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APPLICATION OF THE RIGID FINITE ELEMENT METHOD FOR
MODELLING AN OFFSHORE PEDESTAL CRANE

In offshore pedestal cranes one may distinguish three components of consid-
erable length: a pedestal, a boom and a frame present in some designs. It is often
necessary in dynamical analyses to take into account their flexibility. A convenient
and efficient method for modelling them is the rigid finite element method in a
modified form. The rigid finite element method allows us to take into account the
flexibility of the beam system in selected directions while introducing a relatively
small number of additional degrees of freedom to the system. This paper presents
a method for modelling the pedestal, the frame and the boom of an offshore col-
umn crane, treating each of these components in a slightly different way. A custom
approach is applied to the pedestal, using rigid finite elements of variable length.
Results of sample numeric computations are included.

1. Introduction

MRFEM, a modified form of the rigid finite element method, allows one
to conveniently model flexibility of beam components of multicomponent
systems, while introducing a relatively small number of additional degrees of
freedom. It enables modelling flexural flexibility in two planes and torsional
flexibility. Depending on the system’s features, the model may be easily
limited to the dominant flexibility, thus further reducing its number of degrees
of freedom.

Extraction of undersea natural resources, particularly oil and gas, has
expedited the significant progress in offshore technology for last few decades.
Various types of cranes are an important aid in the construction of extraction
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infrastructure as well as its operation and servicing. Reloading and assembly
works realised using various types of cranes are among widely performed
and highly important operations in offshore engineering. One of the main
features distinguishing offshore cranes from the land ones are significant
movements of the base caused by sea waves. In the case whereby, a load
is lifted from a supply ship also the load is in such motion. Taking the
criterion of construction into account, one may distinguish the following
types of offshore cranes:
• A-frames,
• gantries,
• boom cranes.

Issues related to the dynamic analysis of offshore cranes are naturally
subject to a number of scientific papers. A-frames were among others consid-
ered in [1, 2]. A mathematical model of a gantry BOP crane, installed on the
oil platform, was presented in [3]. Nonlinear dynamic response to a regular
waving of a crane mounted on the vessel was examined in [4, 5]. Operation of
a winch in order to limit overload of a system or vertical movements of a load
caused by the sea waving was considered in [6]. Mechanical anti–pendulum
system was presented in [7]. Reduction of load swinging via proper steering
of crane slew and boom hoist was considered in [8, 9]. A different concept of
stabilizing the load position of an offshore crane was the subject of [10]. Two
different algorithms of control that minimizes load waving were discussed
in [11].

The subject of this paper is the offshore pedestal crane with a rope
overhang control system and a truss or box boom – Fig. 1. The mentioned
advantages of the rigid finite element method in its modified form gave the
authors incentive to try applying it to modelling a crane. In cranes of this
type, three main components of considerable length may be distinguished: a
pedestal, a boom and a frame. Their structure allows them to be treated as
beam components. Additionally, in each case (the pedestal, the frame, and
the boom) the flexibilities having the most influence on the entire crane’s
dynamics can be distinguished.

Experience of engineers working for National Oilwell Varco shows that,
for the pedestal, the main role in dynamical analyses plays the effect of
inclination of its upper plane. Therefore, in addition to the classical approach
to modelling which uses the rigid finite element method, a custom one is also
proposed, introducing rigid finite elements of variable length. It is discussed
in chapter 4.

The frame’s height is often of several metres, and the inclination of
its upper part in the plane containing the frame can well reach 100 mm.
The deflections are much smaller in the perpendicular plane. The flexural
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Fig. 1. Offshore pedestal crane1

flexibility is therefore considered in the former plane only. Omitting the
flexural and torsional flexibility in the latter plane allows us to reduce the
number of the model’s degrees of freedom significantly.

On the other hand, the boom is modelled classically. The computer
programme is developed also to support the ability to treat the considered
components of a crane as rigid ones. This makes it possible to observe the
influence of flexibilities of particular sets of components on the dynamics
of the entire crane by case analysis, whereby some are treated as rigid and
others as flexible.

