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ERROR ANALYSIS AND ERROR ESTIMATES
FOR CO-SIMULATION IN FMI

FOR MODEL EXCHANGE AND CO-SIMULATION V2.0

Complex multi-disciplinary models in system dynamics are typically composed
of subsystems. This modular structure of the model reflects the modular structure of
complex engineering systems. In industrial applications, the individual subsystems
are often modelled separately in different mono-disciplinary simulation tools. The
Functional Mock-Up Interface (FMI) provides an interface standard for coupling
physical models from different domains and addresses problems like export and
import of model components in industrial simulation tools (FMI for Model Exchange)
and the standardization of co-simulation interfaces in nonlinear system dynamics
(FMI for Co-Simulation), see [10].

The renewed interest in algorithmic and numerical aspects of co-simulation
inspired some new investigations on error estimation and stabilization techniques in
FMI for Model Exchange and Co-Simulation v2.0 compatible co-simulation environ-
ments. In the present paper, we focus on reliable error estimation for communication
step size control in this framework.

1. Introduction

Co-Simulation is a rather general approach to the simulation of cou-
pled technical systems and coupled physical phenomena in engineering with
focus on time-dependent problems. Theoretical and practical aspects of co-
simulation were recently studied in the ITEA2 project MODELISAR (2008-
2011). A Functional Mock-Up Interface (FMI) was developed that provides
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an interface standard for coupling physical models from different domains and
addresses problems like export and import of model components in industrial
simulation tools (FMI for Model Exchange) and the standardization of co-
simulation interfaces in nonlinear system dynamics (FMI for Co-Simulation),
see [10].

Today, the interface standard is maintained and further developed with-
in the Modelica Association Project “FMI”. In August 2012, the fourth
β-version of FMI for Model Exchange and Co-Simulation v2.0 was re-
leased [15] that supports advanced numerical techniques in co-simulation.
Well known industrial simulation tools for applied dynamics support Version
1.0 of this standard and plan to support the forthcoming Version 2.0 in the
near future, see the “Tools” tab of website [10] for up-to-date information.

FMI for Co-Simulation is an interface standard for the solution of time-
dependent coupled systems consisting of subsystems that are continuous in
time (model components that are described by time-dependent differential
equations) or time-discrete (e.g., discrete controllers). In a block representa-
tion of the coupled system, the time continuous subsystems are represented
by blocks with (internal) state variables x j(t) that are connected to other
subsystems (blocks) of the coupled problem by subsystem inputs u j(t) and
subsystem outputs y j(t), see Fig. 1 and Section 2 below. In this framework,
the physical connections between subsystems are represented by mathemat-
ical coupling conditions between the inputs u(t) and the outputs y(t) of all
subsystems [14], [15].

Fig. 1. Block-oriented representation of slave FMU’s [15]

Co-Simulation exploits the modular structure of coupled problems in
all stages of the simulation process with separate model setup, pre- and
postprocessing for the individual subsystems in different simulation tools.
During time integration, the simulation is again performed independently for
all subsystems restricting the data exchange between subsystems to discrete
communication points Tn, see [2]. In different contexts, the communication
points Tn, the communication steps Tn → Tn+1 and the communication step
sizes Hn := Tn+1 − Tn are also known as sampling points (synchronization
points), macro steps and sampling rates, respectively [15].

From the mathematical viewpoint, the coupling of different numerical
solvers in a co-simulation environment results in a modular time integration
method that substitutes the (unknown) subsystem inputs u j(t) between the
communication points Tn by some suitable approximation like polynomial
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extrapolation or interpolation [2]. This signal extrapolation introduces ad-
ditional error terms in the modular time integration and may furthermore
result in numerical instability. FMI for Model Exchange and Co-Simulation
v2.0 addresses these problems by interface routines supporting higher-order
extrapolation and interpolation of subsystem inputs, communication step size
control including step rejection and Jacobian-based linearly implicit stabiliza-
tion techniques.

The present paper focuses on communication step size control and error
estimation. For more information about Jacobian-based stabilization tech-
niques we refer to [1] and the more recent results in [3], [18]. The paper is
organized as follows: In Section 2, we give a sufficient criterion to exclude
algebraic loops in a coupled system with block structure. Basic steps of a con-
vergence analysis in this framework are presented in Section 3. Generalizing
Richardson extrapolation techniques from ODE and DAE theory to modular
time integration, we get reliable estimates for the local error. Theoretical and
practical aspects are discussed in Section 4. The results of the theoretical
analysis are verified by numerical tests for a quarter car model (Section 5).
The paper ends with some conclusions in Section 6.

The numerical tests for the quarter car benchmark problem were per-
formed in a Matlab based test environment. Recently, these results were
reproduced using an FMI for Co-Simulation v1.0 compatible master that
was developed at Fraunhofer IIS/EAS within the MODELISAR project [7],
[19].

