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SIMULATION OF MOVING LOADS IN ELASTIC
MULTIBODY SYSTEMS WITH PARAMETRIC

MODEL REDUCTION TECHNIQUES

In elastic multibody systems, one considers large nonlinear rigid body motion
and small elastic deformations. In a rising number of applications, e.g. automotive
engineering, turning and milling processes, the position of acting forces on the elas-
tic body varies. The necessary model order reduction to enable efficient simulations
requires the determination of ansatz functions, which depend on the moving force
position. For a large number of possible interaction points, the size of the reduced
system would increase drastically in the classical Component Mode Synthesis frame-
work. If many nodes are potentially loaded, or the contact area is not known a-priori
and only a small number of nodes is loaded simultaneously, the system is described
in this contribution with the parameter-dependent force position. This enables the ap-
plication of parametric model order reduction methods. Here, two techniques based
on matrix interpolation are described which transform individually reduced systems
and allow the interpolation of the reduced system matrices to determine reduced
systems for any force position. The online-offline decomposition and description of
the force distribution onto the reduced elastic body are presented in this contribution.
The proposed framework enables the simulation of elastic multibody systems with
moving loads efficiently because it solely depends on the size of the reduced system.
Results in frequency and time domain for the simulation of a thin-walled cylinder
with a moving load illustrate the applicability of the proposed method.

1. Introduction

Elastic multibody systems (EMBS) enable the simulation of mechanical
systems which undergo nonlinear rigid body motions as well as elastic de-
formations. The flexibility is often small compared to the rigid body motion,
which leads to the description of linear-elastic deformations in the floating
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frame of reference approach [1]. The elastic body is spatially discretized
with the Finite Element Method (FEM), which leads to many elastic degrees
of freedom [2]. For complex elastic structures, e.g. engine and automotive
components, car bodies and robotics, efficient simulations are only feasible
if the elastic degrees of freedom are described by elastic ansatz functions
which can be determined by model order reduction [3, 4].

In a rising number of applications, like gear wheel simulations, turning
and milling processes, movement of cranes and steering systems, the acting
forces vary their position on the elastic body. The moving load problem in
structural dynamics has been state-of-the-art for many years, [5]. To achieve
satisfying results, the position of the acting forces has to be considered in the
determination of the ansatz functions, which is shown for many applications
in [2, 4, 6]. If many nodes are potentially actuated due to the varying force
position, the classically used Component Mode Synthesis (CMS) would lead
to large reduced models. Although the number of possible inputs is high,
in many applications, e.g. turning of thin-walled cylinders [7], only a small
number of nodes are actuated at the same time. In [8], an approach to in-
terpolate between input-dependent shape functions is proposed and applied
to sliding components. This method still depends on the size of the original
model because ansatz functions have to be interpolated. One needs to take
into account the change of the projection space, which influences the equation
of motion.

In this contribution, we present a method based on parametric model
order reduction (PMOR) with matrix interpolation, which only depends on
the size of the reduced systems in the online step. The input matrix is de-
scribed as parameter dependent and individually reduced support systems
are generated. After a necessary transformation, the interpolation between
reduced system matrices allows the generation of reduced systems for any
force position. In this contribution, two PMOR-methods based on matrix
interpolation [9, 10] are applied to enable efficient simulations of reduced
elastic bodies in an EMBS environment with moving loads. The simulation of
a thin-walled cylinder with a varying force position in the PMOR-framework
illustrates the applicability and quality of the interpolated reduced systems.

The paper is structured as follows. First, elastic multibody systems and
the necessary MOR and the background about PMOR with matrix inter-
polation are explained in Section 2. Afterward, the investigated model, a
thin-walled cylinder, is introduced in Section 3. In Section 4 the PMOR-
framework and the process chain for simulations of EMBS with varying
force positions are presented. The different PMOR-methods are compared
for the thin-walled cylinder in Section 5 in frequency and time domain. This
contribution is concluded by a summary and an outlook.
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2. Background

