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APPLICATION OF RABINOWITSCH FLUID MODEL TO PIVOTED
CURVED SLIDER BEARINGS

In the present theoretical analysis, the combined effects of slider curvature
and non-Newtonian pseudoplastic and dilatant lubricants (lubricant blended with
viscosity index improver) on the steady and dynamic characteristics of pivoted curved
slider bearings have been investigated for Rabinowitsch fluid model. The modified
Reynolds equations have been obtained for steady and damping states of bearing. To
solve the modified Reynolds equations, perturbation theory has been adopted. The
results for the steady state characteristics (steady state film pressure, load carrying
capacity and centre of pressure) and dynamic characteristics (dynamic damping and
dynamic stiffness) have been calculated numerically for various values of viscosity
index improver using Mathematica. In comparison with the Newtonian lubricants,
higher values of film pressure, load carrying capacity, dynamic damping and dynamic
stiffness have been obtained for dilatant lubricants, while the case was reversed for
pseudoplastic lubricants. Significant variations in the bearing characteristics have
been observed for even small values of pseudoplastic parameter, that is, with the
non-Newtonian dilatant and pseudoplastic behaviour of the fluid.

1. Introduction

The requirement of high performance and long life bearings in industrial
and scientific applications has increased the use of non-Newtonian lubri-
cants. It has been shown that the addition of small amounts of long-chained
polymer additives (viscosity index improvers) to a Newtonian fluid produces
a desirable non-Newtonian lubricant [1]. The additives raise the viscosity
index of lubricants and increase their stability by minimizing the sensitiv-
ity to the change in shearing stress with strain rate and thermal variation.
These lubricants behave like pseudoplastic, dilatant and viscoelastic fluids
depending on the nature and quantity of the additives. However, the most
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of the lubricants added with commercial additives behave like pseudoplastic
or dilatant lubricants, which have a considerable influence on the various
performance properties of machine elements.

To study the effects of the lubricant additives on the performance and
stability of the various types of hydrostatic, hydrodynamic and squeeze film
bearings, many non-Newtonian fluid models such as power law, couple stress,
micropolar, Herschel-Bulkley, Bingham, Powel-Eyring, Ree-Eyring, Cross
and Ellis models have been adopted in theoretical investigations. However,
many of these models either work for a limited range of strain rate or lack
of experimental verification, for illustration, the Powell-Eyring’s model fits
the experimental viscosity data over the range of 10 − 105 sec−1 and the
power law model fits their data only over the limited range of 10–500 sec−1

[2]; Bingham plastics and Ree-Eyring models deviate from experimental data
[3]; the experimental verifications for couple stress and micropolar models for
bearings are still hard to find in literature. Therefore, in order to predict the
performance characteristics of the bearings and thereby the machine elements
accurately, a more realistic lubricant model is required for the theoretical
investigation. As the Rabinowitsch fluid model fits the viscosity data over
a wide range of shear rate and its experimental verification is available [4],
the analysis of performance characteristics of film lubricated bearings with
Rabinowitsch fluids is motivated.

In the Rabinowitsch fluid model, the following empirical stress-strain
relation holds :

τxy + κτ3
xy = µ

∂u
∂y

(1)

where µ is the zero shear rate viscosity and κ is the non-linear factor re-
sponsible for the non-Newtonian effects of the fluid which will be referred
to as coefficient of pseudoplasticity in this paper. This model can be applied
to Newtonian lubricants for κ = 0, dilatant lubricants for κ < 0, and pseudo-
plastic lubricants for κ > 0. The experimental verification for this model
was presented by Wada and Hayashi [4]. The theoretical results for film
pressure, load capacity and squeezing time of journal bearing were found
to be in good agreement with the experimental ones. The film pressure and
load capacity for pseudoplastic lubricants was found to be smaller than those
for the Newtonian fluids. Afterwards, the theoretical study of bearing per-
formance with non-Newtonian lubricants using this and other models were
done by Bourging and Gay [5] on journal bearing; Hsu and Saibel [6] and
Hashmimoto and Wada [7] on circular plates bearing; Usha and Vimla [8]
on squeeze film between two plane annuli and Hung[9] on infinitely wide
parallel rectangular plates. Recently, Singh et al. [10-13] used this model to
analyze the performance of hydrostatic thrust and squeeze film bearings.
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The dynamic analysis of the slider and other bearings has also been the
centre of attention of various researchers in recent decades. In the direc-
tion of dynamic analysis of bearings in recent years, the contributions of
Sharma and Pandey [14] on infinitely wide slider bearing, Gautam [15] on
annular seals, Tsuchiama et. al [16] on slider bearing and Gautam et. al.
[17] on short wave journal bearings are appreciable. However, none of the
investigators have put up their attention to study theoretically, the problem of
isothermal, incompressible laminar flow lubricant for pivoted curved slider
bearings taking into account the Rabinowitsch fluid model.