2. Block representation of coupled systems

Following the approach of Kübler and Schiehlen [14], FMI for Model
Exchange and Co-Simulation v2.0 is based on a block representation of cou-
pled systems. The mathematical analysis of modular time integration methods
for coupled systems of ordinary differential equations (ODEs) [1] may be ex-
tended to this more general problem class if there are no algebraic loops in
the system. The specific numerical problems that may result from a coupling
by constraints or other algebraic loops in the system found much interest in
the early days of co-simulation algorithms in system dynamics, see, e.g., [4],
[14], but have today only limited practical relevance in industrial applications.

Therefore, we will start the theoretical investigations by a structural
analysis of coupled systems in block representation to exclude systems with
algebraic loops. Let subsystem “ j” be described by its state and output equa-
tions
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ẋ j(t) = f j(x j(t), u j(t), uex(t))

y j(t) = g j(x j(t), u j(t))

 (1a)

with x j, u j, y j denoting the state, input and output vectors and some external
input uex(t). The r ≥ 2 subsystems are coupled by input-output relations

u j(t) = c j
(
y1(t), . . . , y j−1(t), y j+1(t), . . . , yr(t)

)
, ( j = 1, . . . , r ) . (1b)

Summarizing all components x j, y j, u j, f j, g j, c j in vector form, we get the
coupled system in the more compact form

ẋ(t) = f (x(t), u(t), uex(t))

y(t) = g(x(t), u(t)) , u(t) = c(y(t))

 (2)

with x(t) :=
(
x>1 (t), x>2 (t), . . . , x>r (t)

)>, . . . . Eqs. (2) form a differential-
algebraic equation (DAE) in variables x, y and u that may, however, be
reduced straightforwardly to an ordinary differential equation

ẋ(t) = F
(
x(t), uex(t)

)
:= f

(
x(t), c(g(x(t))), uex(t)

)
(3a)

and separate output equations

y(t) = g(x(t)) , u(t) = c
(
g(x(t))

)
(3b)

whenever there is no direct feed-through in the subsystems, i.e., whenever

y j(t) = g j(x j(t)) ,
∂g j

∂u j
(x j, u j) ≡ 0 , ( j = 1, . . . , r ) . (4)

From the mathematical viewpoint, the ODE like structure (3) would be much
more favourable than the general DAE system (2) but condition (4) is too
restrictive and excludes, e.g., force displacement couplings between two me-
chanical systems.

Example 1 (Busch and Schweizer [6]) Consider two 1-DOF oscillators with
position and velocity coordinates (p1, v1) and (p2, v2), respectively, that are
coupled by a linear spring with stiffness and damping parameters c and d
resulting in a spring force

Fc = c(p2 − p1) + d(v2 − v1) .

Variables (p j, v j) are components of state vectors x j, ( j = 1, 2). A displacement-
displacement coupling is realized by input-output couplings

u1 = (u1
1, u

2
1)
> = y2 ∈ R2 , u2 = (u1

2, u
2
2)
> = y1 ∈ R2
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and subsystem outputs y j = (p j, v j)>, ( j = 1, 2), such that there is no di-
rect feed-through and condition (4) is satisfied. In both subsystems “j”, the
coupling spring force is evaluated as Fc = (−1) j(c(p j − u1

j ) + d(v j − u2
j )
)
. The

same physical system may also be described by a force-displacement coupling
with input-output couplings

u1 = (u1
1) = y2 ∈ R , u2 = (u1

2, u
2
2)
> = y1 ∈ R2

and subsystem outputs

y1 = g1(x1) = (p1, v1)> , y2 = g2(x2, u2) = Fc = c(p2 − u1
2) + d(v2 − u2

2)

resulting in a direct feed-through in the second subsystem such that (4) is
violated for j = 2. In the first subsystem, the coupling spring force is directly
given by u1 = y2 = Fc . In the second subsystem it is again evaluated as
Fc = c(p2 − u1

2) + d(v2 − u2
2).

In Example 1, the force-displacement coupling results in a slightly more
complex coupling structure, but the overall coupled system is (as before) free
of algebraic loops. For coupled systems of the general form (Eq. 3a) with
direct feed-through in one or more subsystems, a refined structural analysis is
necessary to exclude algebraic loops. For this analysis, the output equations
in (Eq. 3a) are formally eliminated resulting in a system of nu (coupled)
nonlinear equations

u = c
(
g(x, u)

)
(5)

in the nu (scalar) components uν, (ν = 1, . . . , nu), of

u = ( u>1 , . . . , u>r )> = ( u1, . . . , unu )> ∈ Rnu .

In (Eq. 5), component uν does not depend directly on component uµ if
∂cν

(
g(x, u)

)
/∂uµ ≡ 0. In a structural sense, component uν may depend di-

rectly on component uµ if

∂cν
(
g(x, u)

)
∂uµ

∣∣∣∣
x=x∗,u=u∗

, 0 for some argument (x∗, u∗). (6)

In that case, there is a structural feed-through path of length 1 from uµ to
uν. In Example 1, there are no structural feed-through paths in the case of
displacement-displacement coupling. For force-displacement coupling, struc-
tural feed-through paths of length 1 point from u1

2 to u1
1 and from u2

2 to u1
1.

