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FINITE ELEMENT FORMULATION FOR THE LARGE-AMPLITUDE
VIBRATIONS OF FG BEAMS

On the basis of Euler-Bernoulli beam theory, the large-amplitude free vibration
analysis of functionally graded beams is investigated by means of a finite element
formulation. The von Kármán type nonlinear strain-displacement relationship is em-
ployed where the ends of the beam are constrained to move axially. The material
properties are assumed to be graded in the thickness direction according to the power-
law and sigmoid distributions. The finite element method is employed to discretize
the nonlinear governing equations, which are then solved by the direct numerical
integration technique in order to obtain the nonlinear vibration frequencies of func-
tionally graded beams with different boundary conditions. The influences of power-
law index, vibration amplitude, beam geometrical parameters and end supports on
the free vibration frequencies are studied. The present numerical results compare
very well with the results available from the literature where possible.

1. Introduction

The large-amplitude free vibration analysis of beams has been numer-
ously studied by various researchers using analytical and numerical tech-
niques. The preliminary work, concerned with the geometrically nonlinear
vibrations of a beam, was performed by (Woinowsky-Krieger, 1950). Em-
ploying the elliptic integral solution, he investigated the nonlinear vibrations
of hinged-hinged beams with axially immovable ends. This issue was af-
terwards addressed by several authors using perturbation and Ritz-Galerkin
methods (Srinivasan, 1965; Evensen, 1968; Ray and Bert, 1969). There can
be found some newer analytical studies on the nonlinear vibrations of beam,
which seem to be useful, such as (Azrar et al., 1999; Emam, 2009; Emam
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and Nayfeh, 2009; Pirbodaghi et al., 2009). The early studies carried out on
the finite element (FE) vibration analysis of beams were presented by (Mei,
1972; Mei, 1973). Afterwards, tremendous efforts have been made on finding
the FE solutions for this problem. (Venkateswara Rao et al., 1976) formu-
lated the large-amplitude free vibrations of beams and plates by linearizing
the quadratic terms in strain-displacement relations without considering the
effect of the axial displacement. (Raju et al., 1976) included the effect of
the axial displacement into the consideration and used the same linearizing
approach as in (Venkateswara Rao et al., 1976).

The similarity of all the above FE formulations is the assumption of
the simple harmonic motion (SHM) which results in satisfying the equa-
tions of motion only at the instant of maximum amplitude. (Kapania and
Raciti, 1989) studied the nonlinear free vibrations of composite beams. In
this formulation, they reduced the dynamic FE matrix equation to a scalar
equation by using the linear mode shapes obtained with the assumption of
the SHM, and finally solved this scalar equation by means of perturbation
method. The main deficiency about their formulation was the unsatisfaction
of the out-of-plane equilibrium equations. In this direction, (Sing et al., 1990)
investigated the problem of nonlinear oscillations of beams by improving
the solution procedure of previous FE works. Using the linear mode shape
obtained via SHM, they iteratively solved the dynamic FE matrix equation.
This leads to the exact satisfaction of the equations corresponding to the
axial as well as out-of-plane directions. The converged eigenvector was then
used in order to reduce the dynamic FE matrix equation to a scalar nonlinear
Duffing-type one, which finally solved using the direct numerical integration
technique. (Gupta et al., 2009) presented a relatively simple FE formulation
and obtained the nonlinear frequencies of Euler-Bernoulli beams with end
supports of any type. Their FE formulation begins with the assumption of the
SHM and is consequently corrected by implementing the harmonic balance
method (HBM). Afterwards, they continued their work and studied the same
problem based upon the Timoshenko beam theory in (Jagadish Babu et al.,
2010). However, to the best of authors’ knowledge, the number of investiga-
tions conducted on the nonlinear vibration of beams made up of functionally
graded materials (FGMs) is scarce.

(Xiang and Yang, 2008) carried out a study on the free and forced vibra-
tion of FG Timoshenko beams of variable thickness under heat conduction
using the differential quadrature method. (Sina et al., 2009) developed a
new beam theory within the framework of the first order shear deformation
theory to analyze free vibration of FG beams. In their study, the equations
of motion are derived using Hamilton’s principles, which are solved then us-
ing an analytical approach. (Simsek, 2010) investigated the large-amplitude
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vibrations of FG beams under the action of a moving load based on the Tim-
oshenko beam theory. The equations of motion are derived using Lagrange’s
equation, and finally solved by means of Newmark-β method in conjunction
with the direct iteration method. (Fallah and Aghdam, 2011) implemented
He’s variational method to investigate the nonlinear characteristics of FG
beams resting on nonlinear elastic foundations where the Euler-Bernoulli
assumptions together with von Kármán’s strain-displacement relations are
employed for deriving the governing equations of motion. To the best of au-
thors’ knowledge, the most recent work in the field of FE vibration analysis
of FG beams is limited to the linear vibration analysis of these structures
using FE method performed by (Alshorbagy et al., 2011). In their work,
the equations of motion are derived using the Euler-Bernoulli beam theory
and virtual work principle. The material properties of beams assumed to
be varying through the thickness or longitudinal directions according to the
power-law volume fraction function. They assumed linear shape functions
for the axial displacement, while cubic ones for the transverse displacement.