2. Model of an offshore pedestal crane

The scheme of the model of an offshore pedestal crane is shown in Fig. 2.
The following assumptions are taken into consideration:

1 The picture is used by permission from National Oilwell Varco
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• The base of the crane (a platform or a vessel) and the supply vessel
are rigid bodies with 6 degrees of freedom. The movement is caused by
waving defined by pseudo-harmonic functions.

• The pedestal, the frame and the boom are modelled by means of the Rigid
Finite Element Method using a modified approach (MRFEM) [12].

• The king frame, including the slewing part, is treated as a rigid structure
with one degree of freedom with respect to the pedestal – the slew angle.

• The hoist and the luffing ropes are modelled as a massless element with
equivalent longitudinal flexibility. The damping is taken into account.

• The load is treated as a material point.
• The drive function of the hoist winch can be assumed in two ways: as a

kinematic excitation or force excitation by a given moment.
• The luffing winch drive and the slew of the crane is adopted as a kinematic

excitation.

Fig. 2. Scheme of the model of an offshore crane

The equations of motions are derived from the Lagrange equations of
the second order:

d
dt
∂E
∂q̇k
− ∂E
∂qk

+
∂V
∂qk

+
∂D
∂q̇k

= Qk for k = 1, . . . , n, (1)

where: qk , q̇k – generalized coordinates and its velocities,
E,V – kinetic and potential energy,
D – function of energy dissipation,
Qk − non-potential generalized force corresponding to the k-th gene-

ralized coordinate,
n – number of generalized coordinates.
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For the description of the system, joint coordinates and homogenous
transformations are used based on Denavit-Hartenberg notation [13, 14].
Homogeneous transformations enable succinct notation for relations describ-
ing components of Lagrange equations. In the general case, the matrix of a
homogeneous transformation from coordinate system {i} to coordinate system
{i-1} has the form:

i−1
i T =


i−1
i R i−1riorg
0 1

 , (2)

where: i−1
i R – direction cosine matrix of the axes of coordinate system

{i} relative to coordinate system {i-1}, also called slew or ro-
tation matrix,

i−1riorg − vector of coordinates of the origin of system {i} in system
{i-1}.

A vector irA of coordinates of any point A given in system {i} transforms
to system {i-1} according to the formula:

i−1rA = i−1
i T irA. (3)

The discussed model of a crane is described in detail, among other things,
in [15]. Discussions of problems concerning modelling of the pedestal, the
frame and the boom are presented below.

2.1. Crane pedestal

The crane pedestal is digitized by means of MRFEM. The number of
rigid elements into which the pedestal is divided equals n1+1. The first rigid
element (rfe (1,0)) is added to the crane base. The generalized coordinates,
describing the locations of the second and remaining rigid elements mod-
elling the pedestal with respect to its predecessors, may be presented as
vectors:

q̃(1,i) =
[
ϕ(1,i)

x ϕ(1,i)
y ϕ(1,i)

z

]T
=

[
q̃(1,i)

x q̃(1,i)
y q̃(1,i)

z

]T
, (4)

where ϕ(1,i)
x , ϕ(1,i)

y , ϕ(1,i)
z are the rotation angles presented in Fig. 3.

The vector of generalized coordinates of the rfe is:

q(1,1) = q̃(1,1) =
[

q(1,1)
1 q(1,1)

2 q(1,1)
3

]T
, (5)

q(1,i) =
[

q(1,i−1) q̃(1,i)
]T

=
[

q(1,i)
1 q(1,i)

2 . . . q(1,i)
3i

]T
for i = 2, ..., n1.