In the present paper, the effect of non-Newtonian lubricants on the steady
and dynamic characteristics of pivoted curved slider bearing has been inves-
tigated using Rabinowitsch fluid model. Since, the problem is of non-linear
nature in its theoretical investigation, the numerical results for steady state
pressure, load capacity, centre of pressure, dynamic stiffness and damping
coefficients have been obtained using Mathematica.

2. Constitutive Equations and Boundary Conditions

The physical configuration of a curved slider bearing is shown in Figu-
re 1. The bearing consists of two surfaces, a plane and a curved slider,
separated by a lubricant film. The plane is moving with a uniform velocity
U, as shown in the Figure 1, while the curved surface is at rest. The lubricant
in the system is taken as non-Newtonian Rabinowitsch fluid. The body forces
and body couples are assumed to be absent.

Fig. 1. Schematic diagram of curved slider bearing with a pivot at centre of pressure (C.P.).
Maximum height of the curved segment is Hc

Under the assumptions of hydrodynamic lubrication applicable to thin
film as considered by Pinkus and Sternlicht [18], Kapur [20] and Cameron
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[23] (Appendix), the field equations governing the motion of an incompress-
ible non-Newtonian fluid – Rabinowitsch fluid model used by Wada and
Hayashi [4] are :

∂u
∂x

+
∂v
∂y

= 0 (2)

∂p
∂x

=
∂τxy

∂y
(3)

∂p
∂y

= 0 (4)

which are solved under the following boundary conditions :

u = U, v = 0 at y = 0 (5)

u = 0 at y = h(x, t) (6)

v = V =
∂h
∂t

at y = h(x, t) (7)

p = 0 at x = 0, B (8)

where u and v are the velocity components in x and y directions and h(x, t)
is the film thickness between the bearing plates respectively.

3. Analysis

Integration of equation (3) with respect to y yields :

τxy =
∂p
∂x

y + c1 (9)

From equations (9) and (1), velocity gradient is obtained as :

∂u
∂y

=
1
µ


(
∂p
∂x

y + c1

)
+ κ

(
∂p
∂x

y + c1

)3 (10)

Integrating equation (10) under the boundary conditions (5, 6), velocity u is
obtained as :

u =
1
µ

[
1
2
∂p
∂x

y(y − h) + κ

(
∂p
∂x

)3 {
1
4
y4 − 1

2
hy3 +

3
8
h2y2 −1

8
h3y

}]
+

U

1 −
y + κ

(
∂p
∂x

)2 (
y3 − 3

2hy2 + 3
4h

2y
)

h
(
1 + 1

4κ
(
∂p
∂x

)2
h2

)



(11)
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Integrating the equation of continuity (2) under the boundary conditions (5,7)
for v using (11), the modified Reynolds equation is obtained as:

∂

∂x

h3∂p
∂x

+
3
20
κh5

(
∂p
∂x

)3 = 6µU
∂h
∂x

+ 12µ
∂h
∂t

(12)

For small-amplitude oscillations of the runner, the expression for the film
thickness can be taken as:

h ≡ h(x, t) = hs(x) + hm(t) (13)

where hs(x) is the steady state film thickness and hm(t) is the variation of
minimum film thickness with the time in dynamic condition which becomes
zero in steady state.