2.1. Elastic Multibody Systems

For many applications, the flexible deformation can be described as
linear-elastic and the floating frame of reference approach is applied, [1].
This description leads to the nonlinear differential equation of motion
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with the rigid-body translational and rotational acceleration a, α, the mass
m, inertia J, center of mass c̃ and the acting forces ht , hr , he. The elastic
body is spatially discretized which results in the nodal deformations q(t),
mass matrix Me and stiffness matrix Ke. A velocity-proportional damping
matrix De is often applied. The matrices Ct and Cr couple the elastic defor-
mation and nonlinear rigid body motion. See [1] for a complete description
of elastic multibody systems described with the floating frame of reference.
The elastic deformation can be described without regarding the rigid body
movement by assuming the acting forces and reaction forces on the elastic
body are described as inputs u(t) distributed by the input-matrix Be. The
nodal deformations of interest are computed by the output-matrix Ce and
q(t) which leads to the Linear Time Invariant (LTI) system

Me · q̈ + De · q̇ + Ke · q = Be · u,
y = Ce · q. (2)

2.2. Model Order Reduction in EMBS

Due to the fine spatial discretization, the number of elastic degrees of
freedom q in (2) can easily increase to millions, [2]. To enable an efficient
simulation of the equation of motion, the elastic degrees of freedom q are
projected by a Galerkin-Projection q ≈ Vq̄ onto a subspace V, spanned by
the columns of the projection matrix V ∈ RN×n. Inserted into (2)

Me · V · ¨̄q(t) + De · V · ˙̄q(t) + Ke · V · q̄(t) = Be · u(t) + ε(t),
ȳ(t) = Ce · V · q̄(t)

(3)

the contribution from the residual error ε , which arises because the correct
solution q is not included in the subspace V, can be eliminated by a left-
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projection onto a second subspaceW which is orthogonal to ε and spanned
by the projection matrix W ∈ RN×n

WT · Me · V︸         ︷︷         ︸
M̄e

· ¨̄q(t) + WT · De · V︸        ︷︷        ︸
D̄e

· ˙̄q(t) + WT · Ke · V︸        ︷︷        ︸
K̄e

·q̄(t) = WT · Be︸   ︷︷   ︸
B̄e

·u(t),

ȳ(t) = Ce · V︸︷︷︸
C̄e

·q̄(t). (4)

The reduced elastic degrees of freedom q̄ should approximate the original
degrees of freedom q in a best way which is determined by the projection
matrices V and W . In this contribution, only orthogonal projection with W =

= V is investigated. See [10] for a detailed description of oblique projection
with W , V.

The dynamical behavior of the LTI-system (2) is described in the fre-
quency domain by the transfer functions

H(s) = Ce · (s2Me + sDe + Ke)−1 · Be,

H̄(s) = C̄e · (s2M̄e + sD̄e + K̄e)−1 · B̄e
(5)

of the original and reduced system. To determine the approximation quality
of the reduced system, the absolute and relative error

εabs(iω) = ||H(iω) − H̄(iω)||F , εrel(iω) =
||H(iω) − H̄(iω)||F
||H(iω)||F (6)

are calculated.
Different reduction methods [3, 4, 11] are applicable for the reduction of

the elastic degrees of freedom of EMBS. The focus of this contribution is on
the parametric model reduction based on matrix interpolation and, therefore,
any reduction technique can be used. Here, CMS-based [12] reduction tech-
niques are applied for a thin-walled cylinder example. The projection matrix
in this reduction framework consists of eigenmodes Φ

(λ2
i Me + Ke) ·Φi = 0, i = 1, . . . ,N (7)

and static modes ΦAM

Ke ·ΦAM = Be. (8)

In [13] other reduction methods are investigated in the PMOR-method with
matrix interpolation.
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2.3. Parametric Model Order Reduction

In a rising number of applications, the system matrices in (2) cannot be
considered as constant, since they are parameter-dependent, which results in
the parametric differential equation

Me(p) · q̈ + De(p) · q̇ + Ke(p) · q = Be(p) · u,
y = Ce(p) · q. (9)