(6)
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Fig. 3. Pedestal discretized by mean of MRFEM

In accordance to the above consideration, during the derivation of the equa-
tions of motions, kinetic and potential energy of the rfe (1,0) are omitted.
The kinetic energy of the body discretized by the MRFEM may be calculated
as [12]:

E1 =

n1∑

i=1

E(1,i), (7)

where: E(1,i) =
1
2
tr

{
Ṫ(1,i) H(1,i) Ṫ(1,i)T

}
,

H(1,i) − inertia matrix of the rigid element (1,i) defined in its own
coordinate system,

T(1,i) − transformation matrix from coordinate system of rfe{1,i} into
the inertial coordinate system {0},

T(1,i) = T(1,i−1) T̃(1,i) = 0
AT T̃(1,0)T̃(1,1) · . . . · T̃(1,i−1) T̃(1,i) for i =1,..,n1,

T̃(1,i) − transformation matrix from coordinate system of rfe {1,i} into
system of rfe {1,i-1},

0
AT− transformation matrix from coordinate system {A} to the inertial

coordinate system {0} depending on time (due to the drift motion
of the crane base).

For Lagrange equations, the notion of Lagrange operators may be intro-
duced:

εi (E) =
d
dt
∂E
∂q̇i
− ∂E
∂qi

(8)
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Such operators for rfes (1,i) (i =1,...,n1), may be written in the vector form
as:

εq(1,i)
(
E(1,i)

)
= A(1,i)q̈(1,i) + e(1,i) , (9)

where A(1,i) =
(
a(1,i)

k, j

)
k, j=1,..,3n1

= tr
{
T(1,i)

k H(1,i) T(1,i)T
j

}
,

e(1,i) =
(
e(1,i)
k

)
k=1,...,3n1

=

3n1∑

j=1

3n1∑

l=1

tr
{
T(1,i)

k H(1,i)T(1,i)
j,l

}
q̇(1,i)

j q̇(1,i)
l +

+ tr
{
T(1,i)

k H(1,i)
[

0
AT̈ T̄(1,i) + 20

AṪ
˙̄T

(1,i)]T}
,

T̄(1,i) =

i∏

j=0

T̃(1, j),

T(1,i)
k =

∂T(1,i)

∂q(1,i)
k

,

T(1,i)
j,l =

∂

∂q(1,i)
j


∂T(1,i)

∂q(1,i)
l

 .

The potential energy due to gravity forces of the pedestal’s rigid elements
may be described by the formulae:

V g
(1,i) = m(1,i)g θ3T(1,i)r̃(1,i)

C , for i = 1, 2, ..., n1 (10)

where: m(1,i) – mass of the rfe (1,i),
g – gravity acceleration,
θ3 =

[
0 0 1 0

]
,

r̃(1,i)
C − vector of the element mass centre (1,i) expressed in its own

local coordinate system.
Corresponding derivatives, which are the elements of the Lagrange equa-

tions, are:
∂V g

(1,i)

∂q(1,i) = G(1,i), (11)

where: G(1,i) =
(
g(1,i)
k

)
k=1,...,3n1

,

g(1,i)
k = m(1,i)g θ3T(1,i)

k r̃(1,i)
C .
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In MRFEM, the consecutive rfes are connected with each other by means
of massless, spring-damping elements (sde). Potential energy of elastic de-
formation of rfe (1,i) is given as:

V s
(1,i) =

1
2

(
c(1)
i,x

[
ϕ(1,i)

x

]2
+ c(1)

i,y

[
ϕ(1,i)

y

]2
+ c(1)

i,z

[
ϕ(1,i)

z

]2)
=

1
2

3∑

j=1

c(1)
i, j

[
q̃(1,i)

j

] 2
,

(12)
where c(1)

i,x , c
(1)
i,y , c(1)

i,z are the adequate coefficients of the rotational stiffness of
rfe (1,i).

The expression (12) may be put in the form:

V s
(1,i) =

1
2
q̃(1,i)TC(1,i) q̃(1,i), (13)

where C(1,i) = diag
[

c(1)
i,x c(1)

i,y c(1)
i,z

]
= diag

[
c(1)
i,1 c(1)

i,2 c(1)
i,3

]
.

