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A METHOD OF THE WEAR PROGNOSIS OF SLIDING BEARINGS

The considerations presented in this paper include a computer analysis of slide
bearing wear prognosis using the solutions of recurrence equations complement-
ed with the experimental data values. On the ground of the results obtained from
analytical and computational numerical calculations, and taking into account the
experimental parameters of bearing material and operation boundary conditions, the
control problems of slide bearing wear surfaces have been presented. The obtained
results allow us to see a connection between roughness, material properties, the
amplitude of vibrations, the kind of the friction forces, the hardness of materials, the
sliding speed in one side and the wear increments in succeeding time units of the
exploitation process in other side.

1. Introduction

The wear value prognosis and control of two cooperating bearing sur-
faces during the numerous, particular operation time has a very important
significance in the contemporary classical technological and bioengineering
processes [1-5, 7, 8, 13]. Ludema K.C., Bhusha M. and other Authors [1, 2,
6, 8] have made many measurements in the field of wear determination. Such
interesting practical achievements are up to now not finally illustrated and
elaborated in the simple analytical and numerical expressions [6]. Moreover,
for many friction pairs the wear values are unknown after numerous time
units of operation. Now, we will show some experimental results that have
been obtained so far presenting the influence on wear during the operating
times.
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Figure 1 shows the wear depth increase versus the succeeding operating
times for a constant normal load and various materials of cooperating sur-
faces, according to the experimental results published according to Bhushan
B. and Ludema K.C. [1, 2, 8].

Fig. 1. Wear depths as a function of normal load as a function of cycles or operating times for
various samples: 1 – Nylon for normal load 15 µN, 2 – undoped Si(100) (load 20 µN), 3 –

undoped polysilicon film(load 20 µN), 4 – n-type polysilicon film (load 20 µN), 5 – SiC film
(load 20 µN)

Figure 2 presents the weight loss values in µm3 for various materials
versus time in hours for sliding perpendicular to the lay of roughness and
for sliding parallel to the lay of roughness. The values presented have been
elaborated by the Authors on the grounds of experimental results found in
literature, according to Ludema K.C. and Bhushan B. [1, 2, 8].

Fig. 2. Influence of surface roughness on wear loss in µm3 for Nylon 1, 3 and undoped Si(100) 2,
4 taking into account: 1, 2 – sliding parallel to the lay of roughness, 3, 4 – sliding perpendicular

to the lay of roughness

The effects of severe amplitude vibration on wear, expressed in µm3,
are elaborated by the Authors on the grounds of the experimental results
published by Ludema K.C., Bhushan B., and Kapoor A., Pytko S. [1, 2, 7-
9]. Figure 3 presents the increase of wear value versus amplitude of vibration
increments.
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Fig. 3. The effect of amplitude vibration on wear in µm3 for Nylon – 2 and undoped Si(100) – 1

This paper describes the calculation method for wear anticipation in
bearing surfaces taking into account the dynamic behavior of the sliding
pair during the operating time and many other data such as: the number of
cycles, sliding directions referred to the lay of roughness, the amplitude of
vibrations, the kind of bearing materials, the kind of friction forces, contin-
uous or non-continuous mode of the slide bearing operation, the hardness of
sliding materials, the sliding speed, and the magnitude of pressure values.
The research effort presented herein is aimed at deriving second order non
homogeneous recurrence equations and formulae [10, 12] which engineers
can use in product design to determine the wear or the sum of wear after
arbitrary time periods of slide pair operation.

2. Physical data connected with wear recurrence phenomena

After many experimental AFM measurements, one may find it evident
that the wear values of a loss of the weight of a bearing journal and a sleeve
are equal to the mean average coefficient 0 < a < 1 from the weight loss values
in two foregoing succeeding time units plus some correction described by
exponent dimensional function g(b, D, n) = bDn for the following time units
n =1, 2, 3, . . . [1-4, 7, 8, 12]. Mean average coefficient 0 < a < 1 depends
on the kind of the bearing material, and increases in a direct proportion to
the temperature increase, the magnitude of the friction force increase, and
the magnitude of the amplitude of vibration decrease.

