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The following notation will be used: ℜ  – the set of real 
numbers, mn×ℜ  – the set of mn×  real matrices and 1×ℜ=ℜ nn

 
, 

+Z – the set of nonnegative integers, nI – the nn×  identity ma-
trix, ker A (im A) – the kernel (image) of the matrix.

3.	 Fractional descriptor discrete-time 
linear systems

Consider the fractional descriptor discrete-time linear system
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1. Introduction 

Descriptor (singular) linear systems have been 
considered in many papers and books [1-19]. The 
eigenvalues and invariants assignment by state and output 
feedbacks have been investigated in [8, 12, 17], and the 
minimum energy control of descriptor linear systems in 
[20, 21]. The computation of Kronecker’s canonical form 
of singular pencil has been analyzed in [19]. The positive 
linear systems with different fractional orders have been 
addressed in [22]. Selected problems in theory of fractional 
linear systems have been described in monograph [16]. 

Descriptor and standard positive linear systems with the 
use of Drazin inverse have been addressed in [1-4, 10, 13, 
17]. The shuffle algorithm has been applied to checking the 
positivity of descriptor linear systems in [11]. The stability 
of positive descriptor systems has been investigated in [23]. 
Reduction and decomposition of descriptor fractional 
discrete-time linear systems have been considered in [14]. 
A new class of descriptor fractional linear discrete-time 
system has been introduced in [15]. 

The Drazin inverse for finding the solution to the state 
equation of fractional continuous-time linear systems has 
been applied in [10] and the controllability, reachability 
and minimum energy control of fractional discrete-time 
linear systems with delays in state have been investigated 
in [24]. A comparison of three different methods for 
finding the solution for descriptor fractional discrete-time 
linear system has been presented in [25].  

In this paper the solution to the state equation of 
fractional descriptor discrete-time linear systems by the use 
of Drazin inverse of matrices will be derived. 

The paper is organized as follows. In section 2 the state 
equation of the fractional descriptor discrete-time linear 
systems and some basic definitions of the Drazin inverse 
and its properties are recalled. The solution to the state 
equation is  presented in section 3 and illustrated with a  

numerical example in section 4. Concluding remarks are 
given in section 5. 

The following notation will be used:   – the set of real 
numbers, mn  – the set of mn  real matrices and 

1 nn , Z – the set of nonnegative integers, nI – the 
nn  identity matrix, ker A (im A) – the kernel (image) of 

the matrix. 

2. Fractional descriptor discrete-time linear 
systems 

Consider the fractional descriptor discrete-time linear 
system 

iii BuAxxE  1
 , ,...}1,0{ Zi ,            (1) 

where n
ix   is the state vector m

iu   is the input 
vector, nnAE , , mnB   and 
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is the fractional   order difference of ix . 
Substituting (2) into (1) we obtain 
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where 
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where n
ix ℜ∈  is the state vector m

iu ℜ∈  is the input vector, 
nnAE ×ℜ∈, , mnB ×ℜ∈  and
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is the fractional ℜ∈α  order difference of ix .
Substituting (2) into (1) we obtain
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investigated in [8, 12, 17], and the minimum energy control 
of descriptor linear systems in [20, 21]. The computation of 
Kronecker’s canonical form of singular pencil has been ana-
lyzed in [19]. The positive linear systems with different frac-
tional orders have been addressed in [22]. Selected problems 
in theory of fractional linear systems have been described in 
monograph [16].

Descriptor and standard positive linear systems with the use 
of Drazin inverse have been addressed in [1‒4, 10, 13, 17]. The 
shuffle algorithm has been applied to checking the positivity of 
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scriptor systems has been investigated in [23]. Reduction and de-
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equation of fractional continuous-time linear systems has been 
applied in [10] and the controllability, reachability and mini-
mum energy control of fractional discrete-time linear systems 
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sented in section 3 and illustrated with a numerical example in 
section 4. Concluding remarks are given in section 5.
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6. QQPPQ  ,                   (14) 

7. DD EEP  .     (15) 

Proof. Using (12a) we obtain 

PEEEEEEP DDD 2                      (16) 

since by (7b) DDD EEEE   and by induction 

PPEEEEPPP DDkk   21  for k = 2,3,….   (17) 

Using (12) we obtain 

QAEAEEEAEEEPQ DDDDD       (18) 

and 

QAEAEEEEAEEEEAEQP DDDDDDD    (19) 

Using (12a), (7a) and (7b) we obtain 

DDDDDD EEEEEEEEP  .            (20) 
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Note that the equations (3a) and (5a) have the same solution 
ix , +∈ Zi .

