factor in the reference points above the two bogies,

H̄cb1,2 = H̄c(ω,±ac, hp) = H̄yc(ω) ± acH̄αc(ω) + hpH̄ϕc(ω), (21)

where hp is the distance from the carbody centre of mass to the floor level
(see Fig. 3).

It is now possible to calculate the carbody acceleration response factor,
based on the movement response factor. Thus, starting from relation (19), the
response factor of the transversal acceleration in the point P can be obtained

H̄ac(x, h, ω) = ω2H̄c(x, h, ω). (22)

While taking further the response factors defined in the equations (20) and
(21) into account, the response factors for the transversal acceleration in the
carbody reference points can be determined.

4. The behaviour of the random vibrations

The track deviations are considered to be random and stationary. Hence,
the power density spectrum of the deviations can be approximated by means
of a theoretical curve described in the equation [25]

S(Ω) =
AΩ2

c

(Ω2 + Ω2
r )(Ω2 + Ω2

c)
, (23)

where Ω is the wavelength, Ωc = 0.8246 rad/m, Ωr = 0.0206 rad/m, and
A is a constant that depends on the track quality. For a high quality track,
A = 2.119·10−7 radm is adopted, while for a low quality track, the constant
A will have the value of 6.124·10−7 radm.

As a function of the angular frequency ω = VΩ, the power spectral
density of the lateral deviations on the tangent track can be expressed as in
the general equation

G(ω) =
S(ω/V )

V
. (24)

The relations (23) and (24) will give the power spectral density of the devi-
ations in the form of

G(ω) =
AΩ2

cV
3

[ω2 + (VΩc)2][ω2 + (VΩr)2]
. (25)

Starting from the vehicle frequency response factor and from the track spec-
trum of the defects, one can calculate the power spectral density of the
transversal movement of the carbody. Thus, for H̄c(ω, x, h) defined by rela-
tion (19) and G(ω) in the relation (25), the power spectral density of the
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transversal movement of the carbody is obtained in the point P located in
the longitudinal symmetry plan of the carbody

Gc(ω, x, h) = G(ω)
∣∣∣H̄c(ω, x, h)

∣∣∣2 . (26)

As the response factor H̄c(ω, x, h) is replaced in equation (26) with the par-
ticular equations (20) or (21), the power spectral density of the carbody
transversal movement can be calculated in the reference point at the carbody
centre,

Gcm = Gc(ω, 0, hp) = G(ω)
∣∣∣H̄yc(ω) + hpH̄ϕc(ω)

∣∣∣2 (27)

or in the reference points above the two bogies

Gcb1,2 = Gc(ω,±ac, hp) = G(ω)
∣∣∣H̄yc(ω) ± acH̄αc(ω) + hpH̄ϕc(ω)

∣∣∣2 ; (28)

Further on, the power spectral density of the transversal acceleration can be
calculated, and the following relation will be used

Gac(ω, x, h) = ω4Gc(ω, x, h) = ω4G(ω)
∣∣∣H̄c(ω, x, h)

∣∣∣2 . (29)

This relation can be customized for any of the carbody reference points, if the
power spectral density Gc(ω, x, h) is replaced with the expressions matching
the reference points of the carbody (rel. (27-28)).

5. Numerical application

This section deals with the results of the numerical simulations concern-
ing the vehicle frequency response in a steady-state harmonic and in a random
vibration behaviour. Such simulations are based on the model and method
described in the previous section. The reference values of the parameters in
the vehicle model are used in the numerical simulations in Table 1. Table 2
features the geometric and kinematic parameters of the wheel-rail contact.
The critical speed of the vehicle of 261.56 km/h [26] derives from the values
in Table 1 and Table 2, but its maximum velocity is 200 km/h.

To analyse the influences of the suspension parameters upon the vehicle’s
vibrations behaviour, the damping ratio in the longitudinal and transversal
directions of the two suspension levels will be introduced, as follows:
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Table 1.
The reference parameters of the vehicle model