We have two variables of the above-mentioned correction function g.
The first variable b increases in a direct proportion to the load, the increase
in bearing capacity, the increase in sliding velocity, and the increases of
unit time length and the friction coefficient. The first variable b decreases
in a direct proportion to the increments of hardness of the bearing material.
The second variable takes values only in the interval 0 < D < 1.618 and it
increases almost in a direct proportion to the increments of the angle between
the direction of sliding and the lay of roughness. The variable D increases
with the increments of the frequency of the non-continuous mode of the
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bearing operation and with magnitude increments of the changes in standard
deviations of the bearing gap height during the operation [8, 12].

Thus, discrete wear values fn+2 of the sequence { fn} for n = 1, 2, 3,
. . . i.e. the values of a loss of volume in mm3 or µm3 of slide bearing surfaces
are equal to the sum ( fn+1 + fn) of wear (loss of weight) in two foregoing
successive time units (which may be hours or months) multiplied by the
dimensionless mean average wear coefficient 0 < a < 1 plus some exponential
dimensional function of bDn [1-4, 7, 8, 12]. The index n indicates time units
and is expressed in natural numbers 1, 2, 3, . . . .

Table 1 illustrates coefficients 0 < a < 1, b ≥ 0, 0 < D < 1.618 depended
on various factors x1, x2, x3, . . . , y1, y2, y3, . . . , k,H,V ,L obtained experi-
mentally [1-4, 7, 8]. The correction Dn increases in succeeding time units
n = 1, 2, 3, . . . for 1 < D < 1.618 and it decreases for 0 < D < 1.

Table 1.
Definition of wear parameters

a = x1x2x3. . . [-]

x1 – dimensionless coefficient describing kind of bearing mate-
rials and its temperature conditions,

x2 – dimensionless coefficient describing kind of friction or
friction coefficient,

x3 – dimensionless coefficient describing magnitude of ampli-
tude and frequency of vibrations,

D = y1y2y3. . . [-]

y1 – dimensionless coefficient describing direction of sliding to
the lay of roughness,

y2 – dimensionless coefficient describing continuous or non-
-continuous mode of slide bearing operation,

y3 – dimensionless coefficient describing magnitude of standard
deviation changes of bearing gap height,

b = 10−6µ · t LV
H

in [mm3]

µ – friction coefficient,
t – time unit in [s],
L – load applied in [N],
H – hardness of sliding materials in [N/mm2],
V – sliding speed in [mm/s],

Now we will describe the values of factors x which are presented in
Table 2.

Taking into account experimental results included in literature [7, 8], we
can see in Table 2 that:
– the factor x1 attains the largest values for metals Ag, Cu, Fe, Pb at a high

temperature, average values for ceramic metals and the smallest values
for metals at a low temperature [2, 3];

– the factor x2 attains the largest values for dry friction, middle (interme-
diary) values for boundary friction and the smallest values for friction in
hydrodynamic lubrication [8];

– the factor x3 attains the largest values for a low amplitude, intermediary
values for the middle amplitude and the smallest values for the upper
amplitude of vibration [8] (see Fig. 3).
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Table 2.
Determination of dimensionless factors x

Factors x Kinds of individual factors
Interval values referred to
kinds of individual factors

x1 – dimensionless factor describing
kind of bearing materials

Metals at high temperature 0.500 < x1 < 0.999

Ceramic and solid lubricants 0.300 < x1 < 0.499

Metals at low temperature 0.010 < x1 < 0.299

x2 – dimensionless factor describing
kind of friction or friction
coefficient

Dry friction 0.600 < x1 < 0.990

Boundary friction 0.400 < x1 < 0.599

Hydrodynamic friction 0.200 < x1 < 0.399

x3 – dimensionless factor describing
magnitude of amplitude and
frequency of vibrations

Low amplitude values 0.700 < x1 < 0.990

Average amplitude values 0.300 < x1 < 0.699
Upper amplitude values of
bearing surface vibrations 0.099 < x1< 0.299

Now we will describe the values of factors y presented in Table 3.