Definition 1. [4, 17] The smallest nonnegative integer q is 
called the index of the matrix nnE ×ℜ∈  if
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It is assumed that det E = 0, but  

0]det[  AEz  for some Cz ,              (4) 

where C is the field of complex numbers. 
Assuming that for some chosen Cc , 0]det[  AEc  

and premultiplying (3a) by 1][  AEc , we obtain 
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1
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11  ,          (5a) 

where  

EAEcE 1][   ,  AAEcA 1][  , 

 BAEcB 1][   .                           (5b) 

Note that the equations (3a) and (5a) have the same solution 
ix ,  Zi . 

Definition 1. [4, 17] The smallest nonnegative integer q is 
called the index of the matrix nnE   if  

1rank rank  qq EE .                          (6) 

Definition 2. [4, 17] A matrix DE  is called the Drazin 
inverse of nnE   if it satisfies the conditions 

EEEE DD  ,                              (7a) 
DDD EEEE  ,                            (7b) 

qqD EEE 1 ,                              (7c) 

where q is the index of E  defined by (6). 
The Drazin inverse DE  of a square matrix E  always 
exists and is unique [4, 17]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [17, 19] and in the Appendix. 
Theorem 1. The matrices E  and A  defined by (5b) 
satisfy the following equalities 

1.  AEEA   and DD AEEA   , DD EAAE   ,  
DDDD AEEA   ,                                                 (8a) 

2. }0{kerker  EA ,                                           (8b) 
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 0det T , 11 nnJ  , is nonsingular, 
 22 nnN   is nilpotent, nnn  21 , 

4. D
n

DD
n EEIAAEEI  )(  and 

0))((  qDD
n AEEEI  .                                      (8d) 

Proof. Using (5b) we obtain 

nIAEcAEcAcE   ][][ 1
             (9) 

and 

nIcEA  .                                  (10) 

Therefore 

EAEIcEIcEEAE nn   ][][ .         (11) 

The proof of the remaining equalities (8) are similar. □ 
Theorem 2. Let 

DEEP  ,                                 (12a) 

and 

AEQ D .                               (12b) 

Then: 

5. PPk   for k = 2,3,…                                           (13) 

6. QQPPQ  ,                   (14) 

7. DD EEP  .     (15) 

Proof. Using (12a) we obtain 

PEEEEEEP DDD 2                      (16) 

since by (7b) DDD EEEE   and by induction 

PPEEEEPPP DDkk   21  for k = 2,3,….   (17) 

Using (12) we obtain 

QAEAEEEAEEEPQ DDDDD       (18) 

and 

QAEAEEEEAEEEEAEQP DDDDDDD    (19) 

Using (12a), (7a) and (7b) we obtain 

DDDDDD EEEEEEEEP  .            (20) 
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.� (6)

Definition 2. [4, 17] A matrix DE  is called the Drazin inverse 
of nnE ×ℜ∈  if it satisfies the conditions
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It is assumed that det E = 0, but  

0]det[  AEz  for some Cz ,              (4) 

where C is the field of complex numbers. 
Assuming that for some chosen Cc , 0]det[  AEc  

and premultiplying (3a) by 1][  AEc , we obtain 
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where  

EAEcE 1][   ,  AAEcA 1][  , 

 BAEcB 1][   .                           (5b) 

Note that the equations (3a) and (5a) have the same solution 
ix ,  Zi . 