Often, the parameter dependency is supposed to be affine

Me(p) =

k∑

i=1

ωi(p)Me,i, De(p) =

k∑

i=1

ωi(p)De,i, Ke(p) =

k∑

i=1

ωi(p)Ke,i,

Be(p) =

k∑

i=1

ωi(p)Be,i, Ce(p) =

k∑

i=1

ωi(p)Ce,i (10)

with
∑k

i=1 ωi(p) = 1 and ωi(p j) = δi j for i, j = 1, . . . , k. Different parametric
reduction techniques, which vary in computational effort, size of the reduced
system and complexity to generate a reduced system for arbitrary parameter
values, are developed. These techniques are summarized in [14]. Generally,
they are distinguished as global and local approaches. Global approaches
often result in large reduced systems if many possibly actuated nodes are
used and, therefore, suffer under the curse of dimensionality. In this con-
tribution, local PMOR-techniques with matrix interpolation are applied to
simulate EMBS with parametric force excitation positions. Two major ideas
of matrix interpolation in PMOR were developed independently, [9, 15]. In
[16] these methods are compared and fitted into a common framework. Here,
the basic idea of both techniques and the differences between these methods
are described briefly.

The goal of the methods in [9, 15] is to provide the opportunity to cal-
culate reduced systems for any parameter value p without going back to the
original system. Therefore, the interpolation between individually reduced
system matrices is aspired. For certain parameter values pi, the original sys-
tem is reduced and the resulting reduced system matrices M̄e,i, D̄e,i, K̄e,i, B̄e,i,
C̄e,i are used as support systems for the interpolation. The direct interpolation
is prohibited if parameter dependent projection matrices are applied because
then the locally reduced coordinates q̄i differ. To enable the interpolation
between the system matrices, the reduced coordinates q̄i are transformed
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q̄i = Ti · q̄∗i (11)

to guarantee that the k reduced systems are described in the same set of
coordinates

q̄∗ = q̄∗1 = · · · = q̄∗k . (12)

For orthogonal projection, the original support systems are reduced with the
projection matrix Ṽi = Vi · Ti

M̃i · ¨̄q∗(t) + D̃i · ˙̄q∗(t) + K̃i · q̄∗(t) = B̃i · u(t),

ȳ(t) = C̃i · q̄∗(t),
(13)

with
{M̃i, D̃i, K̃i} = ṼT

i · {Me,i, De,i,Ke,i} · Ṽi,

B̃i = ṼT
i · Be,i, C̃i = Ce,i · Ṽi.

(14)

In the following two subsections the calculation of the transformation matrix
Ti in the two PMOR-methods with matrix interpolation [9, 15] is explained.
The calculation of the interpolated reduced system matrices is described, too.

2.3.1. Method by Panzer, Mohring, Eid, Lohmann [9]

The transformation matrix

q̄i = Ti · q̄∗i with Ti = (RT · Vi)−1 and RT · R = I (15)

enables the compatibility of the reduced coordinates q̄∗i with respect to the
subspace spanned by the columns of R. In [9] two different methods to
determine R are proposed. In the first approach, all projection matrices Vi
are combined

Vall = [V1 . . .Vk] (16)

and the most important directions are determined by s left vectors R =

= U(:, 1 : s) of the corresponding s largest singular values of the Singular
Value Decomposition (SVD) of Vall = U · Σ · NT . The only difference in the
second approach is a weighted calculation

Vall = [ω1(p)V1 . . . ωk(p)Vk] (17)

which can be advantageous if large variations in the projection matrices
occur and the most important dynamics around the interpolation parameter
should be investigated. The largest disadvantage is the necessary update of
Vall and calculation of R for each new interpolation parameter. Therefore,
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only the first unweighted approach may enable the application in a real-time
framework.

The additional transformation ensures the usage of the same set of re-
duced coordinates which enables the interpolation between the reduced sys-
tem matrices M̃i, D̃i, K̃i, B̃i, C̃i to generate reduced systems for any parameter
value p

M̃(p) =

k∑

i=1

ωi(p)M̃i, D̃(p) =

k∑

i=1

ωi(p)D̃i, K̃(p) =

k∑

i=1

ωi(p)K̃i,

B̃(p) =

k∑

i=1

ωi(p)B̃i, C̃(p) =

k∑

i=1

ωi(p)C̃i.

(18)

The parameter dependency in (10) is retained with this method in the reduced
system, which is important in the application for the simulation of moving
loads.