The required derivatives of the potential energy of elastic deformation
have a simple form:

∂V s
(1,i)

∂q̃(1,i) = C(1,i)q̃(1,i). (14)

It may additionally be assumed that in rfe (1,i) dissipation of the energy
appears:

D(1,i) =
1
2

(
b(1)

i,x

[
ϕ̇(1,i)

x

]2
+ b(1)

i,y

[
ϕ̇(1,i)

y

]2
+ b(1)

1,z

[
ϕ̇(1,i)

z

]2)
=

1
2

3∑

j=1

b(1)
1, j

[
˙̃q(1,i)
j

] 2
,

(15)
where b(1)

i,x , b(1)
i,y , b(1)

i,z are respective damping coefficients of rfe (1,i).
The equation (15) may be also written as:

D(1,i) =
1
2

˙̃q
(1,i)T

B(1,i) ˙̃q
(1,i)

, (16)

where B(1,i) = diag
[

b(1)
i,x b(1)

i,y b(1)
i,z

]
= diag

[
b(1)

i,1 b(1)
i,2 b(1)

i,3

]
,

and the corresponding derivatives may be obtained from:

∂D(1,i)

∂ ˙̃q
(1,i) = B(1,i) ˙̃q

(1,i)
. (17)

2.2. King frame, frame and boom

Let us consider the following vector of generalized coordinates for a king
frame:

q(2) =
[

q(1,nk) ϕ(2)
z

]T
=

[
q(2)

1 q(2)
2 . . . q(2)

n2

]T
, (18)
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where ϕz is the angle of rotation of the king frame with respect to the
pedestal.

The kinetic energy of the king frame can be described as:

E2 =
1
2
tr

{
Ṫ(2) H(2) Ṫ(2)T

}
, (19)

where: H(2) – the inertial matrix of the king frame,
T(2) – transformation matrix from coordinate system {2} (connected

with the king frame) into the coordinate system {0}.
The potential energy of the gravity forces equals:

V g
2 = m(2)g θ3T(2)r̃(2)

C , (20)

where: m(2) – mass of the king frame,
r̃(2)
C – position vector of the centre of king frame mass, expressed in

the system {2}.
The frame is modelled by means of MRFEM, considering only the

flexural flexibility in the perpendicular direction to the plane of the frame
(containing the frame and the boom). Additionally, like in the case of the
pedestal, rfe (3,0) is added to the king frame, and as a result it does not have
its own generalized coordinates – Fig. 4. The following vectors of generalized
coordinates for each rfe of the frame are defined:
– one-element vectors of the flexible coordinates:

q̃(3,1) =
[
ϕ(3,1)

y

]
; ...; q̃(3,n3) =

[
ϕ(3,n3)

y

]
(21)

– coordinate vectors describing position of the rigid element with respect to
the base coordinate system:

q(3,i) =
[

q(2)T q̃(3,1)T . . . q̃(3,i)T
]T

=
[

q(3,i)
1 . . . q(3,i)

n2+i

]T
for i = 1, 2, ..., n3

(22)
In contradistinction to the pedestal and frame, in the case of boom it

was assumed that there is a rotational connection between the rotating part
{2} and the rfe (4,0), Fig. 4 – angle ψ. The following vectors of generalized
coordinates for the boom are defined:
– vectors of the flexible coordinates:

q̃(4,0) =
[
ψ
]

=
[
ϕ(4,0)

y

]
; ...; q̃(4,i) =

[
ϕ(4,i)

x ϕ(4,i)
y ϕ(4,i)

z

]T
for i = 1, 2, ..., n4

(23)
– coordinate vectors describing position of the rigid element with respect to
the base coordinate system:

q(4,i) =
[

q(2)T q̃(4,0)T . . . q̃(4,i)T
]T

=
[

q(4,i)
1 . . . q(4,i)

3i+n2+1

]T
for i = 0, 1, ..., n4

(24)
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Fig. 4. Simplified model of flexible frame and boom

The necessary elements of the Lagrange equations related to the frame and
boom subsystems are obtained in the same way as presented in chapter 2.1.