Definition 1. [4, 17] The smallest nonnegative integer q is 
called the index of the matrix nnE   if  

1rank rank  qq EE .                          (6) 

Definition 2. [4, 17] A matrix DE  is called the Drazin 
inverse of nnE   if it satisfies the conditions 

EEEE DD  ,                              (7a) 
DDD EEEE  ,                            (7b) 

qqD EEE 1 ,                              (7c) 

where q is the index of E  defined by (6). 
The Drazin inverse DE  of a square matrix E  always 
exists and is unique [4, 17]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [17, 19] and in the Appendix. 
Theorem 1. The matrices E  and A  defined by (5b) 
satisfy the following equalities 

1.  AEEA   and DD AEEA   , DD EAAE   ,  
DDDD AEEA   ,                                                 (8a) 

2. }0{kerker  EA ,                                           (8b) 

3. 1

0
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



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
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1
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
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
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 TJTE D ,            (8c) 

 0det T , 11 nnJ  , is nonsingular, 
 22 nnN   is nilpotent, nnn  21 , 

4. D
n

DD
n EEIAAEEI  )(  and 

0))((  qDD
n AEEEI  .                                      (8d) 

Proof. Using (5b) we obtain 

nIAEcAEcAcE   ][][ 1
             (9) 

and 

nIcEA  .                                  (10) 

Therefore 

EAEIcEIcEEAE nn   ][][ .         (11) 

The proof of the remaining equalities (8) are similar. □ 
Theorem 2. Let 

DEEP  ,                                 (12a) 

and 

AEQ D .                               (12b) 

Then: 

5. PPk   for k = 2,3,…                                           (13) 

6. QQPPQ  ,                   (14) 

7. DD EEP  .     (15) 

Proof. Using (12a) we obtain 

PEEEEEEP DDD 2                      (16) 

since by (7b) DDD EEEE   and by induction 

PPEEEEPPP DDkk   21  for k = 2,3,….   (17) 

Using (12) we obtain 

QAEAEEEAEEEPQ DDDDD       (18) 

and 

QAEAEEEEAEEEEAEQP DDDDDDD    (19) 

Using (12a), (7a) and (7b) we obtain 

DDDDDD EEEEEEEEP  .            (20) 

□ 
 

where q is the index of E  defined by (6).
The Drazin inverse DE  of a square matrix E  always exists 
and is unique [4, 17]. If 0det ≠E  then 1−= EE D . Some meth-
ods for computation of the Drazin inverse are given in [17, 19] 
and in the Appendix.
Theorem 1. The matrices E  and αA  defined by (5b) satisfy 
the following equalities

1.	 αα AEEA =  and 
DD AEEA αα = , 

DD EAAE αα = , 
DDDD AEEA αα = ,�

(8a)

2.	 }0{kerker =∩ EAα ,� (8b)

3.	 1

0
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
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
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0det ≠T , 11 nnJ ×ℜ∈ , is nonsingular, 22 nnN ×ℜ∈

is nilpotent, nnn =+ 21 ,

4.	 D
n

DD
n EEIAAEEI −=− αα)(  and
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It is assumed that det E = 0, but  

0]det[  AEz  for some Cz ,              (4) 

where C is the field of complex numbers. 
Assuming that for some chosen Cc , 0]det[  AEc  

and premultiplying (3a) by 1][  AEc , we obtain 
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where  

EAEcE 1][   ,  AAEcA 1][  , 

 BAEcB 1][   .                           (5b) 

Note that the equations (3a) and (5a) have the same solution 
ix ,  Zi . 

Definition 1. [4, 17] The smallest nonnegative integer q is 
called the index of the matrix nnE   if  

1rank rank  qq EE .                          (6) 

Definition 2. [4, 17] A matrix DE  is called the Drazin 
inverse of nnE   if it satisfies the conditions 

EEEE DD  ,                              (7a) 
DDD EEEE  ,                            (7b) 

qqD EEE 1 ,                              (7c) 

where q is the index of E  defined by (6). 
The Drazin inverse DE  of a square matrix E  always 
exists and is unique [4, 17]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [17, 19] and in the Appendix. 
Theorem 1. The matrices E  and A  defined by (5b) 
satisfy the following equalities 

1.  AEEA   and DD AEEA   , DD EAAE   ,  
DDDD AEEA   ,                                                 (8a) 

2. }0{kerker  EA ,                                           (8b) 

3. 1

0
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 0det T , 11 nnJ  , is nonsingular, 
 22 nnN   is nilpotent, nnn  21 , 

4. D
n

DD
n EEIAAEEI  )(  and 

0))((  qDD
n AEEEI  .                                      (8d) 

