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SIMULATION OF ELASTIC GEARS WITH NON-STANDARD
FLANK PROFILES

There exist cases where precise simulations of contact forces do not allow
modeling the gears as rigid bodies but a fully elastic description is needed. In this
paper, a modally reduced elastic multibody system including gear contact based
on a floating frame of reference formulation is proposed that allows very precise
simulations of fully elastic gears with appropriately meshed gears in reasonable time
even for many rotations. One advantage of this approach is that there is no assumption
about the geometry of the gears and, therefore, it allows precise investigations of
contacts between gears with almost arbitrary non-standard tooth geometries including
flank profile corrections.

This study presents simulation results that show how this modal approach can be
used to efficiently investigate the interaction between elastic deformations and flank
profile corrections as well as their influence on the contact forces. It is shown that
the elastic approach is able to describe important phenomena like early addendum
contact for insufficiently corrected profiles in dependence of the transmitted load.
Furthermore, it is shown how this approach can be used for precise and efficient
simulations of beveloid gears.

1. Introduction

In many technical systems, very precise simulations of contact forces
between gears require a fully elastic description, see [3] and [4]. This is
particularly true for gears with very compliable gear bodies or for gears
subject to high contact forces. A common way to model body flexibility is
the finite element (FE) method. Unfortunately, the simulation of fully elastic
gears still introduces many difficulties. First, for elastic bodies the use of an
analytical collision detection is impossible, since contact surfaces depend on
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the elastic deformation. Furthermore, it is normally preferred for gear pairs
to avoid common divisors in the number of teeth in order to reduce wear of
the flanks. This results in a very high number of different possible contact
pairs when the investigation of full rotations is necessary. Moreover, the
enormous number of degrees of freedom for a system of adequately meshed
gears renders a FE analysis of even a few rotations practically impossible. In
order to reduce the number of nodal FE degrees of freedom and to increase
computational efficiency, some sorts of model reduction technique are usually
applied, see [6].

In [4], a modally reduced elastic multibody model including contact is
presented. For the contact calculation a node-to-segment penalty formulation
and a coarse collision detection are introduced and are integrated using an
explicit time integration scheme. The algorithm and formulation making it
possible to calculate contact forces of the work are applied in this study for
the gears with non-standard flank profiles.

One technically very important application for non-standard flank pro-
files are beveloid gears, also known as conical involute gears. Nowadays,
progress in the design and production of beveloid gears enables their use
in an increasingly wide range of applications. The most familiar application
of beveloid gears is the reduction gear used in marine transmissions. Since
beveloid gears allow a certain amount of down angle, an optimal placement
of the engine is possible. The down angle is achieved by a linearly changing
profile shift of the involute profile across the width of the teeth, leading to a
very complex tooth shape, see Figure 13. The contact stresses of a straight
and a helical beveloid gear pair are introduced in [8] and [10], but the analy-
ses are established only by an FE model of one pair of contact teeth of the
gear pairs with a relatively small contact area. A straight beveloid gear pair
will be studied in this work, followed by a simulation of the whole model
with very large rotational angle and the effect of complex flank profiles on
kinematic and dynamical interaction will be investigated.

2. Elastic Mutibody Model

In this section, the description of gear wheels as elastic multibody models
is introduced and the modal reduction is explained. The contact algorithm and
some simulation results are given in the subsections. For a deeper description,
we refer to [15] and [16].

To overcome the large integration times of the FE model while still
having an accurate model, a modally reduced model is used in this work.
Usually, the deformations of gears are small and can easily be described by
linear theory. However, the main application of gears includes large rotations
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which are nonlinear by nature. Otherwise, most reduction techniques are
based on linear methods, see [1] and [17]. One way to apply linear reduction
methods despite of the large rotations is to use a floating frame of reference
formulation, described in detail in [15] and [16]. This method is specially
well suited for problems with a large movement of the reference frame and
only small elastic deformations.

The basic idea of the floating frame of reference is the separation of
the overall motion of a single flexible body into a usually nonlinear motion
of the reference frame and a linear elastic deformation with respect to the
reference frame, see [6] and [15].