2.3. Hoisting and luffing ropes, load, drive systems

The potential energy of elastic deformation and function of energy dis-
sipation of the hoist rope and luffing rope may be described by the following
equations:

Vl =
1
2
δ c(l) ∆2

l , (25)

Dl =
1
2
δ b(l) ∆̇2

l , (26)

where: δ =


0 for ∆l ≤ 0
1 for ∆l > 0

,

∆l – elongation of the hoist rope or luffing rope,
c(l), b(l) – stiffness and damping coefficients of rope, respectively.
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Because of the possibility of significant changes in the active length of
the hoist rope during crane operation, the stiffness coefficient of the hoist
rope is determined thus:

c(l) =
E6F6

L6,0 − α(6)r(6)
, (27)

where: L6,0 – initial length of the hoist rope,
E6, F6 – Young’s modulus and cross section of the wire rope core,

respectively,
α(6) – rotation angle of the hoist winch drum,
r(6) – radius of the hoist winch drum.

The stiffness coefficient c(l) of the luffing rope is considered as a constant
value. A method of determining the necessary derivatives of equations (25)
and (26) is described in [16], which is applied in the present work as well.

The load is modelled as a material point. The weight of the hook block
is added to the weight of the load. The vector of generalized coordinates is
given as:

q(L) =
[

x(L) y(L) z(L)
]T

=
[

q(L)
1 q(L)

2 q(L)
3

]T
. (28)

The kinetic and potential energy of the load are described by:

EL =
1
2
m(L)

(
ẋ(L)2 + ẏ(L)2 + ż(L)2

)
, (29)

V g
L = m(L) g z(L) , (30)

where m(L) is the mass of the load.
Slewing, hoisting and luffing drive systems are modelled as kinematic

inputs. Therefore, the following function is known:

φd = φd (t) , (31)

where φd denotes respectively: slewing angle, hosting winch or luffing winch
rotation angle.

From the perspective of planned applications of the model presented, the
hosting machinery is one of the most significant drive systems. Therefore, we
apply a second method of its modelling, using forced excitation. Based on
a survey of literature (for example [17]) as well as crane experience gained
from crane operators and designers, the hoist winch characteristic is assumed
to be as shown in Fig. 5.
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Fig. 5. Characteristics of the drive system of hoist winch drum

2.4. Aggregation of the equations of motion

Having determined the required derivatives, we may write the equations
of motion of the whole crane as:

A q̈ = F , (32)

where: A − mass matrix,
F − the right side vector; its elements are designated as the partial

derivatives of the kinetic energy, potential forces of gravity and
flexibility, partial derivatives of the function of energy dissipation
and components derived from external forces.

The equations (32) were solved by a computer programme using the
fourth order Runge-Kutta method with fixed step integration. Before the in-
tegration of (32), initial conditions were calculated by solving the proper
static problem. The resulting system of nonlinear algebraic equations was
solved using the Newton’s method. A convenient user interface (Fig. 6) was
designed to facilitate initial analysis of yielded results.

Fig. 6. Sample screenshot of the user interface
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3. Numerical simulations

The method of modelling a crane’s supporting structure using MRFEM
presented in chapter 2 allows us to conveniently perform analyses in order
to determine the influence of flexibilities of individual structural compo-
nents (pedestal, frame, boom) on the device’s dynamics. The current chapter
exemplifies such considerations.