Proof. Using (5b) we obtain 

nIAEcAEcAcE   ][][ 1
             (9) 

and 

nIcEA  .                                  (10) 

Therefore 

EAEIcEIcEEAE nn   ][][ .         (11) 

The proof of the remaining equalities (8) are similar. □ 
Theorem 2. Let 

DEEP  ,                                 (12a) 

and 

AEQ D .                               (12b) 

Then: 

5. PPk   for k = 2,3,…                                           (13) 

6. QQPPQ  ,                   (14) 

7. DD EEP  .     (15) 

Proof. Using (12a) we obtain 

PEEEEEEP DDD 2                      (16) 

since by (7b) DDD EEEE   and by induction 

PPEEEEPPP DDkk   21  for k = 2,3,….   (17) 

Using (12) we obtain 

QAEAEEEAEEEPQ DDDDD       (18) 

and 

QAEAEEEEAEEEEAEQP DDDDDDD    (19) 

Using (12a), (7a) and (7b) we obtain 

DDDDDD EEEEEEEEP  .            (20) 
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.� (8d)

Proof. Using (5b) we obtain
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It is assumed that det E = 0, but  

0]det[  AEz  for some Cz ,              (4) 

where C is the field of complex numbers. 
Assuming that for some chosen Cc , 0]det[  AEc  

and premultiplying (3a) by 1][  AEc , we obtain 
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where  
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 BAEcB 1][   .                           (5b) 

Note that the equations (3a) and (5a) have the same solution 
ix ,  Zi . 

Definition 1. [4, 17] The smallest nonnegative integer q is 
called the index of the matrix nnE   if  

1rank rank  qq EE .                          (6) 

Definition 2. [4, 17] A matrix DE  is called the Drazin 
inverse of nnE   if it satisfies the conditions 

EEEE DD  ,                              (7a) 
DDD EEEE  ,                            (7b) 

qqD EEE 1 ,                              (7c) 

where q is the index of E  defined by (6). 
The Drazin inverse DE  of a square matrix E  always 
exists and is unique [4, 17]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [17, 19] and in the Appendix. 
Theorem 1. The matrices E  and A  defined by (5b) 
satisfy the following equalities 

1.  AEEA   and DD AEEA   , DD EAAE   ,  
DDDD AEEA   ,                                                 (8a) 
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4. D
n

DD
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0))((  qDD
n AEEEI  .                                      (8d) 

Proof. Using (5b) we obtain 

nIAEcAEcAcE   ][][ 1
             (9) 

and 

nIcEA  .                                  (10) 

Therefore 

EAEIcEIcEEAE nn   ][][ .         (11) 

The proof of the remaining equalities (8) are similar. □ 
Theorem 2. Let 

DEEP  ,                                 (12a) 

and 

AEQ D .                               (12b) 

Then: 

5. PPk   for k = 2,3,…                                           (13) 

6. QQPPQ  ,                   (14) 

7. DD EEP  .     (15) 

Proof. Using (12a) we obtain 

PEEEEEEP DDD 2                      (16) 

since by (7b) DDD EEEE   and by induction 

PPEEEEPPP DDkk   21  for k = 2,3,….   (17) 

Using (12) we obtain 
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and 
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Using (12a), (7a) and (7b) we obtain 
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The proof of the remaining equalities (8) is similar. □
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exists and is unique [4, 17]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [17, 19] and in the Appendix. 
Theorem 1. The matrices E  and A  defined by (5b) 
satisfy the following equalities 
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and 
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Therefore 
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The proof of the remaining equalities (8) are similar. □ 
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and 
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Then: 
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6. QQPPQ  ,                   (14) 
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Using (12a), (7a) and (7b) we obtain

3.	 Solution to the state equation by the use of 
Drazin inverse

In this section the solution to the state equation (1) will be 
derived by the use of the Drazin inverses of the matrices E  
and αA .
Theorem 3. The solution to the equation (5a) is given by
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 




















i

k
kiki

ii
iii

ii
iii

i

xEcxA

PvcQPvcPvQcPvQcPvQA

PvcQPvcPvQcPvQcPvQExE

2
1

1
3

3
2

2

1
3

3
1

2
1

1

]2...[

]2...[



                