mc = 34000 kg; 2bb = 2bc = 2 m

mb = 3200 kg 4czc = 68.88 kNs/m

mo = 1650 kg cyc = 15.205 kNs/m

2ac = 19 m 2cxc = 50 kNs/m

2ab = 2.56 m 4kzc = 2.4 MN/m

Jxc =57460 kgm2 2kyc = 340 kN/m

Jzc = 2456500 kgm2 2kxc = 340 kN/m

Jxb =3200 kgm2 4czb = 52.21 kNs/m

Jzb =5000 kgm2 2cyb = 17.887 kNs/m

Jzo = 928.125 kgm2 2cxb = 50 kNs/m

hc = 1.3 m 4kzb = 4.4 MN/m

hb1 = 0.25 m 2kyb = 5 MN/m

hb2 = 0.2 m 2kxb = 70 MN/m

Table 2.
The geometric and kinematic parameters of the wheel-rail contact

ρw = 0.500 m ; ρr = 0.300 m χx = 205.716

ro = 0.4598 m ; eo = 0.754 m ; γo = 0.0495 χy = 171.049

γe = 0.1237 χs = 0.799

– for the secondary suspension

ζxc =
4cxc

2
√

4kxcmc

bc

izc
; ζyc =

2cyc

2
√

4kycmc
; (30)

– for the primary suspension

ζxb =
4cxb

2
√

4kxbmb

bb

izb
; ζyb =

4cyb

2
√

4kybmb
, (31)

that have the following reference values ζxc = ζ,yc = 0.1; ζxb = 0.07; ζyb =

= 0.1, in compliance with the model parameters in Table 1; izc and izb are
the gyration radii of the carbody and bogie around vertical axe. The ranges
of the damping ratio cover the intervals between 0.1 and 0.4 for ζxc, ζ,yc and
ζyb, and, respectively, 0.07 and 0.4 for ζxb.
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5.1. Verification of the model hypotheses

First of all, the hypotheses regarding the fact that the vehicle maximum
velocity (200 km/h) takes a sub-critical value, and the hypothesis of model
linearity have to be verified.

Figure 4 displays the linear critical velocity of the vehicle, which has been
calculated using the sign of the real part of the roots of the characteristic
equation, depending on the damping ratio of both primary and secondary
suspension. On the one hand, the higher the damping ratio of the primary
suspension, the lower the linear critical velocity. At the same time, the higher
the damping ratio of the secondary suspension, the higher the linear criti-
cal velocity. Just in case, the lowest value of the linear critical velocity is
240.66 km/h which is higher than the maximum velocity of the vehicle and
this corresponds to the following values of the damping ratio of the primary
suspension: ζxb = 0.4; ζyb = 0.4.

Fig. 4. Influence of the damping ratio on the linear critical velocity: (a) the damping ratio of the
primary suspension; (b) the damping ratio of the secondary suspension

To verify the hypothesis regarding the linearity of the model, the vehicle
ride at 200 km/h along a track with random lateral deviations is numerically
simulated using the time-domain analysis method. The parameters values of
the vehicle model correspond to the least favourable situation when the linear
critical velocity is minimal, which means that ζxb = 0.4; ζyb = 0.4.

The track lateral deviation can be synthesized as a distance function
from the power spectral density (eq. 23) using a method similar to that
described in ref. [27]. Effectively, the track lateral deviation takes the shape
of a sum of harmonic components with the wavelength between 3 and 229 m
corresponding to the frequencies between 0.25 and 19 Hz.
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The amplitudes of the harmonic components are extracted from the power
spectral density and the phases have a uniform random distribution between
–π and π. Figure 5 presents the track lateral deviation which is obtained
applying the method from above. The maximum amplitude of the lateral
deviation is 5.02 mm and its effective value is 1.46 mm.

Fig. 5. Lateral deviation of the track

Figures 6 and 7 display the relative wheelset/track displacement and the
creepage for all vehicle wheelsets and Table 3 presents the highest values
and the effective value. The relative wheelset/track displacement takes the
highest values for the leading wheelset of each bogie, and these values are
smaller than 4.5 mm. For the new wheel/rail non-conformal profiles, such
values allow us to adopt the linear model for the wheel/rail geometry.

Table 3.
Relative lateral wheelset/track displacement and the creepage

Wheelset
Relative lateral wheelset/track displacement Creepage
Maximum value

(mm)
Effective value

(mm)
Maximum value

(‰)
Effective value

(‰)

#1 wheelset 4.25 1.27 1.97 0.37

#2 wheelset 2.96 0.90 1.69 0.31

#3 wheelset 4.33 1.29 1.50 0.27

#4 wheelset 3.02 0.91 1.34 0.24

On the other hand, the wheelsets of the first vehicle bogie exhibit the
highest value of the creepage. However, these values are lower than 2‰ so
that the hypothesis regarding the linearity of the creep forces is verified.
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Fig. 6. Relative lateral wheelset/track displacement at 200 km/h: (a) for #1 wheelset; (b) for #2
wheelset; (c) for #3 wheelset; (4) for #4 wheelset
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Fig. 7. Wheelset creepage: (a) for #1 wheelset; (b) for #2 wheelset; (c) for #3 wheelset; (d) for #4
wheelset
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5.2. Influence of the longitudinal and lateral damping

In Fig. 8, the diagrams (a) – (c) show the response factor of the carbody
movement in its reference points – at the centre and above the two bogies.
The reference speeds of 100 km/h and 200 km/h are taken into account.