2.3.2. Method by Amsallem, Farhat [15]

The transformation matrix Ti in [15] should minimize the difference
between the transformed individual projection matrices Ṽ(pi) = Ṽi and a
projection matrix V(p j) for a reference configuration at the parameter value
p j

min
Ti orthogonal

||Ṽ(pi) − V(p j)||2F = min
Ti orthogonal

||V(pi) · Ti − V(p j)||2F . (19)

This minimization problem is equivalent to

max
Ti orthogonal

trace(TT
i · V(pi)T · V(p j)︸           ︷︷           ︸

Pi, j

) (20)

with the matrix
Pi, j = V(pi)T · V(p j) ∈ Rn×n. (21)

An analytical solution to this problem is given by the SVD

Pi, j = Ui · Σi · NT
i (22)

which leads to the transformation matrix for (14)

Ti = Ui · NT
i . (23)

The method in [15] is highly related to the Modal Assurance Criterion
(MAC) [17]. The user has to define a reference configuration p j which is
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problem dependent. An optimal selection is still an open topic. In contrast,
in [9] the SVD of Vall determines the most dominant dynamics for the trans-
formation matrix Ti. One advantage of the method in [15] is the fact, that
the matrix Pi, j and its SVD can be easily precomputed and only depend on
the size n of the reduced system.

In contrast to [9], the transformed system matrices M̃i, D̃i, K̃i, B̃i, C̃i
in (13) are not interpolated directly. Instead, the interpolation on matrix
manifolds is proposed in [15]. With a logarithmic mapping Γ = LogX(Y),
the matrix Y is mapped to the tangent space TXM which is calculated at the
reference configuration X(p j). On this tangential manifold the independent
interpolation of the elements of the matrix Γi for a certain parameter value
pi is executed. The interpolated matrix Γi is subsequently mapped from the
tangential manifold back to the original manifold by the exponential map-
ping Yi = ExpX(Γi) which guarantees to determine interpolated matrices on
the same manifold as the matrices used as support systems. In Table 1 the
exponential and logarithmic mapping for symmetric positive definite and real
non-quadratic matrices are summarized, see [15] for a detailed description.

Table 1.
Logarithmic and exponential mapping for matrix manifolds

manifold Yi ∈ RN×p symmetric positive definite matrix

Γi = LogX(Yi) Yi − X log(X−1/2 · Yi · X−1/2)

Yi = ExpX(Γi) X + Γi X1/2 · exp(Γi) · X1/2

3. Mechanical Model – Thin-Walled Cylinder

The applicability of the PMOR-techniques for large-scale systems in time
simulations is investigated by a model of a thin-walled cylinder with nearly
40000 degrees of freedom. In the turning process of thin-walled cylinders,
vibrations of the cutting tool and the workpiece lead to poor surfaces and
the regenerative chatter mechanism might damage the workpiece and the
tool, see [7] for a detailed description of the physical effects. To simulate
the turning of thin-walled cylinders in EMBS environment, highly accurate
descriptions of the elastic behavior are indispensable. The force between
the cylinder and tool changes its position and for machining the complete
surface, each node on the surface might be actuated in the simulation model.
Figure 1 shows the thin-walled cylinder with the contact force Fcyl which is
modeled as a point force. The rotational speed of the cylinder is constant and
the parameter p describes the position of the force around the circumference
at the tip of the cylinder. Because of the focus on moving loads in EMBS, in
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this contribution, no material removal is simulated, see [7] how this can be
handled. The Finite Element model consists of 180 nodes around the circum-
ference times 82 nodes in longitudinal direction. Each node only contains
three translational degrees of freedom which results in N = 43983 degrees
of freedom. The transfer function of the cylinder model with one input and
output node is depicted in Figure 2 for the interesting frequency range of
I f = [0 3000] Hz. In this contribution, the force is moving around the cir-
cumference at the tip of the cylinder. Therefore, 180 models could be used
as support systems, although it will be presented that the PMOR-methods
with matrix interpolation are feasible to save support systems independently
of the Finite Element mesh.

