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Abstract. The Drazin inverse of matrices is applied in order to find the solutions of the state equations of fractional descriptor discrete-time
linear systems. The solution of the state equation is derived and the set of consistent initial conditions for a given set of admissible inputs is

established. The proposed method is illustrated by a numerical example.
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3. Introduction

Descriptor (singular) linear systems have been considered
in many papers and books [1-19]. The eigenvalues and in-
variants assignment by state and output feedbacks have been
investigated in [8, 12, 17], and the minimum energy control
of descriptor linear systems in [20, 21]. The computation of
Kronecker’s canonical form of singular pencil has been ana-
lyzed in [19]. The positive linear systems with different frac-
tional orders have been addressed in [22]. Selected problems
in theory of fractional linear systems have been described in
monograph [16].

Descriptor and standard positive linear systems with the use
of Drazin inverse have been addressed in [1-4, 10, 13, 17]. The
shuffle algorithm has been applied to checking the positivity of
descriptor linear systems in [11]. The stability of positive de-
scriptor systems has been investigated in [23]. Reduction and de-
composition of descriptor fractional discrete-time linear systems
have been considered in [14]. A new class of descriptor frac-
tional linear discrete-time system has been introduced in [15].

The Drazin inverse for finding the solution to the state
equation of fractional continuous-time linear systems has been
applied in [10] and the controllability, reachability and mini-
mum energy control of fractional discrete-time linear systems
with delays in state have been investigated in [24]. A com-
parison of three different methods for finding the solution for
descriptor fractional discrete-time linear system has been pre-
sented in [25].

In this paper the solution to the state equation of fractional
descriptor discrete-time linear systems by the use of Drazin in-
verse of matrices will be derived.

The paper is organized as follows. In section 2 the state
equation of the fractional descriptor discrete-time linear sys-
tems and some basic definitions of the Drazin inverse and its
properties are recalled. The solution to the state equation is pre-
sented in section 3 and illustrated with a numerical example in
section 4. Concluding remarks are given in section 5.
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The following notation will be used: R — the set of real
numbers, R™" — the set of nxm real matrices and R" = R"™,
Z, —the set of nonnegative integers, /,—the nXn identity ma-
trix, ker 4 (im A) — the kernel (image) of the matrix.

3. Fractional descriptor discrete-time
linear systems

Consider the fractional descriptor discrete-time linear system
EN*x;,, = Ax;+Bu;, ieZ, =1{0,...}, (1)

where x; € R" is the state vector u; € R™ is the input vector,
E,AcR™, BeR"™ and

A%x; = Z(—l)j (ijxi_ ; (2a)
J=0 a
a 1 . for j=0
Jala-1)..a-j+1) ) (2b)
Jj " for j=12,...
J:
is the fractional o € R order difference of x; .
Substituting (2) into (1) we obtain
i+l
Ex;, =A,x; + Zc_jExi_j+1 + Bu; (3a)
=2
where
[«
A, =A+E«a, cj:(—l)’( j (3b)
J
It is assumed that det £ = 0, but
det[Ez—A,]#0 for some zeC, 4)
where C is the field of complex numbers.
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Assuming that for some chosen ¢eC, det[Ec—4,]#0 and
premultiplying (3a) by [Ec— Aa]_l, we obtain

i+l

Ex;, = A,x; +chEx,-7j+l +Bu,, (5a)
j=2
where
E=[Ec—A,|"E, 4, =[Ec—A4,1"4,,
(5b)

B=[Ec-4,1"'B.
Note that the equations (3a) and (5a) have the same solution
X, i€”Z,.
Definition 1. [4, 17] The smallest nonnegative integer ¢q is
called the index of the matrix E € R™" if

rank E9 =rank E . (6)

Definition 2. [4, 17] A matrix E" is called the Drazin inverse
of £ € R™" if it satisfies the conditions

EEP =EPE, (7a)
EPEEP =EP, (7b)
EPEM = F4, (7¢)

where ¢ is the index of E defined by (6).

The Drazin inverse E” of a square matrix E always exists
and is unique [4, 17]. If detE #0 then E” = E~'. Some meth-
ods for computation of the Drazin inverse are given in [17, 19]
and in the Appendix.