The main impetus of the present study is to implement the FE method
for investigating the large-amplitude oscillations of FG beams on the basis of
Euler-Bernoulli beam assumptions. The FG beam is considered with different
boundary conditions and both ends are constrained to move axially, resulting
in the von Kármán type strain-displacement relation. The FG material is
composed of steel and alumina, whose properties vary along the thickness
direction based upon power-law and sigmoid volume fraction functions. The
axial and transverse displacements are assumed to have cubic distributions
along the element length. The linear mode corresponding to the fundamental
frequency is utilized to reduce the dynamic matrix equation to a scalar one.
Finally, the direct numerical integration method (Sing et al., 1990; Sundare-
san et al., 1999) is applied for solving this scalar equation. This formulation
has been used very recently by (Ansari and Hemmatnezhad, 2012) to per-
form an exhaustive study on the large-amplitude vibrations of double-walled
carbon nanotubes. Finally, the influences of different boundary conditions,
power-exponent index and beam’s length to the thickness ratio on the nonlin-
ear vibration frequencies of FG beams are examined. A comparison is made
also with the available results in the literature and good agreement has been
achieved.

2. Material properties of FG material

A FG beam of length L, width b and thickness h is shown in Fig. 1. It is
assumed that the material properties of the beam such as, Young’s modulus
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E, mass density ρ and Poisson’s ratio ν vary continuously along the thickness
direction across the thickness based on the following relations

E(z) = Es + EasV f (z), Eas = Ea − Es

ν(z) = νs + νasV f (z), νas = νa − νs

ρ(z) = ρs + ρasV f (z), ρas = ρa − ρs

(1)

where subscripts s and a refer to properties of steel and alumina respectively
and V f (z) denotes the volume fraction function which can be defined as
following for power-law FGMs

V f (z) =

(
z
h

+
1
2

)N

(2)

while for sigmoid FGMs, it is given by

V f (z) =



1 − 1
2

(
1 − 2z

h

)N

0 ≤ z ≤ h
2

1
2

(
1 +

2z
h

)N

−h
2
≤ z ≤ 0

(3)

where N is the power exponent which stands for the material variation profile
through the thickness of the beam.

Fig. 1. A schematic view of FG beam

3. Theoretical formulation

According to the EBT, the nonlinear strain-displacement relation of the
beam at any arbitrary point along the thickness can be written as

εx =
du0

dx
− z

d2w0

dx2 +
1
2

(
dw0

dx

)2
(4)

where u0 and w0 are the axial and transverse displacements of the mid-
plane, respectively. The simplified stress-strain relation for a FG beam can
be written as

σx = E(z)εx (5)
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in which E(z) is the Young’s modulus of the FG beam. The strain and kinetic
energies of the beam are

U =
1
2

∫ L

0

∫

A

σxεx dAdx,

T =
1
2

∫ L

0

∫

A

ρ(z)[(u̇0)2 + (ẇ0)2] dAdx
(6)

where (.) denotes differentiation with respect to time and A represents the
cross-sectional area of the beam.

4. Finite element formulation for the nonlinear vibrations of FG beams

The beam is divided into a number of two-node finite elements of equal

length l. Each node has four degrees of freedom u,
du
dx
, w and

dw
dx

. The
distributions for u and w are assumed to be of the following form

u0 = N1u1 + N2u2 + N3u3 + N4u4,

w0 = N1w1 + N2w2 + N3w3 + N4w4
(7)

here Ni (i = 1, ..., 4) are the cubic shape functions in terms of the axial
coordinate x, which are defined as

N1 = (
1
l3

)(2x3 − 3x2l + l3),

N1 = (
1
l3

)(x3l − 2x2l2 + l3x),

N3 = (
1
l3

)(−2x3 + 3x2l),

N4 = (
1
l3

)(x3l − x2l2)

(8)