Fig. 8. Influence of the velocity on the carbody response factor: (a) at carbody centre; (b) above
the front bogie; (c) above the rear bogie; · · · ·, V = 100 km/h; ——,V = 200 km/h

Firstly, it should be mentioned that the carbody response at its centre
comes from the coupled lateral displacement – the roll movement, and the
diagram (a) shows the peaks of the resonance frequencies corresponding
to this movement, which are 0.46 Hz and 1.21 Hz, respectively. Above the
bogies, the carbody vibration comes from the coupled lateral displacement –
the roll movement and also from the yaw movement. Thus, in the diagrams
(b) and (c), another resonance peak is visible at 0.78 Hz, corresponding to
the carbody yaw movement. Under considered conditions, the vibration level
is usually lower at the carbody centre and increases against the two bogies.
On the other hand, while examining the diagrams (b) and (c), we notice that
the carbody response above the two bogies is not symmetrical, as there are
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evident differences between the response factor calculated above the front
bogie and the one above the rear bogie. This is an indication for a different
vibration behaviour in these reference points, which is mainly due to the
geometric filtering effect of the track deviations.

The geometric filtering effect is obvious in the diagrams (a) – (c) in the
sense that the vehicle response includes a series of anti-resonance frequen-
cies, along the peaks of the resonance frequencies. It is indisputable that the
geometric filtering is more intense at the carbody centre, where the filtering
effect given by the bogie wheelbase operates, and also by the carbody wheel-
base. On the contrary, the filtering effect above the bogies is lower, as the
geometric filtering here is only given by the bogie wheelbase in these points.
Similarly, the geometric filtering is more efficient for low speeds, since it
presents more filtering lobes and more anti-resonance frequencies, too.

As for the influence of the velocity on the carbody response to the track
deviations, a general trend of magnification is visible in the level of vibrations
along with the speed increase, valid for a large range of frequencies.

Instead, for low frequencies, where the resonance frequencies of the
carbody movements are found, opposite effects can be seen. Thus, at the
low resonance frequency of the lateral displacement – the roll movement,
the carbody response amplifies with the velocity, whereas for the high fre-
quency of lateral displacement – roll and the yaw frequency the carbody
vibrations behaviour is lower at speed 200 km/h, compared to the one for
speed 100 km/h. These opposite effects come from the geometric filtering,
which shows a selective nature in dependence on the velocity.

The speed change leads to the displacement of the geometric filtering
frequencies and of the anti-resonance frequencies in the diagram for the
response factor. Should these frequencies come to reach the natural frequency
of carbody vibration behaviour, then its influence would be much diminished.
The velocities at which the geometric filtering frequencies coincide with the
natural frequencies of the carbody movements can be obtained from the
diagrams in Fig. 9 and Fig. 10. Figure 9 shows the response factor of the
carbody movement in all three reference points at the resonance frequencies
of the lateral displacement – roll coupled movement (0.46 Hz and 1.21 Hz)
and in Fig. 10 we have the response factor of the carbody movement above
the bogies at the resonance frequency of the yaw movement (0.78 Hz).

As pointed out earlier, the geometric filtering effect is noticed to have
a selective nature, given by velocity, being more visible at low speeds of
up to 50–60 km/h. While the velocity increases, the geometric filtering is
more efficient at the high frequency of the lateral displacement – roll cou-
pled movement than at the low frequency of the same movement or at the
frequency of the yaw movement.
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Fig. 9. The response factor of the carbody movement at the resonance frequencies of the lateral
displacement – roll coupled movement: ——, 1.21 Hz, · · · ·, 0.46 Hz; (a) at the carbody centre;

(b) above the front bogie; (c) above the rear bogie

Fig. 10. The response factor of the carbody movement at the resonance frequency of the yaw
movement (0.78 Hz): (a) above the front bogie; (b) above the rear bogie

The influence of the secondary suspension damping upon the carbody
vibrations behaviour is then examined based on the diagrams in Fig. 11
which feature the response factor of the acceleration at the carbody centre
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and against the two bogies for the reference velocities of 100 km/h and
200 km/h.