Fig. 1. Cylinder model

Fig. 2. Frequency response of original cylinder model
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4. Moving Loads in EMBS

4.1. Input Matrix

In a rising number of applications, contact forces or applied forces vary
their position on the elastic body. To generate qualitatively satisfying reduced
systems, a high number of eigenmodes would be necessary which could
slow down the simulation extremely. Therefore, reduction techniques which
consider the acting forces enable efficient simulations. The classical approach
for varying force positions would be the calculation of a force-position-
dependent shape function for each possibly actuated node. In other words, for
each degree of freedom of each node an input vector bi, which only contains
one nonzero element for point forces, is combined to an input matrix

Be = [b1, b2, . . . , bk]. (24)

In many applications, e.g. gear wheel simulations, simulation of turning and
milling processes, the number of actuated nodes is very large or not known
a-priori which might lead to large input matrices and large reduced systems
although only a small number of nodes might be actuated simultaneously.
To avoid this problem, the input matrix

Be(p) =

k∑

i=1

ωi(p)bi (25)

is described as a parameter-dependent matrix, which is calculated by k sup-
port systems with bi and the weighting functions ωi(p). The parameter p
determines the position of the acting force and is supposed to be scalar in
this contribution, although an extension to multi-parameter problems is pos-
sible [18]. The dynamical behavior depending on the position of the force,
its consideration in the reduction step and the arising problems with certain
reduction methods are explained in [13].

To consider the parameter dependency in the reduced system, projection
matrices Vi are calculated individually for given support systems with Be(p)
in (25). Applying the PMOR-methods, described in Section 2.3, these sys-
tems have to be transformed and, afterward, the interpolation of the system
matrices is feasible.

4.2. Time Simulation

The application of the PMOR-methods in the EMBS environment re-
quires some additional adaption. In the typical floating frame of reference
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environment, the positions of the acting forces on the elastic body are known
a-priori. To determine the force on the reduced elastic body, the projection
matrix is applied

B̄e = VT · Be. (26)

If the parameter-dependent input matrix Be(p) is used and parameter-depen-
dent shape functions Vi for each support system are calculated, the idea of in-
terpolating the projection matrix arises. In [10], a method for the interpolation
of system matrices is proposed which transforms the individually generated
projection matrices Vi similar to the method explained in Section 2.3. Here,
this would require the interpolation of matrices with the number of rows
N and, therefore, still depends on the size of the original model. For each
parameter value, the original system matrices have to be reduced which is
not feasible for large-scale models. Therefore, the interpolation of system
matrices is applied for all system matrices which means, (26) has to be
modified to distribute the force onto the reduced elastic body. As described
in (18) the parameter dependent reduced input matrix B̃(p) is determined by
the individually reduced and transformed input matrices B̃i. This means, the
reduced input-matrix is calculated by matrix interpolation and the physical
meaning of a force which acts on the reduced body is not necessary any-
more. This does not mean that this approach is physically incorrect. In fact,
it enables the dissociation of the moving load of the original Finite Element
mesh and element shape functions are not necessary anymore to distribute
forces which act between nodes. It allows one to save support systems by
not using each potentially loaded node as a support system.

Fig. 3. Online-offline decomposition in time simulation of moving loads with PMOR-methods
with matrix interpolation

The same method has to be applied for the calculation of the reduced
output ȳ. Normally, the reduced coordinate q̄ is backprojected onto the origi-
nal elastic coordinates q by the projection matrix V. As described above, the
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projection matrix is not calculated for each parameter value and, therefore,
the interpolated reduced output matrix C̃ has to be applied to determine ȳ(p).
Only by applying the matrix interpolation approach to all system matrices
M̄e, D̄e, K̄e, B̄e, C̄e this leads to meaningful results.

One important issue in PMOR-methods and the application of moving
load concepts is the possibility to simulate these systems efficiently by an
online-offline decomposition. Many calculation steps are executed prior to the
time simulation. The proposed application of these PMOR-methods enables
an efficient simulation, as it is depicted in Figure 3, with the online-offline
decomposition.

5. Numerical Results

The model of the thin-walled cylinder described in Section 3 is examined
in frequency and time domain. In this contribution, the solution in time
domain is focused and illustrated. A detailed description of the applicability
of PMOR with matrix interpolation in frequency domain can be found in [13].