Substituting Eq. (7) into the strain and kinetic energy equations and applying
Hamilton’s principle results in the following nonlinear dynamic finite element
equation


Kuu 0
0 Kww



ui

wi

 +


0 K̄uw

K̄wu 0



ui

wi

 +


0 0
0 K̄ww



ui

wi

 +


0 0
0 M



üi

ẅi

 =


0
0

 (9)

in which the in-plane/axial nodal quantities denoted by subscript u, are kept
together while assembling. The subscript w refers to nodal quantities due
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to bending, i.e. w and
dw
dx

. In Eq. (9), M is the element mass matrix, the

submatrices Kuu and Kww denote the linear stiffness matrices, K̄uw and K̄wu
are the first-order stiffness matrices which depend linearly on elemental de-
grees of freedom, and K̄ww is the second-order stiffness matrix and depends
quadratically on elemental degrees of freedom. These submatrices can be
evaluated as

Kuu = EA
∫ l

0

[
dNi

dx

]T [
dNi

dx

]
dx,

Kww = EI
∫ l

0


d2Ni

dx2


T 

d2Ni

dx2

dx,

K̄uw =
1
2
EA

∫ l

0

(
dw
dx

) [
dNi

dx

]T [
dNi

dx

]
dx,

K̄wu = EA
∫ l

0

(
dw
dx

) [
dNi

dx

]T [
dNi

dx

]
dx,

K̄ww =
1
2
EA

∫ l

0

(
dw
dx

)2 [
dNi

dx

]T [
dNi

dx

]
dx,

M = m
∫ l

0
[Ni]T [Ni]dx

(10)

where m is the mass per unit length of the FG beam and can be obtained
from

m =

∫

A

ρ(z)dA

5. Method of solution

Since most of the researches on this topic dealt with the first mode of
vibration [14, 15, 21, 22], the present study aims to study the effect of large
amplitudes on this fundamental mode of vibration.

To begin with, the linear vibration analysis is performed by discarding
all the nonlinear terms in Eq. (9) as


Kuu 0
0 Kww




ui

wi

 +


0 0
0 M




üi

ẅi

 =


0
0

 (11)

The above matrix equation can be readily solved using the assumption of
SHM to give the linear vibration frequencies of FG beams. Using the lin-
ear stiffness and mass matrices, the linear frequency and eigenvector are
obtained.
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The linear mode corresponding to the fundamental frequency is assumed
as the spatial distribution for Eq. (9) as

{wi} = {w̄i} A(t) (12)

where {w̄i} is the normalized eigenvector obtained from linear vibration analy-
sis such that the maximum transverse displacement due to bending is unity
and A is the maximum displacement at any instant of time. Substituting Eq.
(12) into Eq. (9), we arrive at the following relation for the in-plane/axial
displacement vector

[u] = [Kuu]−1
[
K̄uw

]
[w] (13)

By putting the above relation into Eq. (9) we have

[Kww] [w̄i] A +
{[

K̄ww

]
−

[
K̄wu

]
[Kuu]−1

[
K̄uw

]}
[w̄i] A3 + [M] [w̄i] Ä = [0] (14)

Pre-multiplying by the transpose of the normalized out-of-plane displacement
vector {w̄i} and dividing throughout with [w̄i]T [M] [w̄i], we arrive at the
following scalar equation

Ä + αA + βA3 = 0 (15)

with α and β defined as

α =
[w̄i]T [Kww] [w̄i]
[w̄i]T [M] [w̄i]

,

β =
[w̄i]T

{[
K̄ww

]
−

[
K̄wu

]
[Kuu]−1

[
K̄uw

]}
[w̄i]

[w̄i]T [M] [w̄i]

(16)

The scalar Duffing-type Eq. (15) is now solved using the Direct Numerical
Integration Method [14, 22]. In this technique, the equation of motion is
multiplied by Ȧ and thus transferred into energy balance equation and then
integrated with respect to time. The resulting equation reads as

Ȧ2 + αA2 +

(
β

2

)
A4 = C (17)

Using the condition that Ȧ = 0 when A = Amax gives C = αA2
max +

(
β

2

)
A4

max.