The steady state film profile is taken [19, 20] as

hs(x) = Hc

4
(
x
B
− 1

2

)2
− 1

 + h1

[
1 + (rb − 1)

(
1 − x

B

)]
(14)

where, rb = h2/h1.
Introducing the dimensionless parameters

∆ =
Hc

h1
and x̄ =

x
B

the dimensionless Reynolds equation becomes

∂

∂x

h
3∂p
∂x

+
3
20
αh

5
(
∂p
∂x

)3 = 6
∂hs

∂x
+ 12ϑ

∂hm

∂τ
(15)

where

hs = ∆

4
(
x̄ − 1

2

)2
− 1

 + [1 + (rb − 1) (1 − x̄)] (16)

and ϑ = Bω/U is the damping parameter, ω is frequency of oscillation,
α = κµ2U2/h2

1 is the parameter of pseudoplasticity responsible for the non-
Newtonian behaviour of the lubricant. For α = 0 equation (18) becomes the
classical Reynolds equation for slider bearing with Newtonian lubricant.

Assuming that the runner undergoes a small-amplitude oscillation about
its steady state position, variation of the minimum film thickness (h̄m) and
the pressure ( p̄) under damping condition can be taken of the form

h̄m = εeiτ (17)

p̄ = p̄o + ε p̄1eiτ (18)
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where p̄o is the steady state pressure.
With the expressions for hmand p̄ in equation (17-18), the Reynolds

equation (15) can be written as

∂

∂x

[(
hs + εeiτ

)3 (
p̄o + ε p̄1eiτ

)
+

3
20
α

(
hs + εeiτ

)5 (
p̄o + ε p̄1eiτ

)3]
= 6

∂hs

∂x̄
+ 12ϑ i ε p̄1 eiτ

(19)
Expanding and comparing the real and imaginary parts of equation (19), the
Reynolds equation under steady state is obtained as

d
dx

h
3
s
dpo

dx
+

3
20
αh

5
s

(
dpo

dx

)3 = 6
dhs

dx
(20)

and the Reynolds equation under damping condition is obtained as

d
dx

h
3
s

1 +
9
20
αh

2
s

(
dpo

dx

)2
dp1

dx

 = 12ϑi−3 d
dx

h
2
s


dpo

dx
+

5
20
αh

2
s

(
dpo

dx

)3


(21)

4. Steady State Pressure

Let the steady state pressure be expressed as

p̄0(x̄) = p̄00(x̄) + α p̄01(x̄) (22)

Using equation (22) in the steady state Reynolds equation (20), the perturbed
equations are obtained as

d p̄00

dx̄
=

6

h
2
s

+
C00

h
3
s

(23)

d p̄01

dx̄
=

C01

h3
s
− 3

20
h̄2

s


6

h
2
s

+
C00

h
3
s


3

(24)

Integrating equations (23-24) under the conditions of zero pressure at the
boundaries (x̄ = 0, 1), the steady state film pressure is obtained as the definite
integral

p̄o(x̄) =

∫ x̄

0

C00 + 6h̄s

h̄3
s

dx̄ + α

C01

∫ x̄

0

1
h̄3

s
dx̄ − 3

20

∫ x̄

0

(
C00 + 6h̄s

)3

h̄7
s

dx̄


(25)
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where

C00 = −6
∫ x̄

0

1
h̄2

s
dx̄

/∫ x̄

0

1
h̄3

s
dx̄ (26)

and

C01 =
3
20

∫ x̄

0

(
C00 + 6h̄s

)3

h̄7
s

dx̄
/∫ x̄

0

1
h̄3

s
dx̄ (27)

5. Steady-State Load Carrying Capacity

The dimensionless load carrying capacity of the bearing can be calculated
as

W̄ =

∫ 1

0

p̄odx̄ (28)

In order to avoid very lengthy procedure of integration, numerical integration
method (Gaussian Quadrature formula) has been adopted to obtain the numer-
ical values of the load capacity using Mathematica. The Gaussian Quadrature
formula has been adopted due to its higher rate of convergence in comparison
with the other numerical methods like Trapezium Rule, Midpoint Rule and
Simpson’s one third and three eighth formulae.