(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 

(21)

(22)

where Q and P are defined by (12), coefficient cj can be com-
puted using (3b) and nv ℜ∈  is arbitrary.
Proof. The system is linear thus the proof can be accomplished 
independently for the initial conditions and inputs. Taking into 
account only the first term of (21), we obtain

(12a)

(12b)
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since by Theorems 1 and 2 conditions (8a) and (13 – 15) hold.
The proof for the next two terms of (21) is similar to the proof 
for standard descriptor discrete-time linear systems given in 
[4, 17]. □
From (21) for i = 0 we have

Equality (23) defines the set of consistent initial conditions X0, 
x0 2 X0 for given a set of admissible inputs Uad, uk 2 Uad, k = 
0, 1,…, q – 1.
If 0=ku , k = 0,1,…, q – 1, then from (23) we obtain
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 







1

0
0 )(

q

k
k

Dk
n uBAQIPPvx  .               (23) 

Equality (23) defines the set of consistent initial conditions 
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adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 
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since (14) and (13) hold. 
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We choose c = 0 and the matrices (5b) take the forms 

 denotes the image of P .
Remark 1. The solution to the equation (5a) for 0=iu , +∈ Zi  
can be computed recurrently using the formula
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
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since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 




















i

k
kiki

ii
iii

ii
iii

i

xEcxA

PvcQPvcPvQcPvQcPvQA

PvcQPvcPvQcPvQcPvQExE

2
1

1
3

3
2

2

1
3

3
1

2
1

1

]2...[

]2...[



                
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since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 







1

0
0 )(

q

k
k

Dk
n uBAQIPPvx  .               (23) 

Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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Then 
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since (14) and (13) hold. 
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4. Example 

Consider the equation (1) with the matrices 
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In this case we have 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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Then 
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since (14) and (13) hold. 
Similarly, using (27), (14) and (15) we obtain  
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Consider the equation (1) with the matrices 
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We choose c = 0 and the matrices (5b) take the forms 
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4.	 Example
Consider the equation (1) with the matrices

In this case we have

The pencil of (32) is regular, since

We choose c = 0 and the matrices (5b) take the forms

and

To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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In this case we have 
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We choose c = 0 and the matrices (5b) take the forms 
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3. Solution to the state equation by the use of 
Drazin inverse 

In this section the solution to the state equation (1) will 
be derived by the use of the Drazin inverses of the matrices 
E  and A . 
Theorem 3. The solution to the equation (5a) is given by 
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where Q and P are defined by (12), coefficient cj can be 
computed using (3b) and nv   is arbitrary. 
Proof. The system is linear thus the proof can be 
accomplished independently for the initial conditions and 
inputs. Taking into account only the first term of (21), we 
obtain 
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(22) 
since by Theorems 1 and 2 conditions (8a) and (13) – (15) 
hold.  
The proof for the next two terms of (21) is similar to the 
proof for standard descriptor discrete-time linear systems 
given in [4, 17]. □ 
From (21) for i = 0 we have 
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Equality (23) defines the set of consistent initial conditions 

0X , 00 Xx   for given a set of admissible inputs adU , 

adk Uu  , k = 0,1,…,q – 1. 
If 0ku , k = 0,1,…,q – 1, then from (23) we obtain 

Pvx 0  and Px Im0                        (24) 

where PIm  denotes the image of P . 
Remark 1. The solution to the equation (5a) for 0iu , 

 Zi  can be computed recurrently using the formula 
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Theorem 2. Let 
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where Q and P are defined by (12). 
Then 
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Proof. Using (12) and (26), we obtain 
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since (14) and (13) hold. 
Similarly, using (27), (14) and (15) we obtain  
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4. Example 

Consider the equation (1) with the matrices 
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In this case we have 
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The pencil of (32) is regular, since 
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We choose c = 0 and the matrices (5b) take the forms 
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To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 

  
Acknowledgments. This work was supported by National 
Science Centre in Poland under work No. 
2014/13/B/ST7/03467. 

 
References 
[1] R. Bru, C. Coll, S. Romero-Vivo and E. Sanchez, “Some problems 

about structural properties of positive descriptor systems”, Lecture 
Notes in Control and Inform. Sci., vol. 294, Springer, Berlin, 233-
240 (2003). 