The computations are performed for a case of lifting a load from a
motionless supply vessel (a wharf) with movable base of the crane. The
mass of the lifted load is 10 000 kg. The rope (initially lax) is assumed to
have 0.75 m excess in length and the lifting speed to be 0.7 m/s with gear
in the lifting system equal 2. The hoist winch drum is forced to rotate by a
moment. The characteristics of the drive system are presented in Fig. 5. The
geometric-mass parameters correspond to OC3500 class crane. The pedestal
height is 31.9 m, the frame nearly 15 m and the boom is about 59 m long.
Motion of the base occurs only in the direction of the Z axis (plunging) and
is determined, as in [18], by the function:

zP = 1, 2
(
sin (0, 52t + 1, 57) +

1
4

sin (1, 04t + 1, 57) +
1
9

sin (1, 56t + 1, 57)
)

[m]. (33)

The following notation is assumed in the graphs: KxWyJz, where x, y, z
denotes the numbers of ests present in the discretized components, namely
in the pedestal (K), the frame (W) and the boom (J), respectively. A number
est = 0 means that a given component is modelled as a rigid one. In all the
cases presented below, flexibility of the hoist rope is taken into consideration,
since the authors’ experience indicates that it is the element of the crane
whose flexibility has the most influence of the device’s dynamics. One of
the compared values is the dynamic overload coefficient in the hoist rope
defined as:

η =
SL

mL g
. (34)

where: SL – hoist rope force,
mL – mass of the load.

In the first stage of the analysis, the number of ests in each of the
discretized components is changed simultaneously. Figs. 7a) and 7b), respec-
tively, show the z coordinate of the load and its second derivative, and Fig. 8
the dynamic coefficient η, both with respect to time.

The figures above present that flexibilities of the crane components have
a slight influence on coordinate z. Their importance grows in analyses related
to second derivatives of coordinate z or the dynamic coefficient.

Subsequent analyses investigate the influence of taking into account flex-
ibilities of individual components of the crane, assuming that only one of
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Fig. 7. Time courses of: a) the z coordinate of the load b) its second derivative

Fig. 8. Graph of the dynamic coefficient η in the function of time

Fig. 9. Graphs of time functions, assuming a flexible pedestal, of: a) the z coordinate of the load
b) its second derivative c) the dynamic coefficient η

them is flexible. The graphs in Fig. 9 are for a flexible pedestal. More results,
including ones for flexible boom and frame, can be found in [19].

4. Modelling a pedestal with rigid finite elements of variable length

A custom approach with rigid finite elements of variable length, devel-
oped in search for methods of modelling components of a crane which are
as efficient computationally as possible, is described below. Fig. 10 portrays
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Fig. 10. Modelling a pedestal

the idea for a flat problem. In Fig. 10a), there are presented two cases of
deflection of a pedestal modelled as a continuous system. The angle ϕk is
relevant to the position of the slewing part of the crane based on the pedestal.
The proposed model (Fig. 10b) consists of two rigid components connected
by an est. Their lengths (in particular the length l(1,0) of the first component,
fixed to a movable base) vary with the angle ϕk . The stiffness coefficient
of the est simultaneously undergoes a change. These parameters (length of
the ses and stiffness coefficient of the est), called equivalent parameters, are
chosen in such way that the total length Hk of the pedestal be preserved and
the angle between the components equal ϕk .

4.1. Determining equivalent parameters for a pedestal model with FEM

A simplified model of a pedestal was developed using FEM in order to
determine its equivalent parameters. The FEM analysis enables determining
the inclination angle ϕk of the upper surface of the pedestal and its horizontal
displacement ∆Uy depending on load. This gives the ability to determine the
equivalent parameters for the pedestal model, which may be used in a model
of an entire crane.

A geometric model of a sample pedestal was created using the pro-
gramme Inventor 2008 – Fig. 11. It was subsequently imported into the
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Ansys Workbench 11 environment in which the FEM model was developed.
It consists of 45970 8-node solid elements (solid type 185) and 72930 nodes.