6. Dynamic Stiffness and Damping Characteristics

In order to obtain the analytical solution of the dynamic stiffness coef-
ficient S̄Dand dynamic damping coefficient C̄D, the perturbed film pressure

gradient
d p̄1

dx̄
is obtained from equations (21) and (25) which is given as

follows –

d p̄1

dx̄
=

C1 + 12ϑix̄ − 3h
2
s

[
f (x̄) + 5

20αh
2
s f (x̄)3

]

h̄3
s

[
1 + 9

20αh
2
s f (x̄)2

] (29)

Further, the perturbed pressure

p̄1(x̄) = p̄11(x̄) + iϑ p̄12(x̄) (30)

is obtained on integrating the equation (29) under the boundary conditions
p̄1 = 0 at x̄ = 0, 1
where

f (x̄) =
d p̄o

dx̄
(31)
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p̄11(x̄) = C11

∫ x̄

0


1

h̄3
s {1 + 9

20αh
2
s f (x̄)2}

 dx̄ − 3
∫ x̄

0


f (x̄){1 + 5

20αh
2
s f (x̄)2}

h̄s{1 + 9
20αh

2
s f (x̄)2}

 dx̄

(32)

p̄12(x̄) = C12

∫ x̄

0


12

h̄3
s {1 + 9

20αh
2
s f (x̄)2}

 dx̄ +

∫ x̄

0


12x̄

h̄3
s {1 + 9

20αh
2
s f (x̄)2}

 dx̄

(33)

C11 =

3
∫ 1

0


f (x̄)

{
1+ 5

20αh
2
s f (x̄)2

}

h̄s

{
1+ 9

20αh
2
s f (x̄)2

}
 dx̄

∫ 1

0

[
1
/
h̄3

s

{
1 + 9

20αh
2
s f (x̄)2

}]
dx̄

(34)

and

C12 = −
∫ 1

0

[
12x̄

/
h̄3

s

{
1 + 9

20αh̄2
s f (x̄)2

}]
dx̄

∫ 1

0

[
1
/
h̄3

s {1 + 9
20αh

2
s f (x̄)2}

]
dx̄

(35)

The film force FD, under the damping condition is given by

FD = L
∫ B

0

p1(x)dx (36)

In the dimensionless form

F̄D =

∫ 1

0

p̄1(x̄)dx̄ (37)

The resulting dynamic force can be expressed in the terms of linearized
damping and stiffness coefficient [21] as follows

FDεeiτ = −SDh1εeiτ −CD
d
dt

(
h1εeiτ

)
(38)

In the dimensionless form

F̄D = −S̄D − iϑC̄D (39)

From the equations (37) and (39), the dimensionless damping coefficient C̄D
and stiffness coefficient S̄D can be found, which is

S̄D = −Re
(
F̄D

)
≈ −

∫ 1

0

p̄11dx̄ (40)

C̄D = −Im
(
F̄D

)
≈ −

∫ 1

0

p̄12dx̄ (41)
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7. Centre of Pressure

The centre of pressure of bearing in dimensionless form can be given as
:

¯̄x =

∫ 1

0

x̄ p̄ dx̄
/∫ 1

0

p̄ dx̄ (42)

8. Results and Discussions

To study the non-Newtonian lubricant effects on the steady and dynamic
characteristics of pivoted curved slider bearing, the numerical results for
steady state pressure, load carrying capacity, centre of pressure, and coeffi-
cients of dynamic stiffness and damping characteristics have been obtained
for the different values of parameter of pseudoplasticity (α) and parameter of
slider curvature (∆) within the valid range of convergence [4, 20]. For a plane
slider, the steady state film pressure (Fig. 2) is found to be identical with
Taylor and Dowson [22] and both the steady state pressure and load capacity
for non-Newtonian lubricants (Fig. 2-4) are identical with [6]. Furthermore,
the Newtonian results for pressure (Fig. 2), load capacity (Fig. 3-4) and centre
of pressure (Fig. 8-9) are identical with Kapur [20].