Table 3.
Determination of dimensionless factors y

Factors y Kinds of individual factors
Interval values referred to
kinds of individual factors

y1 – dimensionless factor describing
direction of sliding to the lay of
roughness

Perpendicular sliding 1.000 < y1 < 1.618
Sliding for angle from 0◦

to 90◦ 0.700 < y1 < 0.999

Parallel sliding 0.010 < y1 < 0.699

y2 – dimensionless factor describing
continuous or non continuous
mode of slide bearing operation

Non continuous mode 0.700 < y1 < 1.600

Average continuous mode 0.500 < y1 < 0.699
Regular continuous mode of
slide bearing operation 0.100 < y1 < 0.499

y3 – dimensionless factor describing
magnitude of standard deviation
changes of bearing gap height

High values 0.600 < y1 < 0.999

Average values 0.400 < y1 < 0.599
Low values of standard
deviations 0.099 < y1 < 0.399

Taking into account the experimental results included in literature [7, 8]
we can see that:
– the factor y1 attains the largest values for perpendicular sliding, interme-

diary values if we have sliding for angle from 0◦ to 90◦ and the smallest
value for parallel sliding to the lay of the roughness [8] (see Fig. 2);

– the factor y2 attains the largest values for the non-continuous mode, inter-
mediary values for the average continuous mode and the smallest value
for the regular continuous mode of the sliding bearing operation [8];
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– the factor y3 attains the largest values for high, intermediary values for the
average and the smallest value for low values of the standard deviation
[3, 7, 8].

3. Some remarks on wear recurrence equation and its solutions

• The standard deviation dependent term bDn as an exponential function,
and the average term a( fn+1 + fn) of two foregoing wears, make up the
sequence values of the real wear in the succeeding time unit [1-4, 7]. In this
case, the wear of slide–bearing surfaces can be described with the following
nonhomogeneous recurrence equation [10, 13]:

f ∗n+2 = a( f ∗n+1 + f ∗n ) + bDn for n = 1, 2, 3, .... (1)

Recurrent equation (1) determines the analytical formula
{
f ∗n

}
presenting a

sequence of wear values numbered for n = 1, 2, 3, . . . time units if we know
dimensionless values D[1], a [1] and the dimensional value b [mm3, µm3]. To
solve the abovementioned problem, it is necessary to add boundary conditions
[13]. Hence, based on the measurements performed, we assume that in the
two first time units (which may be hours or months), the wear obtained in
an experimental way attains dimensional values W1 [mm3, µm3],W2 [mm3,
µm3].

The general solution of Eq. (1) has the following form [10, 12]:

f ∗n = C1χ
n
1 + C1χ

n
2 + f b

n , for n = 1, 2, 3, . . . (2)

where C1, C2 arbitrary constants and sequences
{
f ∗n

}
,
{
f b
n

}
for n = 1, 2, 3,

... denote the total general and particular solutions of the non-homogeneous
recurrence equation respectively. The real roots χ1, χ2 of the characteristic
equation are as follows:

χ1,2 =
a
2
±

√
a +

a2

4
, for 0 < a < 1, D2 < χ1,2 < D1, D1,2 =

(
1 ±
√

5
)
/2

(3)
By imposing the boundary conditions f ∗1 = W1 , f ∗2 = W2 on the general
solution (2), we obtain for ∆χ ≡ χ2−χ1 the following particular solution [14]:

f ∗n =
1

∆χ

(
χ2χ

n−1
1 − χ1χ

n−1
2

)
W1 +

1
∆χ

(
χn−1

2 − χn−1
1

)
W2+

+
1

∆χ

{ [ (
f b
2 − χ2 f b

1

)
χn−1

1 −
(
f b
2 − χ1 f b

1

)
χn−1

2

] }
+ f b

n .

(4)

• Usually, on the basis of measurements and values presented in Tables
1, 2, 3, we obtain the three following regions of wear parameters:
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a) The first surface region is illustrated in Fig. 4 without all points lying on
the indicated curve including point (a, D) = (1.00; 0.50);

Fig. 4. Surface of the first region of wear parameters for 0 < a < 1, 0 < D < D1 = 1.618 does not
include the indicated curve a = D2/(D+1)

For the parameters lying in the first region, the particular solution of
non-homogeneous Eq. (1) has the form:

f b
n =

bDn

D2 − aD − a
, for n = 1, 2, 3, ... (5)

b) The second region, in the form of the curve, is described with the following
formula:

(0 < a < 1) ∧ (0 ≤ D ≤ 1.618) ∧
(
a =

D2

D + 1

)
∧ (a , 0.50; D , 1) (6)

and illustrates the curve shown in Fig. 4 without the point (a, D) = (1/2, 1).
For parameters lying in the second region, the particular solution of

non-homogeneous Eq. (1) has the form:

f b
n =

bnDn−2 (D + 1)
D + 2

, for n = 1, 2, 3, ... (7)

c) The third region is depicted in Fig. 5 as one singular point (a, D) =

= (1/2, 1):

Fig. 5. One point sub-region of divergent wear process for D = 1.0, a = 0.5
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For the parameters a = 0.5; D = 1.0 lying in the third region, the
particular solution of non-homogeneous Eq. (1) has the form:

f b
n =

2
3
bn, for n = 1, 2, 3, .... (8)

• Taking into account Solution (7) and the roots (3), we obtain, for each
point (a, D) lying in the first region, the following dimensional sums of final
wear values terms (4) after N time units for n = 1, 2, 3, . . . , N [12]:

N∑

n=1

f ∗n = F1N (a)W1 + F2N (a)W2 + F3N (a,D)b, (9)

where coefficients of sums F1N (a), F2N (a), F3N (a,D) are presented in an an-
alytical form [12].

Now we will consider four sub-regions of the first region.
a) For the convergent wear process, the first sub-region is presented with

points lying inside the domain (a, D) defined with the following inequalities:

O : (0 < a < 0.50)∧ (0 < D < 1.00)∧
(
a ,

D2

D + 1

)
, (10)

and Fig. 6 shows the location without all points lying on the indicated curve:

Fig. 6. Sub-region O of the wear convergent process for a , D2/(D+1), 0 < a < 1/2, 0 < D < 1

For each point in this region, the considered wear process is convergent
for N → ∞. The limits F1∞, F2∞, F3∞ take some finite values.

b) Next sub-regions for the divergent wear process are presented with
the points (a, D) lying inside domains A, B, C defined by the following
inequalities:

A: a ,
D2

D + 1
,

(
1
2
≤ a < 1

)
× (1 ≤ D < D1) ,

B:

(
0 < a <

1
2

)
× (1 ≤ D < D1) , (11)
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C:

(
1
2
≤ a < 1

)
× (0 < D < 1) ,

and Fig. 7 shows the field without all points lying on the indicated curve:

Fig. 7. Sub-regions for divergent wear process of: A) a , D2/(D+1), 1/2 ≤ a < 1, 1 ≤ D < 1.618;
B) 0 < a < 1/2, 1.00 ≤ D < 1.618; C) 0.5 ≤ a < 1.0; 0 < D < 1

For each point inside and on the boundaries of sub-regions A, B, C, the
considered wear process is divergent for N → ∞ i.e. we haven’t any infinite
limits: F1∞ = ∞, F2∞ = ∞, F3∞ = ∞.

¥ Now we go to the numerical examination of the summary wear val-
ues in the first parameter region. We calculate and show in Fig. 8 depicted
numerical values of functions F1N , F2N in time units N = 4, 6, 8, 10, 12,
14 for the points (a) lying in the first region, and its O, A, B, C sub-regions,
except the points a = D2/(D+1), (D =1, a =1/2). To obtain the dimensional
wear value, we must multiply corresponding dimensionless values F1N , F2N
by the dimension experimental values W1, W2, respectively.

Making use of Mathcad Professional Program we calculate numerical
values of functions F3N , in time units N = 4, 8, 12, 14 for the points (a, D)
lying in the first region, and its sub-regions: O, A, B, C where a , D2/(D+1),
D , 1, a ,1/2, as shown in Fig. 9a,b,c,d. The left and right column of the
pictures presents the distributions in 3D and 2D views, respectively. To obtain
the dimensional wear value, we must multiply the dimensionless values F3N
by the dimension experimental values b. Finally, we add dimensional values
F1NW1 +F2NW2 and F3Nb hence the total wear value after N time units takes
the form (9).
• Taking into account Solution (7) and the roots χ1 = D, χ2 = −D/(D+1),

we obtain, for each point with coordinate D lying in the second region, the
sums of dimensional final wear values (4) after N time units for n = 1, 2, 3,
. . . , N in the following form:

N∑

n=1

f ∗n = G1N (D)W1 + G2N (D)W2 + G3N (D)b, (12)
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Fig. 8. Dimensionless convergent wear values inside interval 0 < a < 1, in time units N = 4, 6, 8,
10, 12, 14 for the first region and its sub-regions: O, A, B, C excepting points a = D2/(D+1),

(D =1, a =1/2) a) dimensionless values of function F1N (a), b) dimensionless values of function
F2N (a)

where the sums G1N (D),G2N (D),G3N (D) can be presented in an analytical
form [12].