Theorem 1. The matrices £ and 4, defined by (5b) satisfy
the following equalities

|, AF-FA, and APE=FA? E’4, -4,E°

—_— — Ny — s 8
APEP =EP4P, (82)
2. kerd, nkerE = {0}, (8b)
— J 0 — -1
3. E=T r gP=r’ OT’l, (8¢)
0 N ) 0 0
detT #0, J e R, is nonsingular, N € R"™"
is nilpotent, n; +n, =n,
4. (I,-EE")4,4P =1,-EE"” and
(I, -EEP)EAP)1 =0. (8d)
Proof. Using (5b) we obtain
Ec—A, =[Ec—A,] ' [Ec-4,]=1, 9)
and L
A,=Ec-1I,. (10)
Therefore
EA, =E[Ec—1,]=[Ec—1,]E = A,E . (11)
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The proof of the remaining equalities (8) is similar. O
Theorem 2. Let

P=EE", (12a)
and
0=E"4,. (12b)
Then:
5. PF=P fork=23,... (13)
6. PO=0P=0, (14)
7. PEP=EP. (15)
Proof. Using (12a) we obtain
P*=EEPEEP =EEP =P (16)
since by (7b) E PEEP =EP” and by induction
P =p'P=EEPEEP =P*>=P fork=23,.... (17)
Using (12) we obtain
PQ=EEPEP4,=E"EE"4,=E"4,=0 (18)

and
OP=E"4,EE? = EPE4,E” = EPEE4, =E"4, =0 (19)
Using (12a), (7a) and (7b) we obtain

PEP =FEPEP =EPEEP =EP . (20)

3. Solution to the state equation by the use of
Drazin inverse

In this section the solution to the state equation (1) will be
derived by the use of the Drazin inverses of the matrices E
and 4, .

Theorem 3. The solution to the equation (5a) is given by

xX; = 0'Pv+ czQi_sz + c3Qi_3Pv +...+2¢;,OPv+c; Py

- = 1)
+ZEDQl_k_lBuk +(P_111)ZQkAaDBui+k
k=0 k=0

where Q and P are defined by (12), coefficient ¢; can be com-
puted using (3b) and veR" is arbitrary.

Proof. The system is linear thus the proof can be accomplished
independently for the initial conditions and inputs. Taking into
account only the first term of (21), we obtain

Ex,, = E[0™ Pv+c,Q7 Pv+ ;0 Py +.. 4+ 2¢,0Pv+ ¢, PV
= A, [Q'Pv+c,0 2 Py+ ;0 Pyt ..+ 2¢, ,OPv+ ¢, PV]  (22)

1
=Aux; + chExi—kH
=2
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since by Theorems 1 and 2 conditions (8a) and (13 — 15) hold.
The proof for the next two terms of (21) is similar to the proof
for standard descriptor discrete-time linear systems given in
[4,17]. o

From (21) for i = 0 we have

[/
xo=Pv+(P-1,)) 0" 4 Buy .
k=0

(23)

Equality (23) defines the set of consistent initial conditions X,

x, € X, for given a set of admissible inputs Uy, u, € Uy, k=

0,1,...,g-1.

If u, =0,k=0,1,..., g — 1, then from (23) we obtain
Xy =Pv and x; € ImP (24)

where 1,,, p denotes the image of P .

Remark 1. The solution to the equation (5a) for u; =0, i€ Z,
can be computed recurrently using the formula

i
x; =0x;, +ZCkPxi_k .

(25)
k=2
Theorem 2. Let
Do()=0"+ D c; AP, (26)
k=2
i1
@)=Y E"0"'B, (27)
k=0
where O and P are defined by (12).
Then
POy (i) =@ (0), (28)
PO(i) = D). (29)
Proof. Using (12) and (26), we obtain
PDy(i)=P Q'+ ;AP |=0"+) ¢, 4,P (30)
k=2 k=2
since (14) and (13) hold.
Similarly, using (27), (14) and (15) we obtain
i1 i1
PO>i)=Y PEPQ™'B=Y EPO™'B=d@). (1)
k=0 k=0
4. Example
Consider the equation (1) with the matrices
1 00 0o 1 0 1
E=|0 1 0|, A=|-2 -3 0| B=|0]| for ¢ =0.5.(32)
000 1 2 -1 2
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In this case we have