The nature of lubricant is Newtonian for the parameter of pseudoplas-
ticity α = 0, dilatant for α <0 and pseudoplastic for α >0.

The bearing become plane pivoted slider for the curvature parameter
∆ = 0. For the numerical calculation and the analysis of the various results,
the values for the film thickness ratio 1.2 < rb < 3.7, the slider curvature
parameter 0 < ∆ < 0.8 [20] and the parameter of pseudoplasticity −0.1 <
α < 0.1 [4, 9] have been taken in the present analysis.

Figure 2 shows the variation of dimensionless steady state film pressure
with respect to the dimensionless coordinate x̄ for the curvature parameter
∆ = 0, 0.25, 0.5 and α = -0.1, 0.0, 0.1. It is observed that for each value of
∆ and x̄, the dimensionless pressure decreases as α increases from -0.1 to
0.1 i.e. on comparison with the Newtonian case, the dimensionless pressure
decreases with the pseudoplasticity and increases with the dilatant nature of
the lubricant for both the plane and curved slider bearings which agrees with
the results of Wada and Hayashi [4] and Hung [9]. Further, the dimensionless
pressure is lowest for the plane slider (∆ = 0) and for each value of x̄, the
pressure increases as the curvature increases upto x̄ ≈ 0.7 and decreases
thereafter. Due to this, a shift in the peak value of pressure is observed. This
establishes the validity of present analysis for Newtonian lubricants [19-20].
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Fig. 2. Variation of dimensionless steady state film pressure ( p̄o) with dimensionless coordinate x̄
for rb = 2. For ∆ = 0 Newtonian results are identical with Taylor and Dowson [22] and other

results are identical with Hsu and Saibel [6]

Fig. 3. Variation of dimensionless steady state load carrying capacity (W̄ ) of bearing with ∆ for
rb = 2. Newtonian results are identical with Kapur [20], and results for ∆ = 0 are identical with

Hsu and Saibel [6]
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Figure 3 shows the variation of dimensionless steady state load carrying
capacity of bearing with respect to the curvature parameter ∆ with a particular
value of step ratio rb = 2 and different values of pseudoplasticity parameter
α. It is observed that the dimensionless load capacity increases with the
increase of curvature ∆, which agrees with the results of Kapur [20] and
establishes the present results for Newtonian lubricants (α = 0). It is further
observed that for each value of ∆, the load carrying capacity with dilatant
lubricants (α < 0) is higher than that in the Newtonian case and it is less than
Newtonian case for pseudoplastic lubricants (α > 0), which is in agreement
with real nature of the problem [4,9].

Fig. 4. Variation of dimensionless steady state load carrying capacity (W̄ ) of bearing with rb.
Newtonian results are identical with Kapur [20], and results for ∆ = 0 are all identical with Hsu

and Saibel [6]

Figure 4 shows the variation of dimensionless steady state load carrying
capacity of bearing with respect to the step ratio rb with different values of
curvature parameter ∆ and pseudoplasticity parameter α. It is observed that
the dimensionless load capacity increases with the increase in the step ratio rb
upto rb ≈ 2 and decrease thereafter. It is further observed that for each value
of ∆ and rb, the load carrying capacity for α = −0.1 (dilatant lubricants) is
higher than that in the Newtonian case (α = 0) and for α = 0.1 (pseudoplastic
lubricants), it is less than Newtonian case. Also, on comparison with the
Newtonian case, the deviation of load capacity due to pseudoplasticity and
dilatant effect is significant with rb > 1.5.
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Fig. 5. Variation of dimensionless damping coefficient C̄D with thickness ratio rb

Fig. 6. Variation of dimensionless stiffness coefficient S̄D with thickness ratio rb for different
values of α
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Figure 5 shows the variation of dimensionless dynamic damping coef-
ficient C̄D with respect to the film thickness ratio rb for different values of
curvature parameter ∆ and pseudoplasticity parameter α. The coefficient of
damping is observed to decrease with the increase in the thickness ratio rb.
Also, for each value of rb, the coefficient of damping for α = -0.1 is higher
than that for α = 0 and for α = 0.1, it is less than that in the case of α = 0.
Therefore, on comparison with the Newtonian case, the effect of dilatant fluid
increases the value of damping coefficient and hence enhances the load ca-
pacity, whereas, pseudoplasticity decreases the value of damping coefficient.
Also, the effect of non-Newtonian (pseudoplastic and dilatant) lubricant on
damping coefficient is significant withrb > 1.5: showing an agreement with
the result of load capacity discussed in Figure 4.