A structural feed-through path of length L from uµ to uν consists of L
connected structural feed-through paths of length 1. It is characterized by
indices µl ∈ { 0, 1, . . . , nu }, ( l = 0, 1, . . . , L ), with µk , µl if 0 < |k − l| < L,
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( k, l = 0, 1, . . . , L ), µ0 = µ, µL = ν and structural feed-through paths of length
1 from uµl−1 to uµl , ( l = 1, . . . , L ). The structural feed-through path from uµ to
uν is called open if µ , ν and closed otherwise. In (Eq. 5), there are no closed
structural feed-through paths of length L = 1 since subsystem input vector
u j does not depend directly on subsystem output vector y j, see (Eq. 1b).
A trivial closed structural feed-through path of length L = 2 would result
from output equations y1 = u1, y2 = u2 with coupling conditions u1 = y2,
u2 = y1 (algebraic loop). In Example 1, there are no structural feed-through
paths of length L ≥ 2 and therefore also no closed structural feed-through
paths.

Structural feed-through paths in (Eq. 5) may be studied conveniently by a
directed graph G with nu vertices “ν” that correspond to the components uν,
(ν = 1, . . . , nu), of u in (Eq. 5), see, e.g., [[8], Appendix B.4] for a compact
introduction to basics of graph theory. In this directed graph, an edge points
from vertex “ν” to vertex “µ” whenever condition (Eq. 6) is satisfied. Each
structural feed-through path of length L in (Eq. 5) corresponds to a path
of length L in the associated graph G. On the other hand, a cycle in G
represents a closed structural feed-through path in the system of nonlinear
equations (Eq. 5).

To exclude algebraic loops in the coupled system (Eq.3), we suppose in
the following that the directed graph G associated with (Eq. 5) is acyclic, i.e.,
free of cycles. This condition implies that the adjacency matrix A(G) ∈ Rnu×nu

is nilpotent and there is some M ∈ N, M ≤ nu, such that (A(G))M = 0, see
[[8], Chapter 22]. Here, the n2

u elements aνµ(G) of A(G) are given by aνµ = 1
if there is an edge from vertex “ν” to vertex “µ” and aνµ = 0 otherwise.
Condition (Eq. 6) shows that the adjacency matrix represents the “structural”
sparsity pattern of the Jacobian ∂

(
c(g(x, u))

)
/∂u . As a practical consequence,

the nilpotency of A(G) implies

M∏

l=1

∂c
(
g(x, u)

)
∂u

∣∣∣∣
x=x[l], u=u[l]

· Z[l] ≡ 0 (7)

for any system configurations (x[1],u[1]), . . . , (x[M], u[M]) and any diagonal
matrices Z[1], . . . , Z[M] ∈ Rnu×nu .

Example 2 For systems without direct feed-through, graph G has no edges
at all, see (Eq. 4) and (Eq. 6). Therefore, the displacement-displacement
coupling in Example 1 results in the graph G in the left plot of Fig. 2 with
A(G) = 04×4. For the force-displacement coupling, we obtain the graph G in
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Fig. 2. Graphs representing the feed-through structure of the model in Example 1. Left plot:
displacement-displacement coupling, Right plot: force-displacement coupling

the right plot of Fig. 2 and the non-zero but nilpotent adjacency matrix

A(G) =



0 1 1
0 0 0
0 0 0

 ∈ R
3×3

with (A(G))2 = 0 . Since output equations and coupling equations are linear,
the Jacobian ∂c

(
g(x, u)

)
/∂u is constant and we get

∂c
(
g(x, u)

)
∂u

Z[1] ∂c
(
g(x, u)

)
∂u

Z[2] =



0 −c −d
0 0 0
0 0 0

 Z[1]



0 −c −d
0 0 0
0 0 0

 Z[2] = 03×3

(8)
for any diagonal matrices Z[1], Z[2] ∈ R3×3.

3. Convergence analysis

Standard step size control algorithms in ODE and DAE time integration
adjust the step size in each time step to guarantee that (an estimate) of the
local error does not exceed some user-defined error bounds. A perturbation
analysis shows that this strategy will bound the global error after a finite
time interval of length T as well since local errors are amplified in time
integration by a factor that is bounded by exp(L0T ) with L0 denoting the
Lipschitz constant of the right hand side (in the ODE case). For coupled sys-
tems in block representation (Eq. 1), the situation is more complicated since
order reduction phenomena have been reported for the local error analysis
[5, Appendix 2.A] that do, however, not deteriorate the practically observed
order of the global error.

In the present section, we discuss basic steps of a convergence analysis
for modular time integration methods applied to coupled systems in block
representation (Eq. 1) that provides a theoretical justification of this practi-
cally observed error behaviour. Local and global errors are not as directly
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connected as in the classical ODE and DAE case but the communication step
size control may nevertheless be based on local error estimates.