05 1 0
A, =A+Ea=|-2 -25 0 (33)
1 2 -1
The pencil of (32) is regular, since
z-05 -1 0
det[Ez—A4,]=| 2 z+25 0 (34)
-1 -2 1
We choose ¢ = 0 and the matrices (5b) take the forms
E=[Ec-A,]"'E=[-4,1"E
~05 -1 0]'[1 0 0
= 2 25 0|0 1 0
-1 -2 1|10 0 0
2.5 1 0
35
=——1 -2 =05 0|, 33)
0.75
-15 0 0
-1 0 0
A, =[-4,1"4,=[0 -1 0
0o 0 -1

To compute the Drazin inverse of the matrix E we use the
procedure given in the Appendix and we obtain

2.5 1

_ 1 100
E=VW, V=—-| -2 -05| W= :
0.75 010
-15
EP =vwEV]'w
25 1 .
L s 7556 355611 0 0 (36)
0.75 =711 =311t jo 1 0
05 -1 0
=l 2 25 0|
35 4 0
and
P=EPE
—0.5—1012.510100
= 2 25 0|]—| -2 -05 0[|=/0 1 0, (37a)
35 4 0 -15 0 o] |1 20
Q:EDZa
05 -1 0][-1 0 0 05 1 0
=[ 2 25 0[l0 -1 0|=| -2 =25 0 (37b)
35 4 0/lo 0 —1| [-35 -4 0
397
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Using (21) for u, =0, k=0,1,... and (37) for v=[1 2 O]T

we can compute

1 2.5
Xo=Pv=|2|, x,=0xy=| =7 |,
E -11.5
[—5.688
Xy =0x; +cyPxy = 12.625 |,
| 19.563
9.977
Xy =0x) +cyPx) +cyPxy =| —20.547 |, (38)
-31.117
-15.789
X4 =0x3+cyPxy +c3Px) +c,Pxy =| 31.984 |,
48.18
24.58
X5 =0xy +cyPxy +cyPxy + ¢4 Px) +c5Pxy =| —49.324 |.
—74.068

5. Concluding remarks

The Drazin inverse of matrices has been applied to find the
solutions of the state equations of the descriptor fractional
discrete-time systems with regular pencils. The equality (23)
defining the set of admissible initial conditions for given in-
puts has been derived. Some properties of the matrices P,
0, ®y(i) and ®(7) have been established (Theorem 2 and
4). The proposed method has been illustrated by a numerical
example.

Comparing the presented method with the method based
on the Weierstrass decomposition of the regular pencil [16],
we may conclude that the proposed method is computationally
attractive since the Drazin inverse of matrices can be comput-
ed by the use of well-known numerical methods [17, 19]. The
presented method can be extended to the positive descriptor
fractional continuous-time linear systems. An open problem is
an extension of the considerations for standard and positive
continuous-discrete descriptor fractional linear systems.
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A. Procedure for computation of Drazin
inverse matrices

To compute the Drazin inverse E” of the matrix E € R™"
defined by (7b) the following procedure is recommended.

Procedure A.1.
Step 1. Find the pair of matrices ¥ € R, W € R™" such that

E=VW, rankV =rank W =rank E =r.  (Al)
As the r columns (rows) of the matrix V (W) the r
linearly independent columns (rows) of the matrix E
can be chosen.

Step 2. Compute the nonsingular matrix

WEV e R™" . (A2)
Step 3. The desired Drazin inverse matrix is given by
EP =V[WEV]'W . (A3)

Proof. It will be shown that the matrix (A3) satisfies the
three conditions (7) of Definition 2. Taking into account that
detWV #0 and (A1) we obtain

WEVT =wywv 1" =pwv 1w (A4)
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Using (7a), (Al) and (A4) we obtain

EEP =ywvIwev1™'w =vwyiwy 1wy 1'w
=vpw'w

and

EPE =viwEVI'wyw =vpwv 1w 1 wvw
=Vwvw.

Therefore, the condition (7a) is satisfied.
To check the condition (7b) we compute

EPEEP =vIWEV'wywv[WEV]'w
=VIWVYWV 1 WywyvWEV]'W
=VIWEV]'W =EP.

Therefore, the condition (7b) is also satisfied.
Using (7¢), (A1), (A3) and (A4) we obtain
EPE™ —ywEVI'ww)r
vy v T wyw (yw)?
=V ' wow)! =vwyw)!
=(Vw)? =E1

where ¢ is the index of E .
Therefore, the condition (7¢) is also satisfied.

(A5a)

(A5b)

(A6)

(A7)
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