The equations of motion for a free elastic multibody system read as

M(zF)żII = he(zF) + hω(v,ω, zF , żF) + ha, (1)

zII =
[
v ω żF

]T
, (2)

where M ∈ R(6+n)×(6+n) is the mass matrix, hω ∈ R6+n are generalized inertial
forces, he ∈ R6+n are generalized internal forces, v ∈ R3 and ω ∈ R3 are the
translational and the rotational velocity of the reference system, respectively.
The nodal displacements of the FE structure are denoted by zF ∈ Rn, where n
is the number of elastic degrees of freedom. All external forces and torques,
including contact forces, are summarized in ha. The approach leads to 6 +

n degrees of freedom per elastic body. For the description of the elastic
part, most often a FE model is used. Although this allows a very precise
geometrical discretization, this typically means a large number of elastic
degrees of freedom. In order to reduce the number of degrees of freedom,
modal reduction is applied.
Modal reduction

In general the linear equations of motion for a FE model read

MF z̈F + KF zF = hF , (3)

where zF ∈ Rn is the vector of nodal displacements, MF ∈ Rn×n is the global
mass matrix, KF ∈ Rn×n represents the stiffness matrix and hF ∈ Rn are the
external forces. The matrices MF and KF are constant. Even though, many
different model reduction techniques exist, see [6], the approach used in this
study is the simple modal reduction. The basic idea of the modal formulation
is to use a reduced basis of shape functions, defined by a small number of
m � n eigenvectors. The n nodal displacements zF are approximated by the
m shape functions Φred and a vector qred as

zF ≈ Φredqred , (4)
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where Φred is the modal matrix, comprised of the eigenmodes of the finite
element structure and qred ∈ Rm are the reduced elastic coordinates. The
eigenvalues ωi and the associated eigenmodes ϕi are derived from solving
the eigenvalue problem (−ωiMF + KF)ϕi = 0. The eigenmodes are cho-
sen mass-orthonormal which results in an identity matrix for the reduced
mass matrix MF,red . The reduced stiffness matrix becomes a diagonal matrix
KF,red = diag(ω2

1, . . . , ω
2
m).

The configuration of a flexible body is described using two sets of coordi-
nates. First, the reference coordinates describing the global nonlinear motion
of the body reference frame with respect to the inertial frame. Second, the
elastic coordinates describing the elastic deformation with respect to the
reference frame. Therefore, the transformation between the elastic, i.e. the
modal coordinates, and nodal coordinates with respect to the inertial frame,
reads as

ρI = A
(
ρi + R + ui

)
with ui = Φq, (5)

where A is the transformation matrix between the inertial system I and the
reference frame i, ρi is the position of the body reference frame, R is the
constant position representing the undeformed configuration and ui is the
elastic displacement of the flexible body.

2.1. Contact algorithm

To calculate the contact forces, a general node-to-surface approach is
used, see [7]. During normal operation with large rotational angles each
flank may come into contact with many different flanks of the opposed
gear. A collision detection looping over all flanks would be possible, but
is very expensive, since a transformation from modal coordinates to nodal
coordinates for every flank node would be needed despite the fact that for
geometrical reasons only a small number of flanks are in contact at the same
time. To reduce the possible contact nodes, and thus the numerical cost for
the transformation, a coarse collision detection is used, see [3].
Coarse collision detection

The coarse collision detection is based on index nodes. Each tooth of a
gear is referenced by an index node that is located in the center of each tooth.
The absolute positions of the index nodes are calculated in every integration
step. The closest index node to the center of the opposite gear is determined
and called the instantaneous center node. Based on this center node, a small
number of teeth on the left and right are considered as possible contact
candidates, see Figure 1.

The coarse collision detection reduces not only the number of possible
contact nodes but also the size of the transformation matrix, which is needed
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Fig. 1. Coarse contact detection using index nodes (a) and contact candidates (b)

to transform from modal coordinates to nodal coordinates. The transforma-
tion matrix is only updated if the center node changes. Therefore, in each
integration step, only the index nodes and the currently valid transformation
matrix of the contact candidates have to be stored in memory.
Fine collision detection

The contact between two flanks will be described using a fine colli-
sion detection based on a master/slave contact formulation. The two contact
partners are separated into a master and a slave element. In a pure mas-
ter/slave contact formulation, only the penetration of slave nodes into the
master elements are considered. Therefore, the main task of the fine colli-
sion detection is to find the contact point of the slave node Q on the master
surface P1P2P3P4 of the master element as shown in Figure 2.
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Fig. 2. Fine contact determination

By using linear hexahedral elements for the discretization of both contact
partners, the shape function of the contact surfaces reads

x(ξ, η) =
1
4

4∑

i=1

(1 + ξiξ) (1 + ηiη) zF,i, ξi, ηi ∈ [±1] , (6)

where ξ and η are parameters, ξi and ηi are element boundaries and zF,i are
node coordinates of the four master nodes.