For the theoretical analysis, we follow the framework of [4] and neglect
the discretization errors of the time integration in all subsystems to focus on
the additional error terms that are introduced by coupling these subsystems in
a co-simulation framework. In each communication step Tn → Tn+1 = Tn + H ,
the input vectors u j(t) are approximated by some interpolation polynomial
Ψ j

(
t; u j(Tn−k), . . . , u j(Tn), u j(Tn+1)

)
of degree ≤ k, see [9]. An important

special case is the signal extrapolation based on interpolation polynomials

Ψ j(t) =

k∑

ι=0

u j(Tn−ι)
k∏

l = 0
l , ι

t − Tn−l
Tn−ι − Tn−l

= u j(t) + O(Hk+1) . (9)

Example 3 In a brute force approach, the input vectors u j(t) are simply
frozen in each communication step Tn → Tn+1 = Tn + H resulting in k = 0
and a constant extrapolation polynomial Ψ j(t) ≡ u j(Tn), ( t ∈ [Tn,Tn+1] ). For
higher accuracy, linear (k = 1) and quadratic (k = 2) interpolation is more
favourable:

Ψ j(t) = u j(Tn) +
u j(Tn) − u j(Tn−1)

Tn − Tn−1
(t − Tn) , ( k = 1 ) ,

Ψ j(t) = u j(Tn) +
u j(Tn) − u j(Tn−1)

Tn − Tn−1
(t − Tn) + β j,n(t − Tn)(t − Tn−1), (k = 2),

with

β j,n :=
(u j(Tn) − u j(Tn−1)

Tn − Tn−1
− u j(Tn−1) − u j(Tn−2)

Tn−1 − Tn−2

)
/(Tn − Tn−2) .

The local error in communication step Tn → Tn+1 = Tn + H compares
for t ∈ [Tn,Tn+1] the solution of (Eq. 2) with the solution of

˙̂x(t) = f (x̂(t),Ψ(t), uex(t))

ŷ(t) = g(x̂(t),Ψ(t))

û(t) = c(ŷ(t))


, ( t ∈ [Tn,Tn+1] ) , x̂(Tn) = x(Tn) . (10)

The perturbation analysis for ODE initial value problems [20] shows

‖x̂(Tn+1) − x(Tn+1)‖ ≤ Cx
(
exp(L0(Tn+1 − Tn)) − 1

)
max

t∈[Tn,Tn+1]
‖Ψ(t) − u(t)‖

= O(H · Hk+1) = O(Hk+2) ,

‖û(Tn+1) − u(Tn+1)‖ ≤ Cu‖ŷ(Tn+1) − y(Tn+1)‖ = O(Hk+1) ,
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see (Eq. 9). Following the convergence analysis for linear multistep methods
in the DAE case [11], we get a coupled error recursion for the global errors
ε x

n , ε
u
n in differential and algebraic solution components:

‖ε x
n+1‖ ≤

(
1 + O(H)

)‖ε x
n‖ + O(H)

k∑

ι=0

‖εu
n−ι‖ + O(Hk+2) , (11a)

εu
n+1 =

k∑

ι=0

JnZn−ιεu
n−ι + O(1)‖ε x

n‖ + O(H)
k∑

ι=0

‖εu
n−ι‖ + O(Hk+1)(11b)

with

Jn :=
∂c(g(x, u))

∂u

∣∣∣∣
x=x(Tn), u=u(Tn)

, Zn−ι :=
∂Ψ

∂un−ι
(t; un−k , . . . , un, un+1)

∣∣∣∣
t=Tn+1

.

The linear interpolation polynomial Ψ j(t) in Example 3 results, e.g., in k = 1
and Zn = 2I, Zn−1 = −I since Ψ j(Tn+1) = 2u j(Tn) − u j(Tn−1). For constant
extrapolation (k = 0) with Ψ j(Tn+1) = u j(Tn), Jacobian Zn is given by the
identity matrix I.

Estimate (Eq. 11b) provides an error bound for ‖εu
n+1‖ in terms of

O(1)
∑
ι ‖εu

n−ι‖ that does in general not guarantee zero-stability and conver-
gence of the modular time integration method [14]. There is a risk of ex-
ponential instability unless an additional contractivity condition is satisfied
[4].

However, the
∑
ι JnZn−ιεu

n−ι term at the right hand side of (Eq. 11b)
may be eliminated by repeated application of this error estimate if condition
(Eq. 7) is satisfied for some finite M > 0. Substituting index n in (Eq. 11b)
by n − ι − 1, we get

εu
n−ι =

k∑

κ=0

Jn−ι−1Zn−ι−1−κεu
n−ι−1−κ +

+ O(1)‖ε x
n−ι−1‖ + O(H)

k∑

κ=0

‖εu
n−ι−1−κ‖ + O(Hk+1)

(11c)
for all ι = 0, 1, . . . , k. This error recursion is inserted in the right hand side
of (Eq. 11b) resulting in

εu
n+1 =

k∑

ι=0

k∑

κ=0

JnZn−ιJn−ι−1Zn−ι−1−κεu
n−ι−1−κ +

+ O(1)
2k+1∑

l=0

(‖ε x
n−l‖ + H‖εu

n−l‖
)

+ O(Hk+1) .