Substituting this into Eq. (17), leads the following equation

dt =
dA√

α(A2
max − A2) +

(
β
2

)
(A4

max − A4)
(18)

Unauthenticated
Download Date | 12/17/14 11:08 AM



476 MEHDI JAVID, MILAD HEMMATNEZHAD

Which upon integrating the right side from 0 to Amax yields

TNL =
2π
ωNL

= 4
∫ Amax

0

dA√
α(A2

max − A2) +
(
β
2

)
(A4

max − A4)
(19)

Substituting A = Amax sin θ and changing the integration limits suitably, Eq.
(19) becomes

TNL =
2π
ωNL

= 4
∫ π

2

0

dθ√
α

[
1 +

(
β
2α

) (
1 + sin2 θ

)]
A2

max

(20)

The above integral can be computed numerically using the five-point Gaussian
quadrature formula to give the nonlinear frequency. The linear frequency can
be obtained from

ωL = 2π/
√
α (21)

6. Numerical results and discussions

The FG beam considered here is composed of steel and alumina whose
properties vary according to the power-law and sigmoid volume fraction
functions. The material properties of steel an alumina are given in Table 1.
The beam is divided into a number of 20 finite elements with equal length.

In order to validate the present finite element code, the first three di-

mensionless linear vibration frequencies (Ω2 = ωL2

√
ρsA
EsI

) for different

slenderness ratios and power exponents are listed in Table 2 in comparison
with the frequencies obtained from the EBT by (Alshorbagy et al., 2011).
This Comparison also illustrates that, except for N = 0, the results given by
(Alshorbagy et al., 2011) go under overestimation compared to the present
numerical results. This is mainly due to the fact that, in the later work, linear
shape functions were selected for the axial displacement. It can be seen from
this table that as N grows up from zero to five, the dimensionless natural
frequency reduces. This is due to the deviation of the beam from pure alu-
mina to steel. Further it is observed that the dimensionless frequency slightly
change with respect to L/h ratio and this variation is nearly negligible. This
is mainly due to the deficiency in EBT for consideration of the shear effects
in the analysis.

Table 3 illustrates the effects of three common boundary conditions on
the fundamental linear frequencies of power-law FG beams. The boundary
conditions considered are simply-simply (SS), clamped-clamped (CC) and
clamped-simply (CS). As would be observed, the CC case has the highest
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frequency values amongst the selected boundary conditions. Also, for all
kinds of boundary conditions, frequencies decrease as N increases. Further
to this, as one travels from L/h = 10 to L/h = 20, there can be seen a sudden
decrease in the frequency values. However, for higher values of slenderness
ratios this decline becomes less steep. Table 4 lists the similar numerical
results for sigmoid FG beams. It can be concluded that for the case of
sigmoid FGMs, the change in the frequency values with respect to N is not
as apparent as in the case of power-law one and the frequency values for
this kind of FGM become nearly constant with an increment in the value of
power index. The variations of the nonlinear to linear frequency ratios of SS
power-law and sigmoid FG beams against the maximum vibration amplitude
are illustrated in Figs. 2 and 3, respectively. As it would be observed, in
the case of power-law FG beam, the frequency ratios for greater values of
N lie between two curves corresponding to N = 0 and N = 1. However,
in the case of sigmoid counterpart, the nonlinear to linear frequency values
increase as N increases. Also, the frequency ratio values increases as the
vibration amplitude increases.

Table 1.
Material properties of FGM constituents

Properties Unit Steel Alumina (Al2O3)

E GPa 210 390

ρ Kg/m3 7800 3960

Table 2.
The variation of linear dimensionless frequency parameters for different material distributions

and slenderness ratios of power-law FG beams

L/h Ωi N = 0 N = 0.2 N = 0.5 N = 1 N = 2 N = 5

20

i = 1
Present 4.3948 4.1227 3.9035 3.7275 3.5760 3.4122

(Alshorbagy et al., 2011) 4.3425 4.2315 4.1262 4.0359 3.9684 3.9075

i = 2
Present 8.7897 8.2454 7.8071 7.4549 7.1519 6.8244

(Alshorbagy et al., 2011) 8.6716 8.4500 8.2397 8.0595 7.9245 7.8030

i = 3
Present 13.1847 12.3683 11.7108 11.1825 10.7279 10.2367

(Alshorbagy et al., 2011) 12.9750 12.6430 12.3280 12.0580 11.8560 11.6750

50

i = 1
Present 4.3948 4.1227 3.9035 3.7275 3.5760 3.4122

(Alshorbagy et al., 2011) 4.3444 4.2333 4.1279 4.0377 3.9701 3.9092

i = 2
Present 8.7896 8.2454 7.8071 7.4550 7.1519 6.8244

(Alshorbagy et al., 2011) 8.6866 8.4646 8.2539 8.0734 7.9382 7.8165

i = 3
Present 13.1845 12.3681 11.7107 11.1824 10.7279 10.2367

(Alshorbagy et al., 2011) 13.0250 12.6920 12.3760 12.1050 11.9020 11.7200
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Table 3.
The fundamental linear frequencies for various boundary conditions of a power-law FG beam