Based on the node-to-surface contact, the contact point on the master
surface can be found by solving the equations

∂x
∂ξ

T

(ξc, ηc)
[
q − x (ξc, ηc)

]
= 0, (7)

∂x
∂η

T

(ξc, ηc)
[
q − x (ξc, ηc)

]
= 0. (8)

A Newton-Raphson iteration is used to solve Equations (7) and (8). The
penetration gn of the slave node Q with coordinates q into the master surface
is calculated as

gn = nT (x (ξc, ηc) − q) with n =
x,ξ (ξc, ηc) × x,η (ξc, ηc)
‖x,ξ (ξc, ηc) × x,η (ξc, ηc) ‖ , (9)

where n is the unit normal vector of the contact point xc.
When the penetration of the slave node is determined, the nodal contact

force can be calculated using a penalty approach. Then, the nodal contact
force for the slave node follows directly from its penetration. The nodal con-
tact forces acting on the four master nodes, representing the master surface,
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follow from the participation factors of the contact point according to the
shape function and the contact point coordinates ξc and ηc.

For gn ≤ 0, there exists a contact. Following the penalty approach
with a penalty parameter cp, the nodal contact force can be determined as
fc = cp|gn (ξc, ηc) |, gn ≤ 0. The nodal contact force acting in the direction of
the normal vector of the contact point can be calculated by f c = n (ξc, ηc) fc.

The nodal contact forces on the slave node and on the master nodes of
a contact element finally follow as

f S = f c, (10)

f M,1 = −1
4

(1 + ξc) (1 + ηc) fcn, f M,2 = −1
4

(1 − ξc) (1 + ηc) fcn, (11)

f M,3 = −1
4

(1 − ξc) (1 − ηc) fcn, f M,2 = −1
4

(1 + ξc) (1 − ηc) fcn. (12)

When all nodal contact forces are determined, the overall nodal contact
force vector can be assembled and transformed to modal coordinates.

2.2. Simulation results

In this section, two involute gear pairs with parameters shown in Table 1
will be studied. The first pair is a straight gear pair, the other one is a helical
gear pair. Both pairs have the same geometrical and material properties,
except that the helical gears have a helical angle β = 8◦.

Table 1.
Major design parameters of the gear pairs

pinion large gear

number of teeth z1 = 18 z2 = 37

face width b1 = 10 mm b2 = 10 mm

root fillet radius ρa1 = 0.25 mm ρa2 = 0.25 mm

normal pressure angle αn = 20◦

normal module mn = 2 mm

As shown in [2] and [4], in a modally reduced elastic multibody model,
the number of eigenmodes up to an eigenfrequency of about 80 kHz is
necessary to get precise contact forces. In this study, the chosen number
of eigenmodes will be checked to satisfy this requirement to get correct
results. As integration scheme, an explicit Runge-Kutta scheme of order 4
with constant time step size is used.
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For the contact calculation, all the teeth flanks of both gear pairs will be
discretized very fine with the smallest finite element edge of about 0.06 mm
for the straight gears and 0.063 mm for the helical gears. The straight gear
model and the helical gear model consist of about 360000 and 406000 nodes,
respectively, see Figure 3. The following results were obtained from the
modally reduced elastic multibody model for both gear pairs. For precise re-
sults, for each pinion 200 eigenmodes and for each large gear 500 eigenmodes
are used to fulfill the criterion stated above.

Fig. 3. FE model of the straight gear pair (a) and of the helical gear pair (b)

Figure 4 presents simulation results of a few impacts of the helical gear
pair. The pinion is given an initial rotational velocity of ω0 = 50 rad/s
and the other gear is fixed. Figure 4(a) shows rotational velocities. The red
and the blue lines describe the results of the FE model and of the elastic
multibody model, respectively. The contact forces are shown in Figure 4(b).
These contact forces are accumulated normal nodal contact forces of one
flank. The impact results of the FE model and the elastic multibody model
are in very good agreement with each other during the first three contacts.
The contact forces of the two methods match very good in shape, magnitude
and the number of teeth. The very small time shift between both models
that can be observed from Figure 4(b) results from both models not being
exactly the same, as one is a FE model and the other one is a reduced elastic
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multibody model. Already a very small difference in mass results in a slightly
different velocity after impact and, hence, a slightly later or sooner contact
for the next impact. Obviously, this shift increases with increasing simulation
time. However, this shift is very small and both models agree very well.