Fig. 7. Variation of dimensionless coefficients of stiffness and damping S̄D, C̄D with ∆ thickness
for ratio rb = 2

Figure 6 shows the variation of dynamic stiffness coefficient S̄D of bear-
ing with respect to the step ratio rb with different values of curvature parame-
ter ∆ and pseudoplasticity parameter α. The dynamic stiffness coefficient S̄D
is observed to increase with the increase in the step ratio rb upto rb ≈ 2 and
decrease thereafter for each ∆. It is clearly observed that for each value of ∆

and rb, the stiffness coefficient S̄D for α = −0.1 (dilatant lubricants) is higher
than Newtonian case (α = 0) and for α = 0.1 (pseudoplastic lubricants), it
is less than Newtonian case. Further, a difference in stiffness coefficient due
to non-Newtonian (pseudoplastic and dilatant) effects is clearly observed for
rb > 1.5 and the stiffness coefficient with pseudoplasticity as well as dilatant



260 UDAYA PRATAP SINGH

fluid is of almost same order as in Newtonian case for rb < 1.5. Thus, the
dilatant lubricants significantly increase the life of bearing for rb > 1.5 and
for the pseudoplastic lubricants, the case is reversed.

Figure 7 shows the variation of dimensionless dynamic damping coef-
ficient C̄D and dynamic stiffness coefficient S̄D with respect to the slider
curvature parameter ∆ for different values of pseudoplasticity parameter α
with step ratio rb = 2. Both the coefficients of damping and stiffness show
an increase with the increase in ∆. Further, for each value of ∆, both the
coefficients of damping and stiffness for α = −0.1 (dilatant lubricants) is
higher than the Newtonian case (α = 0) and for α = 0.1 (pseudoplastic
lubricant), it is smaller than the Newtonian case.

Fig. 8. Variation of dimensionless centre of pressure of bearing ( ¯̄x) with rb. Newtonian results are
identical with Kapur [20]

Thus, the effect of increasing the curvature, as well as dilatant lubricant,
is observed to increase the pressure and load capacity. Further, increase in
dynamic damping enhances the bearing stability and hence its performance
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Fig. 9. Percentage variation of dimensionless centre of pressure of bearing with ∆. Newtonian
results are identical with Kapur [20]

and increase in the dynamic stiffness of the bearing increases the bearing
life due to its property. The results of pseudoplasticity indicate towards the
instability and shorter bearing life.

Figure 8 shows the variation of dimensionless centre of pressure ¯̄x with
respect to rb(1.3 < rb < 3.8) for curvature parameter ∆ = 0, 0.25, 0.5 with
different values of parameter of pseudoplasticity α. It is observed that the
centre of pressure moves towards the outlet of the bearing with increase
ofrb. Also, it is clear from the figure that the relative movement of centre
of pressure is enhanced with the increase of ∆. Further, for each ∆, the
plot of centre of pressure with α = −0.1 (dilatant lubricant) is above the
Newtonian plot (α = 0) and for α = 0.1 (pseudoplastic lubricant), it is
below Newtonian plot i.e. on comparison with the Newtonian case, a shift
of the centre of pressure towards the inlet of the bearing is observed with
the pseudoplastic lubricants and a shift of the centre of pressure towards the
outlet of the bearing is observed with the dilatant lubricants. However, the
effect of Non-Newtonian (pseudoplastic and dilatant) lubricant on centre of
pressure is observed significant in the case of plane slider and it decreases
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with the increase of curvature parameter ∆. Thus, the effect of curvature is
analyzed to stabilize the centre of pressure over the lubricant effects.