Fig. 11. Influence of the secondary suspension damping on the response factor of the carbody
acceleration: (a) at the centre; (b) above the front bogie; (c) above the rear bogie; —, ζxc = 0.1,

ζyc = 0.1; · · · · , ζxc = 0.3, ζyc = 0.3

As a rule, the increase of the damping in the secondary suspension leads
to an amplification of the carbody vibrations. This observation is not valid for
the domain of low frequencies, where the natural frequencies of the carbody
movements are present.
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One can very well notice the decrease of the response factor of the
carbody acceleration above the bogies with the increase of damping, both
for the resonance frequencies of the lateral displacement – the roll coupled
movement and of the yaw movement. Such observations apply to both values
of the reference velocity.

It is interesting to examine the influence that the secondary suspension
damping on the longitudinal and transversal directions has on the carbody
vibrations behaviour. To this purpose, the response factors of the acceler-
ation to the resonance frequencies of the carbody movements in the three
reference points have been calculated. Figure 12 shows the response factor
of the acceleration at carbody centre, to the resonance frequencies of the
lateral displacement – the roll coupled movement (0.46 Hz – diagram (a)
and 1.21 Hz – diagram (b)), while Fig. 13 features the response factor of
the acceleration above the two bogies to the resonance frequency of the yaw
movement (0.78 Hz).

Fig. 12. Influence of the secondary suspension damping on the response factor of the acceleration
at carbody centre: (a) low resonance frequency of the lateral displacement-roll coupled movement

(0.46 Hz); (b) high resonance frequency of the lateral displacement-roll coupled movement
(1.21 Hz)

The diagram (a) in Fig. 12 highlights the possibility of lowering the level
in the carbody vibrations at the low frequency of the lateral displacement –
the roll movement by increasing the damping ratio of the secondary suspen-
sion on the transversal direction. Similarly, a higher value of the damping can
be noticed on the longitudinal direction that does not significantly influence
the carbody response. On the contrary, for the high frequency of the lateral
displacement-roll movement (diagram (b) – Fig. 12), the increase of ζxc leads
to an amplification of the carbody vibrations behaviour. For instance, if ζxc
increases from 0.1 to 0.4, the response factor of the carbody acceleration
goes up by 2.21 (m/s2)/m. While further examining the diagram (b), the re-
sponse factor is smaller with the increase of the damping on the transversal
direction. Thus, for the reference values of the damping on the transversal
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Fig. 13. Influence of the secondary suspension damping on the acceleration response factor above
the bogies to the resonance frequency of the yaw movement (0.78 Hz): (a) above the front bogie;

(b) above the rear bogie

and longitudinal directions (ζxc = 0.1, ζyc = 0.1), the response factor of the
carbody acceleration is 14.33 (m/s2)/m, and the increase of ζyc to 0.4 triggers
a decrease of the response factor with 7.17 (m/s2)/m.

For the resonance frequency of the carbody yaw movement (Fig. 13), a
visible decrease in the response factor of the carbody acceleration is evident,
by increasing the damping on the transversal direction. For example, while
maintaining the reference value of damping on the longitudinal direction
(ζxc = 0.1) and increasing the damping degree on the transversal direction
from 0.1 to 0.4, the response factor lowers from 100.32 (m/s2)/m to 40.27
(m/s2)/m above the front bogie. A raise in the damping on the longitudinal
direction leads to a lower vibrations behaviour in the carbody, which is
more visible by lowering the response factor, especially when the transversal
damping is low itself. Should ζxc rises four times, the response factor of the
carbody acceleration above the rear bogie decreases with 17.65 (m/s2)/m,
when the reference value is maintained for ζyc.

The influence of the primary suspension damping on the carbody re-
sponse in the three reference points is analyzed in Fig. 14. The increase in
the primary suspension damping does not bring any evident changes in the
vibrations level in the range of the carbody resonance frequencies. Lowering
the level of carbody vibrations while the primary suspension damping raises
is evident at frequencies higher than 4 Hz. For the speed of 200 km/h,
one obtains high values of the damping ratio corresponding to the primary
suspension amplify the carbody response against the yaw frequency of the
axles (3.6 Hz).

The diagrams in Fig. 11 and Fig. 14 feature an important aspect, related
to the resonance frequencies that dominate the spectrum of the response
factor of the carbody acceleration. At the speed of 100 km/h, the dominant
frequency is given by the high frequency of the lateral displacement – the
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Fig. 14. Influence of primary suspension damping on the response factor of the carbody
acceleration: (a) at the carbody centre; (b) above the front bogie; (c) above the rear bogie; —,

ζxb = 0.07, ζyb = 0.1; · · · · , ζxb = 0.21, ζyb = 0.3

roll coupled movement. In the points above the two bogies, a significant con-
tribution is also brought by the carbody yaw movement. Should the vehicle
runs at speed of 200 km/h, the spectrum of the response factor of the carbody
acceleration, in any of the reference points, is dominated by the resonance
frequency of the yaw movement of the axles.