Fig. 4. Rotational velocities (a) and contact forces (b) for the elastic multibody model and the FE
model

As shown in [3] and [4], there are no difficulties for the simulation
of large rotation angles or more revolutions of gears using this approach,
even with very high rotational velocities of gear wheels. This is practically
impossible for an FE analysis. Therefore, the following results are introduced
only by the elastic multibody approach. Figures 5 and 6 introduce the con-
tact forces of both gear pairs during meshing. Each color line describes an
accumulated normal contact force period of one tooth pair.

Table 2.
Integration time, disk and memory requirement for impact investigations on the helical gear pair
for 3 impacts for FE model and elastic multibody model using the same Computer (Intel Core

i7-2600, 3.40GHz, 8 Cores and 32 GB RAM)

model pre-processing integration time disk memory

(h) for 3 impacts (s) requirement requirement

FEM 0 71128 ≈ 1.7 GB ≈ 1.7 GB

EMBS 20 1678 ≈ 7 GB ≈ 1 GB

For each contact, some parts of the contact forces show a sudden change.
The reason for these sudden changes is the so-called phenomenon of contact
shock during meshing, when double-teeth contact changes to single-teeth
contact and vice versa. The impacts produce noise, inaccuracy in the trans-
mission ratio and wear, see [10]. This is particularly obvious for the straight
gear pair, because theoretically the contact between teeth of this type of gears
is more abrupt than of helical gears. Another reason for the sudden changes in
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Fig. 5. Contact forces for the straight gear pair with a braking torque of 20 Nm (a) and
100 Nm (b) applied to the large gear

Fig. 6. Contact forces for the helical gear pair with a braking torque of 20 Nm (a) and
100 Nm (b) applied to the large gear

the contact forces is related to the transmitted load. As a result of the elasticity
of the gears, a small bending of the teeth in contact occurs, causing a too early
tip contact of the following teeth. This early contact is often accompanied
by a very hard contact due to inappropriate contact geometries as a direct
result of the tooth bending under load, see Figure 7(a). For the helical gear
pair, the contact shock phenomenon is not so clear from the results, because
theoretically the teeth of helical gears get into contact at a single point, and
then, later go out of contact also at a point. In order to reduce the impact
influence in industrial practice, particularly for straight gears, the involute
profile in the tip region is most often modified, see Figure 7(b).

Both gear pairs are corrected by tip relief according to Figure 7(b) and
the corrected gear pairs will be simulated with the same initial and boundary
conditions as the uncorrected gear pairs. The results are shown in Figures 8, 9
and 10. Figure 8 shows the contact forces of the corrected straight gear pair,
while Figure 9 presents the contact forces of the corrected helical gear pair.
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Fig. 7. Change of contact geometry due to deformation under load (a) and flank profile correction
by tip relief (b)

Again, each line describes the accumulated normal contact force of one tooth
pair. Figure 10 presents an accumulated normal contact force of all tooth
pairs in contact. For a perfectly steady operation this should be a perfectly
horizontal line.

For the straight gear pair, comparing Figures 5 and 8, it can be seen that
the contact shocks during meshing and the discontinuity of contact forces
due to early tip contact are considerably reduced. This can also be seen
from Figure 10, where the corrected gears show a much smoother line. A
certain vibration of the contact forces still remains because of the elastic,
dynamic and geometric effects, especially at the times where double-teeth
contact changes to single-teeth contact and vice versa, but the overall contact
behavior is tremendously enhanced by the tip relief.

Fig. 8. Contact forces for the corrected straight gear pair with a braking torque of 20 Nm (a) and
100 Nm (b) applied to the large gear
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From Figures 6, 9 and 10(b), also for the helical gear pair, it can be
observed that the contact shocks are reduced for the corrected gears. Again,
the total contact force in Figure 10(b) shows the positive effect of the tip
relief correction.