Figure 9 shows the variation of dimensionless centre of pressure ¯̄x with
respect to the curvature parameter ∆ for different values of α and rb. It is
observed that, on increasing the slider curvature ∆, the centre of pressure
shifts towards the inlet of the bearing for each value of rb and each value
of α. The change of centre of pressure due Non-Newtonian (pseudoplastic
and dilatant) effect is observed to be significant for ∆ ≤ 0.2 and rb ≥ 3 and
for this range of parameters, the centre of pressure moves towards the inlet
with the pseudoplastic fluids and towards the outlet with the dilatant fluids.
It is clearly observed from the figure that for rb<3, the centre of pressure
is not much affected due to the Non-Newtonian (pseudoplastic and dilatant)
lubricants regardless of the curvature. Again, for ∆ >0.3, the stability of
centre of pressure is not affected due to lubricants regardless of the value of
step ratiorb.

Therefore, it is concluded that with a suitable choice of design parameters
∆ >0.2 and 2 < rb < 3, the effect of non-Newtonian (pseudoplastic and
dilatant) lubricants on the shift of centre of pressure can be avoided, and
stability of the centre of pressure and hence the stability of the bearing can
be improved.

9. Conclusion

We have presented the effects of isothermal incompressible non-Newtonian
pseudoplastic and dilatant lubricants on the steady and dynamic characteris-
tics of one-dimensional pivoted curved slider bearings, neglecting the effects
of fluid inertia and cavitation.

For the Rabinowitsch fluid model, the modified Reynolds equation con-
sidering transient motion of the slider is derived. Further, the modified
Reynolds equations for the steady state and damping conditions have been
obtained.

To obtain the steady and dynamic characteristics of the bearing, the
two modified Reynolds equations have been solved using small perturbation
technique. The results are in well agreement with the Newtonian results for
the parameter of pseudoplasticity α = 0.

The steady pressure and steady load, dynamic damping and dynamic
stiffness as well as the centre of pressure and hence the bearing stability,
performance and life depend upon the coefficient of pseudoplasticity α, step
ratio rb and curvature ∆.

Based on the results, so obtained, the following conclusions have been
drawn:
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1. Steady state pressure and load capacity increases significantly with the
dilatant lubricants and curvature, and decreases with the pseudoplastic
lubricants.

2. Dynamic damping and dynamic stiffness of bearing significantly increase
with the dilatant lubricant as well as the curvature and hence enhances
the stability and life of the bearing but the case is reversed for the pseudo-
plastic lubricants.

3. The steady state load capacity and dynamic stiffness increases with rb upto
rb ≈ 2 and decreases thereafter while the dynamic damping decreases
with the increase of rb.

4. An indication of small and less significant non-Newtonian effects on
steady and dynamic characteristics is observed forrb < 1.7.

5. The centre of pressure moves towards the bearing inlet with the increase
of curvature ∆, and it moves towards the outlet with increase of step
ratiorb.

6. The pseudoplastic lubricants shift the centre of pressure towards bearing
inlet while the dilatants shift it towards outlet. However, with the suitable
choice of design parameters ∆ >0.2 and 2 <rb<3, shift of centre of
pressure becomes almost negligible of the non-Newtonian effects.

10. Appendix

In absence of external body forces, the Navier-Stokes equations for in-
compressible fluids is expressed in Cartesian coordinate system as :

ρ

(
u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −∂p

∂x
+

(
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z

)
(43)
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∂x
+
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∂y
+
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ρ

(
u
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∂x
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∂w
∂y
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∂z

)
= −∂p

∂z
+

(
∂τzx

∂x
+
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∂y
+
∂τzz

∂z

)
(45)

and the equation of continuity is expressed as

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (46)

The necessary assumptions for thin film lubrication [18, 23] can be summa-
rized as :

1. Laminar flow condition prevails.
2. Fluid is incompressible.
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4. No variation of pressure across the fluid film (i.e.
∂p
∂y

= 0).