(11d)
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For the coupled 1-DOF oscillators in Example 1, we have Jn = 04×4 in the
case of displacement-displacement coupling and Jn , 03×3 but
JnZn−ιJn−ι−1Zn−ι−1−κ = 03×3 in the case of force-displacement coupling, see
(Eq. 8). For both settings, estimate (Eq. 11d) simplifies to

‖εu
n+1‖ ≤ Cu

M(k+1)−1∑

l=0

(‖ε x
n−l‖ + H‖εu

n−l‖
)

+ O(Hk+1) (11e)

with M = 2. In the general case, estimate (Eq. 11e) is obtained repeating the
transformation steps from (Eq. 11b) to (Eq. 11d) another M − 2 times and
exploiting the identity (Eq. 7) that follows from the basic assumption that
the coupled system (3) is represented by an acyclic directed graph G, see
Section 2.

From the coupled error recursion (Eq. 11a,e), we get global errors

‖ε x
n‖ = O(Hk+1) , ‖εu

n‖ = O(Hk+1) ,

i.e., convergence with order k + 1 on finite time intervals, see the classical
convergence analysis for DAE time integration methods in [11], its appli-
cation to modular time integration in [4] and the recent extension of these
results to multistep signal extrapolation in [3].

This convergence result gives a theoretical justification for communica-
tion step size control algorithms being based on (estimates for) the local
error since the global error on finite time intervals may be bounded in terms
of the local error if the coupled system (Eq. 3) is free of algebraic loops and
condition (Eq. 7) is satisfied for some finite M > 0. It shows furthermore that
order reduction in the local error will typically not affect the global error if
there are no closed structural feed-through paths in the coupled system since
by definition the length of all open structural feed-through paths is bounded
by the dimension nu of (5) such that M ≤ nu in (Eq. 7).

4. Local error estimates

For communication step size control, an appropriate estimate of the
local error is compared to user-defined error bounds (tolerances), see [4].
Richardson extrapolation is a time-consuming but reliable way to estimate
local errors in ODE and DAE time integration. Substantial savings of com-
puting time result from an algorithmic modification that is tailored to the
FMI co-simulation framework. In the present section both approaches are
studied by an asymptotic error analysis. Numerical test results for a quarter
car benchmark problem are presented in Section 5 below.
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To keep the notation compact, we restrict the theoretical analysis of the
error estimates to pure polynomial signal extrapolation in all subsystems that
allows us to perform and to analyse a communication step Tn → Tn+1 = Tn + H
for all subsystems in parallel. As in (Eq. 9), we consider a polynomial u(t)
that interpolates the analytical solution u(t) of (Eq. 2) at the k + 1 equidistant
previous communication points Tn−ι, (ι = 0, 1, . . . , k). Classical estimates for
the error of polynomial interpolation [9] prove

∆u(t) := u(t) − u(t) = − u(k+1)(Tn)
(k + 1)!

k∏

ι=0

(t − Tn−ι) + O(Hk+2) (12)

for all t ∈ [Tn,Tn+2]. Replacing input function u(t) in (Eq. 2) by u(t), we get
approximate solutions x(t), y(t) with ∆x(Tn) = 0 and

∆̇x(t) = An ∆x(t) + Bn ∆u(t) + O(Hk+2)

∆y(t) = Cn ∆x(t) + Dn ∆u(t) + O(Hk+2)

 (13)

for
∆x(t) := x(t) − x(t) , ∆y(t) := y(t) − y(t) , ( t ∈ [Tn,Tn+2] ) .

In (Eq. 13), system matrices An, Bn, Cn, Dn denote the Jacobians f x, f u,
gx, gu evaluated at x = x(Tn), u = u(Tn). The leading error term in ∆x is
obtained as solution of a linear time invariant system resulting in

∆x(Tn + aH) = −Bn

∫ a

0

k∏

ι=0

(ι + s) ds · u
(k+1)(Tn)
(k + 1)!

Hk+2 + O(Hk+3) , (14)

see also (Eq. 12). In the next communication step Tn+1 → Tn+2 = Tn + 2H ,

input function u(t) is substituted by a polynomial u(t) that interpolates
c(y(t)) = c(g(x(t), u(t))) at t = Tn+1 and u(t) = u(t) = c(y(t)) at t = Tn+1−ι,
(ι = 1, . . . , k). Eq. (5) implies

u(Tn+1) = c
(
g(x(Tn+1), u(Tn+1))

)

and

u(Tn+1) = u(Tn+1) − ∆u(Tn+1) + c
(
g(x(Tn+1), u(Tn+1))

) − c
(
g(x(Tn+1), u(Tn+1))

)

= u(Tn+1) − (I − LnDn)∆u(Tn+1) + O(Hk+2)

with Ln := (∂c/∂y)(y(Tn)) since ∆x(Tn+1) = O(Hk+2), see (Eq. 14). According
to (Eq. 12), polynomial u(t) approximates u(t) up to O(Hk+1) and we get

∆u(Tn+1) = −u(k+1)(Tn) · Hk+1 + O(Hk+2) .
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The Lagrange form (Eq. 9) of the interpolation polynomial shows

u(t) − u(t) =
(
u(Tn+1) − u(Tn+1)

) k∏

l=1

t − Tn+1−l
Tn+1 − Tn+1−l

= H(I−LnDn)
u(k+1)(Tn)
(k + 1)!