Fig. 9. Contact forces for the corrected helical gear pair with a braking torque of 20 Nm (a) and
100 Nm (b) applied to the large gear

Fig. 10. Total contact forces for the straight gear pair (a) and the helical gear pair (b) with a
braking torque of 100 Nm applied to the large gear

Another typical phenomenon of gear contact can be observed in Figures 8
and 9, namely that the duration of the single-teeth contact stages are inversely
proportional to the applied forces on the gears because of deformation. When
the applied forces increase, the elastic deformation of gear bodies also rises,
and consequently the teeth will stay longer in contact. There is no difficulty
to consider this phenomenon using the fully elastic approach. This is one of
the advantages of the approach over a rigid body model, as the approach is
fully elastic.

Another advantage of the approach is that a multistage of applied forces
is quite simple to consider. Figure 11 and Figure 12 show the simulation
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results of a multistage of applied forces with three different stages of driving
torques of Ta = 100, 200 and 300 Nm applied to the large gears.

Fig. 11. Contact forces in a multistage of applied forces of the straight gear pair (a) and of the
helical gear pair (b)

The consequence of the applied forces on the elastic deformation of the
gear bodies and the contact-teeth stages are shown in Figure 11 and illustrate
the increase in overlap with increasing driving torques. Figure 12 presents the
consequence of the elastic deformation on the rotational velocity of the gears.
The change in rotational velocity is directly proportional to the applied forces,
and thus the deformations. With the same initial conditions and boundary
conditions, because of the flank geometries, the effect of elastic deformation
on the rotational velocity of the straight gears is much more significant than
of the helical gears.

Fig. 12. Rotational velocities in a multistage of applied forces of the straight gear pair (a) and of
the helical gear pair (a)



68 TRONG PHU DO, PASCAL ZIEGLER, PETER EBERHARD

3. Beveloid Gear Pair

Theoretically, for rigid gears, the contact area of beveloid gear pairs under
non-parallel axes meshing is point contact, see [11]. For flexible bodies, the
contact area will enlarge to ellipses, but the contact ellipses are relatively
small, and the tooth surface durability is generally low because of its high
contact stress. In [9] the contact ellipses of two contact-teeth are computed
using the commercial FE program Abaqus. The contact stress is presented
and suggestions on how to solve problems associated with low-load capacity
by enlarging the contact ellipses are also introduced. However, the simulation
of the whole gear pair with large rotational angles or even full revolutions is
still not practically feasible with FE. In this section, the fully elastic approach
is applied to simulate the contact forces of the whole model of a straight
beveloid gear pair.

3.1. Finite Element Model

The approach is applied to a straight beveloid gear pair. Both gears have a
profile shift angle of θ = 10◦. The most important parameters are summarized
in Table 3. The material used is steel with Young’s modulus of E = 2.1 ·1011

N/m2, density ρ = 7850 kg/m3 and Poison ratio ν = 0.3.

Table 3.
Major design parameters of the beveloid gear pair

pinion large gear

number of teeth z1 = 19 z2 = 38

face width b1 = 20 mm b2 = 20 mm

profile offset in the middle of tooth 0 0

profile shifting angle θ1 = 10◦ ρ2 = 10◦

helical angle β1 = 0◦ β2 = 0◦

root fillet radius ρ f P1 = 0.25 mm ρ f P2 = 0.25 mm

normal pressure angle αn = 20◦

normal module mn = 2 mm

intersected angle of shafts Σ = 20◦

head clearance factor ca = 0.2 mm

Again, the flanks are specially discretized very fine. Since the flank pro-
files are highly complex, in order to describe the flank geometry precisely, the
teeth must be discretized fine enough in both directions of the flank, the flank
width and the face width. The FE model of the beveloid gear pair consists
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Fig. 13. The straight beveloid gear pair (a) with non-standard flank profiles (b)

of about 303000 nodes and 250000 elements, with a smallest element edge
in the contact areas of about 0.13 mm. A linear hexahedral element with
reduced integration is used here.

3.2. Simulation results

The following results are obtained from the modally reduced elastic
multibody model for the beveloid gear pair. The pinion is given an initial
rotational velocity of ω0 = 50 rad/s and a braking torque of Ta = 1000 Nm
is applied to the large gear. For both the pinion and the large gear, 1000
eigenmodes are used for the reduced model. Simulated contact forces of the
gear pair are presented in Figure 14, where each color line is a contact force
of one tooth pair. During the whole simulation, there are always two tooth
pairs in contact at the same time, see Figure 14(a). Figure 14(b) shows the
change of the rotational velocity, caused by the elastic deformation and the
complex flank form.