Fig. 11. Crane pedestal, geometric model and FEM model

Static analysis of the pedestal is performed for the applied bending mo-
ment of Mk = 40 000 kNm (around the global X axis). This moment is
mainly due to the load on the crane’s hook. Table 1 presents the results of
FEM computations. They comprise twenty substeps. The analysis yields the
displacements caused by the bending moment Mk:

∆Uy – horizontal displacement of the centre of pedestal upper flange,
∆Uz – vertical displacement of the pedestal upper flange.
The values of dislocations determined by FEM analysis are used to com-

pute the equivalent parameters of the pedestal model – Fig. 12. The angle
ϕk caused by the action of the bending momentMk is determined by:

φk = arcsin
(
∆Uz

r

)
. (35)

where r is the external radius of the pedestal upper flange.
Length l(1,0) of a rigid element depends on the angle ϕk:

l(1,0) = Hk −
∆Uy

tg
(
ϕk

) (36)

where Hk is the overall height of the pedestal.
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Fig. 12. Equivalent model

Stiffness coefficient of an est is determined from the relation:

c(1) =
Mk

ϕk
. (37)

4.2. Examples of computations

Results of computations for a sample pedestal of height 39.1 m and
diameter of the upper part 3.54 m are shown below. Table 1 presents the
results of FEM computations and the equivalent parameters.

The described simplified model of a pedestal was implemented in the
main computer programme, enabling comparison of the results obtained for
both modelling methods. Selected results of numerical simulations are pre-
sented below, and conclusions are drawn about the usefulness of an equiva-
lent pedestal model. A case of a crane subjected to undulation is considered,
whereby only plunging is taken into account, defined as:

z(A) = 1, 5 sin
(
2πz

8

)
t[m], (38)

Mass of load, assumed in the simulations, equals 10000 kg. The boom
is positioned horizontally. The computations are done under the assumption
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Table 1.
Results of FEM a computations and values of equivalent parameters for a sample pedestal

No. % max value Mk [kNm] ∆Uy [m] ∆Uz [m] ϕk [deg]
l(1,0)

[mm]
c(1,0)

[N/m]

1 5 2 000 4.25 · 10−3 0.52 · 10−3 0.02 16 124 5.73· 106

2 10 4 000 8.50 · 10−3 1.32 · 10−3 0.04 19 420 5.73· 106

3 15 6 000 12.75 · 10−3 2.13 · 10−3 0.06 20 232 5.73· 106

4 20 8 000 17.00 · 10−3 2.93 · 10−3 0.09 20 600 5.09· 106

5 25 10 000 21.25 · 10−3 3.73 · 10−3 0.11 20 811 5.21· 106

6 30 12 000 25.50 · 10−3 4.53 · 10−3 0.13 20 946 5.29· 106

7 35 14 000 29.74 · 10−3 5.33 · 10−3 0.16 21 041 5.01· 106

8 40 16 000 33.99 · 10−3 6.13 · 10−3 0.18 21 111 5.09· 106

9 45 18 000 38.24 · 10−3 6.93 · 10−3 0.20 21 165 5.16· 106

10 50 20 000 42.49 · 10−3 7.73 · 10−3 0.23 21 208 4.98· 106

11 55 22 000 46.74 · 10−3 8.53 · 10−3 0.25 21 242 5.04· 106

12 60 24 000 50.99 · 10−3 9.33 · 10−3 0.27 21 271 5.09· 106

13 65 26 000 55.24 · 10−3 10.13 · 10−3 0.30 21 295 4.97· 106

14 70 28 000 59.49 · 10−3 10.93 · 10−3 0.32 21 316 5.01· 106

15 75 30 000 63.74 · 10−3 11.73 · 10−3 0.35 21 333 4.91· 106

16 80 32 000 67.99 · 10−3 12.53 · 10−3 0.37 21 349 4.96· 106

17 85 34 000 72.24 · 10−3 13.33 · 10−3 0.39 21 363 5.00· 106

18 90 36 000 76.49 · 10−3 14.13 · 10−3 0.42 21 375 4.91· 106

19 95 38 000 80.73 · 10−3 14.94 · 10−3 0.44 21 386 4.95· 106

20 100 40 000 84.98 · 10−3 15.74 · 10−3 0.46 21 396 4.98· 106

that the frame and boom are rigid components. The following denotations
are used in the graphs:

zast – computations according to the equivalent pedestal model described
in this chapter,