L/h Boundary condition N = 0 N = 0.2 N = 0.5 N = 1 N = 5

10
SS 282.7457 248.8161 223.0661 203.3979 170.4466

CC 640.9530 563.9994 505.5373 460.8645 386.2506

CS 441.7028 388.6824 348.4194 317.6584 266.2160

20
SS 70.6864 62.2040 55.7665 50.8495 42.6117

CC 160.2383 140.9998 126.3843 115.2161 90.5627

CS 110.4257 97.1706 87.1049 79.4146 66.5540

50
SS 11.3098 9.9526 8.9226 8.1359 6.8179

CC 25.6381 22.5600 20.2215 18.4346 15.4500

CS 17.6681 15.5473 13.9368 12.7063 10.6486

Table 4.
The fundamental linear frequencies for various boundary conditions of a sigmoid FG beam

L/h Boundary condition N = 0 N = 0.2 N = 0.5 N = 1 N = 5

10
SS 200.4141 200.8112 201.8817 203.3979 206.4578

CC 454.3163 455.1880 457.5375 460.8645 467.5753

CS 313.0850 313.6938 315.3346 317.6584 322.3465

20
SS 50.1035 50.2028 50.4704 50.8495 51.6145

CC 113.5791 113.7970 114.3844 115.2161 116.8938

CS 78.2713 78.4234 78.8337 79.4146 80.5866

50
SS 8.0166 8.0324 8.0753 8.1359 8.2583

CC 18.1727 18.2075 18.3015 18.4346 18.7030

CS 12.5234 12.5478 12.6134 12.7063 12.8939
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Fig. 2. Effect of power exponent on nonlinear amplitude frequency response curves of SS
power-law FG beam

Fig. 3. Effect of power exponent on nonlinear amplitude frequency response curves of SS
sigmoid FG beam

7. Conclusions

In the present study, the large amplitude vibration analysis of functionally
graded beams under various boundary conditions is investigated numerically
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by means of the finite element method. The equations of motion are derived
using Hamilton’s principle under the assumptions of Euler-Bernoulli beam
theory. Using a linear mode shape obtained from simple harmonic oscillation,
the dynamic finite element matrix equations have been transformed to a
scalar ordinary nonlinear differential equation, which has been solved later
by the direct numerical integration technique. The material properties of the
beam vary continuously through the thickness according to the power-law
and sigmoid volume fraction functions. Comparison of the generated results
with those available in the literature shows a good agreement. Numerical
results show that as the power exponent increases, the natural frequency
values decrease. This is due to the deviation of the beam from pure alumina
to steel as N grows up from zero to infinity. As one travels through the
end conditions of SS to CC, the influence of boundary conditions is shown
to increase the natural frequencies. This is mainly due to the fact that the
stiffness of a beam with all edges clamped is higher than that with all edges
simple. It can be concluded that for the case of sigmoid FGMs, the change
in the frequency values with respect to N is not as apparent as in the case of
power-law one and the frequency values for this kind of FGM become nearly
constant with an increment in the value of power index. Furthermore, as the
vibration amplitude increases, the nonlinearity becomes more prominent and
the nonlinear to linear frequency values increase.

Manuscript received by Editorial Board, September 07, 2013;
final version, April 03, 2014.
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Sformułowanie metody elementów skończonych dla drgań wielkoamplitudowych
w belkach gradientowych

S t r e s z c z e n i e

W oparciu o teorię Eulera-Bernouliego przeprowadzono analizę wielkoamplitudowych drgań
belki gradientowej posługując się metodą elementów skończonych. Związek między odkształceniem
i przemieszczeniem, typu von Kármána, zastosowano tam, gdzie końce belki są utwierdzone i mogą
poruszać się osiowo. Zakłada się, że właściwości materiału zmieniają się w kierunku poprzecznym
(grubości) zgodnie z funkcją potęgową lub sigmoidalną. Metoda elementów skończonych jest za-
stosowana w celu dyskretyzacji nieliniowych równań sterujących, z których po rozwiązywaniu
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metodą bezpośredniego całkowania numerycznego wyznacza się częstotliwości drgań nieliniowych
belki gradientowej dla różnych warunków brzegowych. Badany jest wpływ wykładnika funkcji,
amplitudy drgań, geometrycznych parametrów belki i podparcia końców na częstotliwości drgań
swobodnych. Wyniki numeryczne, przedstawione w artykule, zgadzają się dobrze z wynikami
podawanymi w dostępnej literaturze.
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