Figure 15 presents the simulation results of the beveloid gear pair but
for a higher rotational velocity of about ω0 = 200 rad/s for the pinion. The
boundary conditions and the braking torque are the same as in the previous
simulation. Figure 15(b) presents the contact forces. Again, there are always
two tooth pairs in contact at the same time. Figure 15(b) shows that the
effects of the elasticity and the complex flank form are directly related to the
speed of gear wheels.
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Fig. 14. Contact forces (a) and rotational velocity (b) of the model with low initial rotational
velocity

Fig. 15. Contact forces (a) and rotational velocity (b) of the model with higher initial rotational
velocity

Figure 16 shows the contact area during meshing of a tooth pair. The data
on which the figure is based, is acquired directly from the contact calculation
process during the simulation. The figure describes the pinion in red and the
large gear in green.

As mentioned in Section 2, the contact between two flanks will be de-
scribed using a master/slave contact element. The blue nodes in Figure 16 are
the master nodes of the flank pair in contact. These points describe approxi-
mately the contact area of the contact. Together with the nodal contact forces
available from the contact forces calculation, this would allow to estimate
and illustrate the contact pressure in the contact patch.

For beveloid gears, the contact ellipses are relatively small, leading to
low-load capacity of the gear pair. Figure 16(a) shows the contact area in the
case of an applied torque of Ta = 2500 Nm, and Figure 16(b) corresponds to
an unrealistically high of the applied torque, of Ta = 10000 Nm, on the large
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Fig. 16. Contact area of gear teeth with high applied forces (a) and very high applied forces (b)

gear wheel. The results show that the contact ellipse is enlarged following
the increase of applied forces, but is still rather small.

4. Conclusion

In this study, a very detailed nonlinear FE model with contact and an
elastic multibody model of a helical gear pair has been used to investigate
several impacts. The simulation results of the two approaches agree very
well. The time integration of the elastic multibody approach is much more
efficient than a fully nonlinear transient FE analysis.

The work also shows how the modal approach can be used to efficiently
investigate the interaction between elastic deformations and flank profile cor-
rections as well as their influence on the contact forces and their rotational
velocities. Two very detailed gear pair models, one straight gear pair and
one helical gear pair, were modeled to simulate the contact forces in depen-
dence of the transmitted load. Some interesting phenomena of spur gears
were observed that are automatically included in the fully elastic approach
as opposed to classical approaches with rigid body models.

This approach allows precise investigations of contacts between gears
with almost arbitrary non-standard tooth geometries or flank profile correc-
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tions. Even precise simulations of gears with flank profiles as complex as the
investigated beveloid gears are possible and simulation results are shown.

Manuscript received by Editorial Board, October 11, 2012;
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Symulacja sprężystej przekładni zębatej o niestandardowych profilach powierzchni
bocznych zębów

S t r e s z c z e n i e

Istnieją przypadki, gdy dla dokładnej symulacji sił kontaktowych nie można modelować kół
zębatych jako ciał sztywnych, lecz jest potrzebny opis w pełni sprężysty. W artykule zaproponowano
model systemu wielu ciał uwzględniający styki między zębami, modalnie zredukowany i z zas-
tosowaniem układu odniesienia o płynnych ramach, umożliwiający bardzo dokładną symulację
w pełni sprężystych kół zębatych o różnych rodzajach zazębienia. Symulacja jest możliwa dla
znacznej liczby obrotów, przy czym wymagany czas obliczeń jest stosunkowo krótki. Zaletą tego
podejścia jest, że nie wymaga ono założeń co to geometrii zębów, dzięki czemu można dokładnie
badać zjawiska na stykach między zębami dla dowolnych, niestandardowych geometrii zębów,
w tym również o skorygowanym profilu powierzchni bocznej.

W artykule przedstawiono wyniki symulacji, które pokazują, że takie modalne podejście może
być użyteczne przy badaniu zależności między odkształceniami sprężystymi a korekcją profili
zębów, a także ich wpływu na siły kontaktowe. Pokazano, że stosując model sprężysty można
opisywać ważne zjawiska, takie jak wczesny kontakt głowy zęba w przypadku niedostatecznej
korekcji profilu w zależności od przenoszonego obciążenia. Co więcej, pokazano że opisany sposób
podejścia może być wykorzystany przy precyzyjnej i wydajnej symulacji przekładni stożkowych.