Now we consider two sub-regions of the second region.
a) The first sub-region Γ1 is presented, for the convergent wear process,

with the points (a, D) lying inside the domain defined by the following
inequalities:

(0 < a < 0.50) ∧ (0 < D < 1.00) ∧
(
a =

D2

D + 1

)
, (13)

and Fig. 10a illustrates the field of all points lying on the curve without the
point (1.00; 0.50).

For each point in this region, the considered wear process is convergent.
b) The second sub-region Γ2 is presented, for the divergent wear process,

with points (a,D) lying inside the domain defined by the following inequali-
ties:

(0.50 < a < 1.00) ∧ (1.00 < D < 1.618) ∧
(
a =

D2

D + 1

)
, (14)
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Fig. 9. Left and rig ht column of pictures for 3D and 2D views respectively, present convergent in
sub-region O and divergent in sub-regions A, B, C, dimensionless wear values prognosis of

functions F3N in region 0 < a < 1.0; 0 < D < 1.618 excepting points (a = 1/2, D = 1),
a = D2/(D+1): a) for time units N = 4, b) for time units N = 8, c) for time units N = 12, d) for

time units N = 14

and Fig. 10b illustrates the field of all points lying on the curve without the
point (1.00; 0.50).

For each point in this region, the considered wear process is divergent.
To obtain the total dimensional wear value after N time units, we must

multiply the corresponding dimensionless values G1N , G2N , G3N by the di-
mensional experimental values W1, W2, b, respectively, and next add the
obtained values as shown in formula (12).

¥ We perform calculation in Mathcad Professional Program and show in
Fig. 11a,b,c the depicted numerical dimensionless values of functions G1N ,
G2N , G3N , respectively, for parameters (a, D) lying in the following fields:

Γ1 : a = D2/(D + 1), 0<a<1/2; 0<D<1; (convergent wear process)
Γ2 : a = D2/(D + 1), 1/2<a<1; 1.00<D<1.618; (divergent wear process)

(15)
The curve presenting wear after N = 30 time units illustrates the convergences
and divergences of the cumulative wear processes in sub-regions Γ1, and Γ2
respectively.

To obtain the total dimensional wear value after N time units we must
multiply the corresponding dimensionless values G1N , G2N , G3N by the di-
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Fig. 10. Sub-regions of the second region: a) sub-region Γ1 for a = D2/(D+1), 0 < a < 1/2,
0 < D < 1 of the wear convergent process, b) sub-region Γ2 for a = D2/(D+1), 1/2 < a < 1;

1.00 < D < 1.618 of the wear divergent process

mensional experimental values W1, W2, b, respectively, and next add the
obtained values, as shown in formula (12).
• Taking into account Solution (8) and the roots χ1 = 1, χ2 = −0.5, we

obtain for the point (a = 1/2, D = 1.0) lying in the third region the sums of
dimensional final wear values (4) after N time units for n = 1, 2, . . . , N in
the following form:

N∑

n=1

f ∗n = H1N (N)W1 + H2N (N)W2 + H3N (N)b, (16)

where coefficients of sums H1N (D),H2N (D),H3N (D) can be presented in an
analytical form.

¥ Using Eq. (16), we proceed to the numerical examination of the sum-
mary wear values in the third parameter region. We calculate and show in
Fig. 12 the numerical values of functions H1N , H2N , H3N for (a = 1/2, D =

= 1.0), the point covering the third region.
To obtain the total dimensional wear value after N time units, we must

multiply the corresponding dimensionless values H1N , H2N , H3N by the
dimensional experimental values W1,W2, b, respectively, and next add the
obtained values, as it was shown in Formula (16).
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Fig. 11. Convergent in sub-region Γ1 and divergent in sub-region Γ2 the dimensionless wear
values prognosis of G1N , G2N , G3N in interval 0 < D < 1.618 in time units N = 4, 6, 8, 10, 12,