5. Inertia forces resulting from acceleration of fluid particles are small
as compared to viscous forces and are negligible.

6. All velocity gradients are negligible in comparison to the transverse

velocity gradients i.e.
∂

∂x
,
∂

∂z
� ∂

∂y
.

7. No slip condition prevails at the bearing surfaces.
8. Heat conduction and convection effects have been neglected.
9. Effects of material properties such as porosity, hardness of material

have been neglected.
10. Length of slider is as long in comparison to its width as it can be

treated infinite without a loss of generality.
Under these assumptions, momentum equations (36-38) for one dimen-

sional flow (i.e. v = 0) can be re-written as

0 = −∂p
∂x

+
∂τxy

∂y
(47)

0 =
∂p
∂y

(48)

and the equations of continuity (39), in this case, can be represented as

∂u
∂x

+
∂w
∂y

= 0 (49)

where, the constitutive equation is given by the Rabinowitsch relation, equa-
tion (1).

11. Nomenclature

h : Film thickness,
B : Length of bearing,
L : Width of bearing,
t : Time,
hs(x) : Steady state film thickness,
hm(t) : Variation of film thickness with time,
h1 : Outlet film thickness,
h2 : Inlet film thickness,
Hc : Height of crown segment of slider,
u : Velocity in X-direction,
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v : Velocity in Y-direction,
ω : Frequency of oscillation,
τxy : Shearing stress,
p : Film pressure,
W : Load carrying capacity of film,
FD : Film force,
SD : Dynamic stiffness coefficient,
CD : Dynamic damping coefficient,
µ : Zero shear rate viscosity,
κ : coefficient of Pseudoplasticity,
rb : Step ratio h2/h1,
x̄ : x/B,
h̄ : h/h1,

h̄m : hm/h1,

h̄s : hs/h1,

p̄ : h2
1p

/
µUB,

α : κµ2U2
/
h2

1,

ϑ : Bω/U,
∆ : Hc/h1,

τ : tω,
ε : Small amplitude of oscillation,
F̄D : h2

1FD

/
µULB2,

C̄D : h3
1CD

/
µLB3,

S̄D : h3
1SD

/
µULB2 and

W̄ : Wh2
1

/
µULB2.
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Zastosowanie modelu płynu Rabinowitch’a do uchylnych, łożysk ślizgowych z zakrzywionym
ślizgaczem

S t r e s z c z e n i e

W przedstawionej analizie teoretycznej badano, przy wykorzystaniu modelu płynu Rabinow-
itch’a, łączny wpływ krzywizny ślizgacza i smaru o właściwościach pseudoplastycznych, nie-
niutonowskich, o odwróconej plastyczności (smar zmieszany ze środkiem poprawiającym wskaźnik
lepkości) na charakterystyki w stanie ustalonym i warunkach dynamicznych uchylnego, łożyska
ślizgowego. Zmodyfikowane równania Reynoldsa otrzymano dla stanów ustalonych i tłumionych
łożyska. W celu rozwiązania zmodyfikowanych równań Reynoldsa zastosowano teorię perturbacji.
Wielkości charakterystyczne dla stanu ustalonego (ciśnienie smaru w stanie ustalonym, nośność
i środek ciśnienia) i charakterystyki dynamiczne (tłumienie dynamiczne i sztywność dynamicz-
na) zostały wyznaczone numerycznie, przy użyciu pakietu Mathematica, dla różnych wartości
wskaźnika poprawy lepkości. W porównaniu ze smarami o właściwościach cieczy newtonowskiej,
dla smaru o odwróconej plastyczności uzyskano wyższe wartości ciśnienia w filmie, większą
nośność, lepsze tłumienie dynamiczne i dynamiczną sztywność. Sytuacja wyglądała odwrotnie
w przypadku smarów pseudoplastycznych. Znaczące zmiany charakterystyk łożyska, związane
z nie-newtonowskim, pseudoplastycznym zachowaniem płynu o odwróconej plastyczności, zaob-
serwowano już przy małych wartościach parametru pseudoplastyczności.