As described, 180 models are available around the circumference. In
this example, the applied force moves around half the circumference which
results in 91 potential support systems. To show the quality of the inter-
polated reduced systems, only every fifth node is used as an input for the
support systems. The support systems are reduced individually by a CMS-
reduction with 20 eigenmodes and one static mode for the force pointing in
a constant direction onto the varying node which leads to n = 21. Figure 4
illustrates the relative error εrel for all individually reduced support systems,
which are transformed by the techniques described in [9], and the relative
error for the interpolated systems which are compared to the original system
for each particular parameter value pi. Here, cubic splines are applied for
the calculation of the weighting function ωi. From 0 Hz to 1500 Hz, the
interpolation error dominates but for larger frequencies, the error between
the original system and the interpolated reduced system is determined by
the reduction error of the support systems itself. Although only 19 systems
are used as support systems, the interpolated reduced systems still provide
satisfying results. If a higher amount of support systems are considered, the
quality can be improved drastically, see [13] for other parameter samplings.

In the following, the applicability of the PMOR-methods with matrix
interpolation for the simulation of moving loads is presented. To evaluate
the interpolation quality in time domain, first a force

Fcyl(t) =


Fmax(1 − cos(2πt)) if 0 < t ≤ 0.5
Fmax if t > 0.5

(27)
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Fig. 4. Relative error for cubic spline interpolation of CMS-reduced support systems with
bi, i = 1(5)91

which rises smoothly to its static value Fmax = 200 N, is applied. The acting
force will lead to elastic deformations less than 1 mm but the high demands
on the surface quality of the thin-walled cylinder requires very precise sim-
ulation results. Different reduced models are compared and summarized in
Table 2 for this example with the load Fcyl moving around the circumference
of the elastic cylinder.

Table 2.
Reduced models for cylinder model, reduction method:

*=classical CMS, o=few support systems, #=individual CMS, distribution of force:
x=neighboring nodes with FE-shape functions, &=interpolation of B̃

Name n red. modes PMOR distr.

reference N - - original model x

classical 200 * 20 eigenm., 180 static global model x

CMS supp. 38 o 20 eigenm., 1(10)180 static global model x

interpPa1 21 # 20 eigenm., 1 staticmode 1(1)180 [9] &

interpAm1 21 # 20 eigenm., 1 staticmode 1(1)180 [15] &

interpPa2 21 # 20 eigenm., 1 staticmode 1(5)180 [9] &

interpPa3 21 # 20 eigenm., 1 staticmode 1(10)180 [9] &

interpAm2 21 # 20 eigenm., 1 staticmode 1(10)180 [15] &

Figure 5 shows the elastic deformation at the moved marker where the
force is acting for the reference model, the CMS-classical model and the
interpolated system where every node is used to generate a support system.
The reference solution shows small oscillations which do not appear for the
interpolated system. They occur because the nodes only contain translational
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degrees of freedom. Therefore, the Finite Element shape functions distribute
the force which acts between two nodes onto the neighboring nodes as forces
and the necessary torque cannot be applied. By using a different numerical
model including nodes with rotational degrees of freedom, this behavior is
eliminated. The interpolated elastic deformation does not consist of these
oscillations, because the force acting between nodes is not distributed by the
shape functions. Instead, in the PMOR-framework the interpolated reduced
input matrix B̃(p) is used directly as described in Section 4.2.

Fig. 5. Elastic deformation of reduced cylinder model actuated with moving force Fcyl(t)

To illustrate the quality of the other reduced models listed in Table 2,
the elastic deformation between 0.3 s and 5 s is investigated. In Figure 6,
both PMOR-methods show very satisfying results if every available support
system is used in the interpolation step. One major benefit of the matrix
interpolation framework is the independence of the mesh of the original
model. The number of support systems does not have to coincide with the

Fig. 6. Elastic deformation for reduced cylinder models with both PMOR-methods
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number of nodes on the FE-mesh. Therefore, a smaller number of support
systems could be applied to save computational effort in the offline step.
A reduction of the necessary space to store all precomputed reduced models
is achievable, too. Figure 6 illustrates the high quality of the interpolated
systems, although only every fifth system is used. A difference between the
interpolated system with all support systems and every fifth system cannot
be observed, which fits to the results in frequency domain in Figure 4 and
in [13].

The usage of a highly decreased number of support systems is also illus-
trated in Figure 7 where only every tenth model is used as a support system.
The quality is still good and the elastic deformation of the interpolated sys-
tems is very accurate at the position of the support systems at t = 2.2 s and
t = 4.4 s, because the force is applied smoothly and the position of the force
changes slowly. Figure 7 also shows the benefit of using matrix interpola-
tion in PMOR instead of combining the CMS-reduced support systems to
one reduced system. This combination of the static shape functions provides
good results at the support systems, but for other actuated nodes the quality
is unsatisfying. This is discussed in detail with results in frequency domain
in [13].