14, ..., 30: a) for values G1N , b) for values G2N , c) for values G3N

4. Engineering results in the form of calculation example

We may determine the wear after ten time units if we know that in
the sliding nod we have metals at an average temperature, hydrodynamic
lubrication occurs in the bearing gap and the amplitude of vibration is low.
Moreover, we assume that sliding direction is parallel to the lay of roughness,
the slide bearing works in an average continuous mode, and the magnitude
of the standard deviation is very high.
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Fig. 12. Dimensionless divergent wear values prognosis of functions H1N , H2N , H3N in the
third-region covering point a = 0.5; D =1.0, in time units N = 4, 6, 8, . . . , 30

For large slide journal bearings, we anticipate the classical magnitudes
of wear values, for example in the first two successive time units, wear in the
slide bearing journal decreases to W1 [mm3] and W2 [mm3], respectively. The
load takes the value L =1000 N with the peripheral velocity of the journal
V = 10 m/s, the hardness of the bearing material is H = 10 000 MPa, the
friction coefficient µ = 0.001, according to [9]. We accept the time unit of
100 days i.e. = 8640 000 s. By measurements we obtain the wear (during
100 days), which after the first time unit is equal to W1 = 4 mm3 and the
wear during the next time unit W2 = 6 mm3. Determine the wear after 1000
days i.e. after 10 time units.
Solution

From Table 2 we have: for metals at the average temperature x1 = 0.499,
for hydrodynamic lubrication x2 = 0.33, for a low amplitude of vibration
x3 = 0.99, hence a = x1x2x3 = 0.499 · 0.333 · 0.99 = 0.1630.

From Table 3 we read: for parallel sliding direction to the lay of rough-
ness y1 = 0.699, for the average continuous operating mode y1 = 0.500, for a
high magnitude of the standard deviation of the gap the height changes y3 =

= 0.955, hence D = y1y2y3 = 0.699 · 0.500 · 0.955 = 0.3337.
The parameter b takes the following value:

b = 10−6µt
LV
H

= 10−6 ·0.001 ·8640000 s · 1000N · 10 · 1000 mm
s

10000 N
mm2

= 8.64 mm3.

(17)
For the accepted values W1,W2, b and in accordance with Eq. (9) the wear
after N time units assumes the following form:

N∑

n=1

f ∗n = F1N (a) · 4 mm3 + F2N (a) · 6 mm3 + F3N (a,D) · 8.64 mm3. (18)
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We put values a = 0.1630, D = 0.3337 into the functions F1N (a), F2N (a),
F3N (a, D), in successive time units N = 1, 2, 3 . . . , or we read values F1N (a),
F2N (a), F3N (a, D) for a = 0.1630, D = 0.3337 directly from distributions
which are presented in Fig. 8 and Fig. 9a,b. In Fig. 13, there are presented
the charts of values calculated for abovementioned particular data.

Fig. 13. Convergent process of the sum of wear values in particular point a = 0.1645, D = 0.3337
versus N time units if N tends to infinity for a , D2/(D+1), 0 < a < 1/2, 0 < D < 1

The obtained values F1N , F2N , F3N for a = 0.1630, D = 0.3337 for N = 1,
2, 3, . . . are substituted into Equation (18). Here arbitrary dimensional values
W1 [mm3], W2 [mm3], b [mm3] are assumed. After calculations, we obtain
a sequence of the following convergent sums of wear values in successive
time units:

for N = 1, f ∗1 = W1 = 4 mm3,

for N = 2, f ∗1 + f ∗2 = W1 + W2 = 4 mm3 + 6 mm3 = 10 mm3,

for N = 3, f ∗1 + f ∗2 + f ∗3 = 1.1630 W1 + 1.1630 · 6 mm3 + 0.3337 b =

= 1.1630 · 4 mm3 + 1.1630 · 6 mm3 + 0.3337 · 8.64 mm3 = 14.5132 mm3,

...................................................................................................

for N = 10,
10∑

n=1

f ∗n = 1.2412 W1 + 1.4816 W2 + 0.7389 b =

= 1.2412 · 4 mm3 + 1.4816 · 6 mm3 + 0.7389 · 8.64 mm3 = 20.2382 mm3,
(19)

...................................................................................................