(k + 1)
k∏

l=1

(t−Tn+1−l)+O(Hk+2). (15)

Since estimate (Eq. 15) has the same basic structure as estimate (Eq. 12),
the local error at t = Tn+2

lxn+2 := ∆
x
(Tn+2) = ∆x(Tn+2) +

∫ Tn+2

Tn+1

(
f (x(t), u(t)) − f (x(t), u(t))

)
dt

may be expressed as

lxn+2 = −Bn(ckI + dkLnDn)
u(k+1)(Tn)
(k + 1)!

Hk+2 + O(Hk+3) (16)

with constants

dk := (k+1)
∫ 2

1

k∏

ι=1

(ι+s−1) ds , ck =

∫ 2

0

k∏

ι=0

(ι+s) ds−dk = 2
∫ 1

0

k∏

ι=0

(ι+s) ds .

(17)
For coupled systems with direct feed-through in some of the subsystems, we
have Dn , 0 and the local error lyn+2 in the output variables y is dominated
by the error in components u at t = Tn+2 :

lun+2 := ∆
u
(Tn+2) = u(Tn+2) − u(Tn+2) = u(Tn+2) − u(Tn+2) + u(Tn+2) − u(Tn+2)

= −(I + (k + 1)LnDn)u(k+1)(Tn) · Hk+1 + O(Hk+2) , (18)

see (Eq. 12) and (Eq. 15). Summarizing (Eq. 16) and (Eq. 18), we end up
with

lyn+2 = ∆
y
(Tn+2) = Dn∆

u
(Tn+2) + Cn∆

x
(Tn+2) + O(cDHk+2 + Hk+3)

= −((k + 1)! Dn(I + (k + 1)LnDn) + (19)

+ HCnBn(ckI + dkLnDn)
)u(k+1)(Tn)

(k + 1)!
Hk+1 + O(cDHk+2 + Hk+3) .

Constant cD is set to cD = 0 if ∂g/∂u ≡ 0 and to cD = 1 otherwise. For
systems without direct feed-through, see (Eq. 4), we have Dn = 0 and cD = 0
and the right hand side in (Eq. 19) simplifies substantially:

lyn+2 = −ckCnBn
u(k+1)(Tn)
(k + 1)!

Hk+2 + O(Hk+3) . (20)
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For error estimation by Richardson extrapolation, we consider in each
time interval [Tn,Tn+2] a second numerical solution x̃(t) with x̃(Tn) = x(Tn)
and an input function ũ(t) that is defined by the interpolation polynomial
for data points

(
Tn−2ι, u(Tn−2ι)

)
with Tn−2ι = Tn − 2ιH , (ι = 0, 1, . . . , k). As

before, the interpolation error ∆ũ(t) introduces errors ∆x̃(t) and ∆ỹ(t) in state
and output variables that may be studied by a perturbation analysis. We get

∆x̃(Tn+2) = −c̃kBn
u(k+1)(Tn)
(k + 1)!

Hk+2 + O(Hk+3) (21)

with

c̃k :=
∫ 2

0

k∏

ι=0

(2ι + s) ds = 2
∫ 1

0

k∏

ι=0

(2ι + 2s̃) ds̃ = 2k+1ck ,

see (Eq. 17). Similar to estimate (Eq. 12), the interpolation error in compo-
nents u at t = Tn+2 is given by

∆ũ(Tn+2) = −u(k+1)(Tn)
(k + 1)!

k∏

ι=0

(Tn+2 − Tn−2ι) + O(Hk+2)

= −2k+1u(k+1)(Tn)Hk+1 + O(Hk+2) . (22)

Estimates (Eq. 21) and (Eq. 22) yield an error bound for the output variables:

∆ỹ(Tn+2) = Dn∆ũ(Tn+2) + Cn∆x̃(Tn+2) + O(cDHk+2 + Hk+3)

= −2k+1((k+1)!Dn + HckCnBn
)u(k+1)(Tn)

(k + 1)!
Hk+1+O(cDHk+2+Hk+3). (23)

In ODE and DAE time integration, the comparison of the numerical results
for a double-step with (small) step size H and a single (large) step with step
size 2H allows us to estimate precisely the leading error term of the local
error [11]. For modular time integration, this error estimate is given by [13]

ESTRich :=
ỹ(Tn+2) − y(Tn+2)

2k+1 − 1
=

∆ỹ(Tn+2) − ∆y(Tn+2)

2k+1 − 1
. (24)