cyl 0 – pedestal treated as a rigid component,
cyl 1 – pedestal discretized using two rigid finite elements,
cyl 3 – pedestal discretized using four rigid finite elements.
The presented graphs indicate significant influence of pedestal flexibility

on dynamics of an entire crane. The cases in which the pedestal is treated
as a rigid component lead to results somewhat different to those when its
flexibility is considered. Particularly marked are the differences in force in
the rope. The method of modelling flexibility and the number of rigid finite
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Fig. 13. Comparison of the MFEM model to the equivalent model a) the z coordinate of the load
b) hoist rope force

elements discretizing the pedestal make almost no difference, however. Also,
the obtained results confirm adequacy of the modified method of modelling a
pedestal. Computation times were compared for particular cases to determine
if it is computationally more efficient. The following durations [mm:ss] were
obtained on a computer equipped with Duo CPU P8600 @ 2.40GHz, 4.0GB
RAM and a 32-bit operating system:

zast – 1:23,
cyl 0 – 0:51,
cyl 1 – 1:25,
cyl 3 – 3:57.
The most interesting feature is how the time durations for „zast” and

„cyl 1” compared (they both have 1 est), being almost equal. Since the ob-
tained results are also nearly identical, it seems that the use of the modified
method of modelling a pedestal does not bring the expected outcome in the
form of significant increase of the model’s numerical efficiency. The fact
that determining equivalent parameters of the model is costly should also be
recalled, further favouring the classical rigid finite element method.

5. Conclusions

The presented results of numerical simulations confirm adequacy of us-
ing MRFEM to model an offshore pedestal crane. Depending on the prob-
lem considered, flexibilities of main structural components: the pedestal, the
frame and the boom, can be taken into account or omitted. The analysis of the
obtained graphs shows that the flexibilities hardly influence the dependency
of the load’s coordinates on time. This allows for using simplified models
with few degrees of freedom to perform computations for purposes of mar-
keting or related to control. On the other hand, considering the flexibilities
makes it possible to perform more complex analyses related to the dynamics
of individual subsystems of the crane. Depending on the number of finite
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elements assumed in modelling, the phenomena occurring with vibrations of
higher frequencies can be analysed.

As a formulation of conclusions from the computations discussed in
chapter 4, it can be stated that for many cases of dynamic analyses of an
offshore pedestal crane it is enough to use two rigid finite elements to model
the crane pedestal, since increasing their number does not cause significant
differences in obtained results. Note that these conclusions pertain to one
sample structure of a pedestal. For pedestals with different geometric-mass
parameters it is always worthwhile to check what number of ses should be
used to discretize them in order for the results to be satisfactory. If the analy-
ses require more ses, the method proposed herein may prove competitive.

Manuscript received by Editorial Board, November 29, 2012;
final version, March 12, 2013.
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Zastosowanie metody sztywnych elementów skończonych do modelowania kolumnowego
żurawia offshore

S t r e s z c z e n i e

W konstrukcji kolumnowych żurawi typu offshore można wyróżnić trzy istotne elementy
o znacznej długości: kolumnę, wysięgnik oraz w niektórych rozwiązaniach wspornik. W wielu
analizach dynamicznych występuje konieczność uwzględnienia ich podatności. Wygodną i efekty-
wną metodą ich modelowania jest metoda sztywnych elementów skończonych w odmianie zmody-
fikowanej. Metoda sztywnych elementów skończonych pozwala uwzględnić podatność układu belko-
wego w wybranych kierunkach, a jednocześnie wprowadza do układu stosunkowo niewielką liczbę
dodatkowych stopni swobody. W artykule zaprezentowano sposób modelowania kolumny, wsporni-
ka i wysięgnika kolumnowego żurawia offshore, przy czym każdy z elementów potraktowany został
nieco odmiennie. W przypadku modelowania kolumny zaproponowano także autorskie podejście
ze sztywnymi elementami skończonymi o zmiennej długości. Zamieszczono wyniki przykładowych
obliczeń numerycznych.