for N = ∞,
∞∑

n=1

f ∗n = 1.2418 W1 + 1.4837 W2 + 0.7431 b =

= 1.2418 · 4 mm3 + 1.4837 · 6 mm3 + 0.7431 · 8.64 mm3 = 20.2895 mm3.
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5. Discussion

Numerous machine exploitation problems in the field of the experimen-
tal and numerical determination of slide bearing wear problems require the
knowledge of data referring to the features of the sequence of the existing
wear process during the operation time. In particular, the abovementioned
information includes the velocity of the increase in wear values during par-
ticular time units of the operation. Very important are the phenomena of
convergence and divergence of the wear value increase. If we have two di-
vergent wear processes, then very important is information which process
diverges more slowly. On the other hand, in comparison between two con-
vergent processes, we must decide which process converges more quickly.
This paper allows us to consider such a problem. If the wear process in
particular time units of the operating time is decreasing to some wear limit
value, then it is possible to obtain stabilization in the bearing wear in a suf-
ficient number of time units of the operation. If the wear process increases
in particular time units of the operating time, then we have the phenomena
of continuous increments of wear in bearing in a sufficient number of time
units of the operation. In both above cases, the sum of wear values after
the considered time units of the operation, i.e. the cumulative function of
wear values can be divergent. The most important for practical needs is the
convergence or divergence of the cumulative values of bearing wear after the
considered time units of the operation.

To perform investigations of the abovementioned control problems, the
wear value processes are described by non-homogeneous recurrent equa-
tions with a variable free term. The results obtained in this paper show that
convergence or divergence of the wear processes depends on experimentally
determined coefficients which appear in the considered recurrent equations of
wear. The coefficients depend on bearing materials, operation conditions and
environmental external influences. Therefore, the assumption and knowledge
of materials, exploitation conditions and finally external influences enable us
to determine the control of wear during the operation time.

The results obtained in this paper show how to anticipate wear in a
slide bearing after many time units of the operation if bearing materials,
exploitation and environmental conditions are known.

6. Conclusions

1. The bearing wear prognosis presented in an analytical recurrent form was
performed on the basis of a hypothesis examined experimentally, where
the wear after a sufficiently high number of time units of the exploitation
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process depends on the wear value occurring in two succeeding earlier
time intervals.

2. This paper presents the influence of classical bearing materials and non-
classical bearing bio-material properties, journal vibrations and revolu-
tion, and standard deviation of bearing surface deformations on the values
of the bearing wear process in the succeeding time periods of the opera-
tion.

3. The results obtained in this paper allow one to identify the region of
experimental parameter values where a convergent or divergent slide-
bearing wear process occurs.

4. The theory presented here may find new application possibility in analyt-
ical methods for anticipation of wear slide bearing convergence course in
particular time units of operating time. Moreover, the divergence process
of the sum of wear, i.e. cumulative values after arbitrary time units of
the bearing exploitation were considered.

5. The theory presented here may be applied in preparation of methods for
controlling divergence and convergence of slide bearing wear course in
particular time units of the operating time.

6. The numerical analysis illustrated by the calculation example and the
numerical results depicted in Fig. 14 and 15 make it possible to apply
the above-presented recurrence prognosis in practical bearing design.

Manuscript received by Editorial Board, August 11, 2014;
final version, October 19, 2014.
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Metoda prognozowania zużycia łożyska ślizgowego z wykorzystaniem komputera

S t r e s z c z e n i e

Rozważania przedstawione w niniejszej pracy obejmują komputerową analizę prognozy zuży-
cia łożyska ślizgowego z wykorzystaniem rozwiązań równań rekurencyjnych oraz danych ekspery-
mentalnych.

Problem optymalizacji zużycia powierzchni ślizgowych łożyska został rozwiązany przy wyko-
rzystaniu obliczeń analitycznych i numerycznych a także przy uwzględnieniu materiału łożyskowego,
parametrów doświadczalnych oraz warunków brzegowych.

Uzyskane wyniki pozwalają nam dostrzec związek między chropowatością, właściwościami
materiału, amplitudą drgań, rodzajem sił tarcia, twardością materiałów, prędkością ślizgania z jednej
strony, a przyrostem zużycia w kolejnych jednostkach czasowych procesu eksploatacji z drugiej
strony.