The quality of the interpolated models depends on the quality of the
reduced systems and the interpolation method. Unfortunately, the interpola-
tion and reduction error are not independent because better reduced systems
lead to a more complex dependency of the matrix elements which are in-
terpolated. A general advice, how to determine the reduced systems to get
the best interpolated results, is highly problem-dependent and still an open
topic. In [13], additional explanations for both PMOR-methods with matrix
interpolation for reduction techniques based on Rational Interpolation and
Krylov subspaces are provided.

Fig. 7. Elastic deformation for reduced cylinder models with varying number of support systems
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6. Conclusion

The simulation of moving loads on reduced elastic bodies in EMBS is
enabled by using parametric model order reduction techniques. The input
matrix in the model order reduction framework is described as a parameter-
dependent matrix and the parameter dependency is retained in the reduced
systems. Therefore, local support systems are reduced individually and the
reduced coordinates are transformed to enable the interpolation of the system
matrices in the offline step. In the online step, these system matrices are
interpolated to generate a reduced model for any position of the moving force.
Two PMOR-methods [9, 15] are applied and compared in frequency and time
domain for a thin-walled cylinder. The application of the matrix interpolation
provides the independence of the Finite Element mesh by interpolation of the
reduced input matrix. This enables saving support systems which reduce the
computational effort and the space to store the individually reduced systems.

If complete multibody systems are simulated, additional matrices in the
floating frame of reference framework are parameter dependent and have to
be interpolated. First applications of simple mechanical structures with rigid
body degrees of freedom show promising results and will be investigated
more extensively for large-scale systems.
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[17] Allemang R.: The Modal Assurance Criterion – 20 Years of Use and Abuse. In Proceedings
of the 20th International Modal Analysis Conference, Los Angeles, USA, pp. 14-21, 2002.

[18] Neubauer M.: Implementierung multivariater Interpolation für parametererhaltende Modellre-
duktion (in German). Bachelor Thesis BSC-007, Institute of Engineering and Computational
Mechanics, University of Stuttgart, 2012.

Zastosowanie techniki parametrycznej redukcji modelu do symulacji ruchomych obciążeń
w sprężystym układzie wieloczłonowym

S t r e s z c z e n i e

W sprężystym układzie wieloczłonowym rozważane są duże, nieliniowe ruchy ciał sztywnych
oraz małe odkształcenia sprężyste. W rosnącej liczbie zastosowań, np. w przemyśle motoryza-
cyjnym, procesach toczenia i frezowania, pozycja sił działających na ciało sprężyste jest zmien-
na. Redukcja rzędu modelu, niezbędna by umożliwić efektywną symulację, wymaga wyznaczenia
funkcji ansatz, które zależą od zmiennej pozycji sił. Przy wielkiej liczbie możliwych punktów
interakcji rozmiar zredukowanego systemu rósłby gwałtownie, gdyby stosować klasyczny schemat
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syntezy modów składowych (Component Mode Synthesis). Jeśli wiele węzłów jest potencjalnie
obciążonych, lub obszar styku nie jest znany a priori, w ujęciu przedstawionym w artykule system
opisuje się przy pomocy zależnej od parametru pozycji sił. Umożliwia to zastosowanie metod para-
metrycznej redukcji rzędu modelu. W artykule opisano dwie techniki oparte na interpolacji macie-
rzowej, które transformują poszczególne systemy zredukowane, umożliwiają interpolację macierzy
zredukowanych systemów i pozwalają wyznaczyć systemy zredukowane dla dowolnej pozycji sił.
Zaprezentowano dekompozycję w trybie online-offline oraz opis rozkładu sił na zredukowanym ciele
sprężystym. Zaproponowany schemat postępowania umożliwia efektywną symulację sprężystych
układów wieloczłonowych z ruchomymi obciążeniami, gdyż zależy ona wyłącznie od rozmiaru
zredukowanego systemu. Przedstawiono wyniki symulacji w dziedzinie czasu i częstotliwości dla
cienkościennego cylindra z ruchomym obciążeniem, które ilustrują możliwości zastosowań pro-
ponowanej metody.