The comparison of (Eq. 19), (Eq. 23) and (Eq. 24) shows

ESTRich = lyn+2 +
2k+1(k + 1)
2k+1 − 1

DnLnDnu(k+1)(Tn)Hk+1 + O(cDHk+2 + Hk+3) .
(25)

There is a qualitative difference to classical ODE and DAE theory: In the
context of co-simulation, Richardson extrapolation may give asymptotically
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wrong results if LnDn , 0, i.e., for coupled systems with direct feed-through
in at least one subsystem. If there are no subsystems with direct feed-through
and condition (Eq. 4) is satisfied, ESTRich reproduces, however, all compo-
nents of the local error in the output variables correctly up to higher order
terms. Therefore, this error estimate is considered to be one of the most
reliable ways to approximate local errors in modular time integration.

In the ITEA2 project MODELISAR, several modifications of error esti-
mate (Eq. 24) were tested [16] to reduce the large extra effort for computing
ỹ(t). Neglecting all details of practical implementation, the intermediate re-
sults x(Tn+1) and x̃(Tn+1) coincide for constant extrapolation (k = 0) of input
function u(t) since u(t) = ũ(t) = u(Tn), (t ∈ [Tn,Tn+1]), in that case. From
the view point of numerical efficiency, it would be favourable to use also for
higher-order extrapolation (k ≥ 1) one and the same approximation u(t) of the
input function u(t) for both numerical solutions in the first communication
step Tn → Tn+1 = Tn + H and to restrict the use of different input functions
to the second communication step, i.e., to t ∈ [Tn+1,Tn+2].

In that way, co-simulation may proceed with a large communication step
Tn → Tn+2 = Tn + 2H of size 2H that is temporarily interrupted at t = Tn+1 to
provide input data y(Tn+1) and c(y(Tn+1)) for the second numerical solution
to be used for error estimation. Alternatively, a small communication step
Tn → Tn+1 = Tn + H may be completed in the classical way and the two
different numerical solutions on time interval [Tn+1,Tn+2] are evaluated in
parallel. With this second strategy, no subsystem solver has to go backward
in time and the practical implementation might be simplified. Note that both
strategies are analytically equivalent but give slightly different results in a
practical implementation since the internal (micro) step size sequences in the
subsystems depend on the length of the communication steps.

With the notations of this section, the modified error estimate is given
by

ESTmod :=
y(Tn+2) − y(Tn+2)

ck,mod − 1
=

∆y(Tn+2) − ∆y(Tn+2)

ck,mod − 1
(26)

with some suitable constant ck,mod. To adjust this constant, we observe

∆x(Tn+2) = −ckBn
u(k+1)(Tn)
(k + 1)!

Hk+2 + O(Hk+3) with ck :=
∫ 2

0

k∏

ι=0

(ι + s) ds

(27)
and set ck,mod := ck/ck to get an asymptotically correct error estimate for sys-
tems without direct feed-through, see (Eq. 20). For constant extrapolation, we
have c0,mod = 2 = 2k+1 since c0 = c̃0. For linear and quadratic extrapolation,
c1,mod = 14/5 and c2,mod = 32/9 are used.
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For coupled systems with direct feed-through in one of the subsystems,
we consider the error in input function u(t) at t = Tn+2 :

∆u(Tn+2) = −u(k+1)(Tn)
(k + 1)!

k∏

ι=0

(Tn+2 − Tn−ι) + O(Hk+2)

= −(k + 2)u(k+1)(Tn)Hk+1 + O(Hk+2) .

This error is k + 2 times larger than the first error term in lun+2, see (Eq. 18),
implying the necessary condition ck,mod = k + 2 for an asymptotically correct
modified error estimate (Eq. 26) in the case of direct feed-through in one
of the subsystems (Dn , 0). This condition is trivially satisfied for constant
extrapolation but slightly violated in the linear and quadratic case (k = 1 and
k = 2).

5. Numerical test: Benchmark Quarter car

Fig. 3 shows the strongly simplified model of a quarter car with two
point masses mw and mc representing the primary mass (unsprung mass) and
the secondary mass (spring mounted mass), respectively, see [17]. The point
masses have a vertical degree of freedom. They are coupled by a linear
spring-damper element Fsusp representing the secondary suspension. Tire
forces are considered by an additional spring-damper element Ftire between
unsprung mass and ground.

The road profile is considered as external system input z(t). At t = 0 the
system starts in its equilibrium state xc = xw = 0 and is immediately excited
by the jump discontinuity of z. For model parameters according to Knorr
[12], Fig. 4 shows the vertical displacements illustrating the different time
scales in unsprung and spring mounted mass, respectively.