The track spectrum changes the ratio between the resonances, as shown
below. To this end, the frequency response of the vehicle carbody to the
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Fig. 15. Acceleration power spectral density: (a) carbody centre; (b) above the front bogie; (c)
above the rear bogie; · · · · , V = 100 km/h —, V = 200 km/h

excitations represented by the random direction defects of the track will be
examined.

The diagrams in fig 15 feature the spectra of the power density of the
carbody acceleration at the centre and above the two bogies while moving
on a high quality track (A = 2.119·10−7 radm) at the reference velocities of
100 and 200 km/h, respectively. One can notice that the frequency prevailing
in the power density spectrum of the acceleration depends on the reference
point being considered. At the carbody centre, what dominates is the low
frequency of the lateral displacement – the roll coupled movement, while
the frequency of the yaw movement and the high frequency of the lateral
displacement – the roll movement are in control above the bogies.

One should be note the important influence of the yaw movement fre-
quency of the axles at high velocities.

6. Conclusions

This paper is concerned with the behaviour of vibrations in the horizontal
plane of a passenger vehicle while moving on a tangent track, with a sub-
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critical velocity. Based on the response functions in a harmonic and in a
random behaviour, we defined a number of characteristics specific to the
vehicle’s vibrations behaviour and the influence of the velocity on the level
of vibrations in the carbody reference points – at centre and above the bogies.

Similarly, the influence of the damping of the two suspension levels on
the carbody vibrations behaviour has been examined, and the possibilities to
lower the level of vibrations to the vehicle’s resonance frequencies have been
highlighted.

The conclusion is that the frequency response at the carbody centre is
dominated by the resonances of the lateral displacement – the roll coupled
movement and influenced by the anti-resonances corresponding to the geo-
metric filtering due to the wheelbases of the vehicle. Above the bogies, the
frequency response is more intense, as the resonance of the yaw movement
adds to the resonances of the lateral displacement – the roll coupled move-
ment and also because the geometric filtering effect is reduced during filtering
due to the bogie wheelbase. At higher velocities, close to the critical one,
the resonance associated with the yaw movement of the wheelsets is present.

As for the geometric filtering effect due to the wheelbases of the vehicle,
it has a selective nature depending on the running behaviour, being more
evident at velocities of up to 50-60 km/h. Similarly, the geometric filtering is
more efficient at the high frequency of the lateral displacement – roll coupled
movement.

The frequency response of the carbody acceleration in the range of its
resonances is diminished. Should higher values of the secondary suspension
damping are adopted – the damping on the transversal direction is more
efficient from this perspective. The primary suspension damping exerts no
influence on the carbody response at low frequency, while high frequen-
cies will trigger a certain decrease in the level of vibrations while damping
increases.

While considering that the vehicle runs on a track with random devia-
tions, we have mentioned that the carbody frequency response at its centre is
dominated by the low frequency of the lateral displacement – the roll coupled
movement, whereas the frequency of the yaw movement and the high fre-
quency of the lateral displacement – roll movement prevail the power density
acceleration spectrum above the two bogies. For high velocities, an important
contribution can be attributed to the frequency of the yaw movement of the
wheelsets.

Manuscript received by Editorial Board, August 22, 2014;
final version, February 04, 2015.
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Wpływ tłumienia wzdłużnego i poprzecznego w zawieszeniu na właściwości wibracji
pojazdów szynowych

S t r e s z c z e n i e

W artykule skoncentrowano się na wpływie, jaki tłumienie wzdłużne i poprzeczne w za-
wieszeniu, w połączeniu z prędkością, ma na właściwości drgań pojazdów szynowych poruszających
się po torze prostym. W oparciu o model pojazdu o 17 stopniach swobody opracowano symulacje
numeryczne, które pozwalają na ewaluację właściwości dynamicznych pojazdu w zakresie prędkości
podkrytycznych. Na podstawie funkcji odpowiedzi częstotliwościowych dla drgań harmonicznych
i przypadkowych wyznaczono szereg podstawowych właściwości stabilnego zachowania się pojazdu
w warunkach wymuszonych drgań poprzecznych. Pokazano też możliwości obniżenia poziomu
drgań karoserii przez zmianę tłumienia w zawieszeniu.