In co-simulation, both subsystems are integrated separately by standard
ODE integrators with very fine error tolerances. The subsystems are either
coupled by a displacement-displacement coupling or by a force-displacement
coupling, see Example 1. For various values of the communication step
size H , the local error ‖lyn+2‖2 of two consecutive communication steps
Tn → Tn + H , Tn + H → Tn + 2H, see (Eq. 19), is compared to the error
estimates ESTmod and ESTRich. Note that the absolute values of lyn+2 are
substantially larger in the case of force-displacement coupling (Fig. 6) since
u1 = y2 = Fsusp in that case, see Example 1. For displacement-displacement
coupling (Fig. 5), the components of y are given by position and velocity
coordinates xc, ẋc, xw, ẋw that are of much smaller magnitude than |Fsusp|.
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mc ẍc = Fsusp(xc, ẋc, xw, ẋw)

mw ẍw = Ftire(xw, ẋw, uex(t)) − Fsusp(xc, ẋc, xw, ẋw)

uex(t) = ( z(t), ż(t) )>, z(t) =


0 if t ≤ 0

0.1 if t > 0

Fsusp = kc(xw − xc) + dc(ẋw − ẋc)

Ftire = kw(z − xw) + dw(ż − ẋw)

Fig. 3. Benchmark Quarter car: Equations of motion

Furthermore, the numerical test results in Figs. 5 and 6 illustrate
‖lyn+2‖2 = O(Hk+2) for systems without direct feed-through (displacement-
displacement coupling, cD = 0, Fig. 5) and the reduced order
‖lyn+2‖2 = O(Hk+1) for systems with direct feed-through in at least one subsys-
tem (force-displacement coupling, cD = 1, Fig. 6), see (Eq. 19) and (Eq. 20),
respectively. In both cases, the new, alternative error estimate ESTmod is as
reliable as the classical estimate ESTRich.
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mc 400.0 kg
mw 40.0 kg
kc 15000.0N/m
kw 150000.0N/m
dc 1000.0Ns/m
dw 0.0Ns/m

Fig. 4. Benchmark Quarter car: Model parameters and solution [12]

Fig. 5. Benchmark Quarter car, co-simulation with displacement-displacement coupling: Local
error (“+”) and error estimates ESTRich, ESTmod (“◦”, “∇”)

The local error analysis in Section 4 and numerical test results like the
ones in Figs. 5 and 6 are important prerequisites for a theoretically justified
communication step size control. The end-user, however, is not interested
in local errors but in global ones. The convergence analysis in Section 3
shows that neither for displacement-displacement coupling nor for force-
displacement coupling the global errors ε x

n , ε
y
n, εu

n suffer from order reduction.
Moreover, the global errors ε x

n are expected to be in the same order of
magnitude for both types of coupling since the state vector x has in both
cases the same components xc, ẋc, xw and ẋw.
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Fig. 6. Benchmark Quarter car, co-simulation with force-displacement coupling: Local error
(“+”) and error estimates ESTRich, ESTmod (“◦”, “∇”)

Note that for a practical implementation of local error estimates like
ESTRich and ESTmod in communication step size control, the discretization
errors of the (micro) time integration in the individual subsystems can no
longer be neglected. This open problem is subject of future research, see also
[19] for some preliminary results.

6. Conclusions

The numerical efficiency of co-simulation algorithms may be improved
substantially by higher-order approximations of subsystem inputs and by vari-
able communication step sizes. A strict mathematical analysis shows that the
global error is bounded in terms of local errors if there are no algebraic
loops in the coupled system. Local error estimates based on Richardson
extrapolation techniques and some modifications have been studied in detail
proving their efficiency in systems without direct feed-through like mechani-
cal systems with displacement-displacement coupling. A force-displacement
coupling results in direct feed-through in one of the subsystems and may
deteriorate the favourable asymptotic properties of classical error estimation
strategies.
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Analiza błędów i estymatory błędów wspólnej stymulacji w Funkcjonalnym Interfejsie
Modelowania FMI wersji 2.0

S t r e s z c z e n i e

Złożone multidyscyplinarne modele stosowane w dynamice systemów są zwykle skonstruo-
wane z podsystemów. Modularna struktura modelu odzwierciedla modularną strukturę złożonych
systemów technicznych. W zastosowaniach przemysłowych poszczególne podsystemy są często
modelowane indywidualnie przy pomocy różnych multidyscyplinarnych narzędzi symulacyjnych.
Funkcjonalny interfejs modelowania (Functional Mock-up Interface, FMI) spełnia rolę standardo-
wego interfejsu do łączenia modeli fizycznych z różnych dziedzin i pomaga rozwiązać problemy
importu i eksportu elementów modelu w przemysłowych narzędziach modelowania (FMI for Model
Exchange), lub standaryzacji interfejsów wspólnej stymulacji w dynamice systemów nieliniowych
(FMI for Co-Stimulation), por. [10]. Odżywa na nowo zainteresowanie algorytmicznymi i nu-
merycznymi aspektami wspólnej stymulacji, co zainspirowało do podjęcia wielu nowych badań
nad estymacją błędów i technikami stabilizacji w interfejsie FMI wersji 2.0 w kompatybilnych
środowiskach stymulacji. W prezentowanym artykule autorzy koncentrują się na wiarygodnej es-
tymacji błędów przy sterowaniu rozmiarem kroku komunikacji w ramach tego interfejsu.