[2] R. Bru, C. Coll, and E. Sanchez, “About positively discrete-time 
singular systems”, System and Control: theory and applications, 
Electr. Comput. Eng. Ser., World Sci. Eng. Soc. Press, Athens, 44-
48 (2000). 

[3] R. Bru, C. Coll, and E. Sanchez, “Structural properties of positive 
linear time-invariant difference-algebraic equations”, Linear 
Algebra Appl., 349, 1-10 (2002). 

[4] S.L. Campbell, C.D. Meyer, and N.J. Rose, “Applications of the 
Drazin inverse to linear systems of differential equations with 
singular constant coefficients”, SIAMJ Appl. Math., 31 (3), 411-425 
(1976). 

(37b)



T. Kaczorek

398 Bull. Pol. Ac.: Tech. 64(2) 2016
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we can compute

5.	 Concluding remarks
The Drazin inverse of matrices has been applied to find the 
solutions of the state equations of the descriptor fractional 
discrete-time systems with regular pencils. The equality (23) 
defining the set of admissible initial conditions for given in-
puts has been derived. Some properties of the matrices P, 
Q, )(0 iΦ  and )(iΦ  have been established (Theorem 2 and 
4). The proposed method has been illustrated by a numerical 
example.

Comparing the presented method with the method based 
on the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is computationally 
attractive since the Drazin inverse of matrices can be comput-
ed by the use of well-known numerical methods [17, 19]. The 
presented method can be extended to the positive descriptor 
fractional continuous-time linear systems. An open problem is 
an extension of the considerations for standard and positive 
continuous-discrete descriptor fractional linear systems.

Acknowledgments. This work was supported by the National 
Science Centre in Poland under work No. 2014/13/B/ST7/03467.

References
[1]	 R. Bru, C. Coll, S. Romero-Vivo and E. Sanchez, “Some prob-

lems about structural properties of positive descriptor systems”, 
Lecture Notes in Control and Inform. Sci., vol. 294, Springer, 
Berlin, 233‒240 (2003).

[2]	 R. Bru, C. Coll, and E. Sanchez, “About positively discrete-time 
singular systems”, System and Control: theory and applications, 
Electr. Comput. Eng. Ser., World Sci. Eng. Soc. Press, Athens, 
44‒48 (2000).

4 

.
100

010
001

][

,
005.1
05.02
015.2

75.0
1

000
010
001

121
05.22
015.0

][][

1

1

11



























































































AAA

EAEAEcE

            (35) 

To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain 

.
045.3
05.22
015.0

010
001

111.3111.7
556.3556.7

05.1
5.02

15.2

75.0
1

][

,
010
001

 ,
05.1

5.02
15.2

75.0
1, 

1

1















 








































































 WVEWVE

WVVWE

D

 (36) 

and 

,
021
010
001

005.1
05.02
015.2

75.0
1

045.3
05.22
015.0

 



















































 


 EEP D

(37a) 

.
045.3
05.22
015.0

100
010
001

045.3
05.22
015.0























































 


 AEQ D

(37b) 

Using (21) for ,...1,0,0  kuk  and (37) for 
Tv ]021[  we can compute 

,
5.11

7
5.2

,
5
2
1

010


































 QxxPvx             (38) 

.
068.74
324.49
58.24

,
18.48

984.31
789.15

,
117.31
547.20

977.9

,
563.19
625.12
688.5

0514233245

04132234

031223

0212









































































PxcPxcPxcPxcQxx

PxcPxcPxcQxx

PxcPxcQxx

PxcQxx

 (38) 

5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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To compute the Drazin inverse of the matrix E  we use the 
procedure given in the Appendix and we obtain 
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5. Concluding remarks 

The Drazin inverse of matrices has been applied to find 
the solutions of the state equations of the descriptor 
fractional discrete-time systems with regular pencils. The 
equality (23) defining the set of admissible initial 
conditions for given inputs has been derived. Some 
properties of the matrices P, Q, )(0 i  and )(i  have been 
established (Theorem 2 and 4). The proposed method has 
been illustrated by  a numerical example. 
Comparing the presented method with the method based on 
the Weierstrass decomposition of the regular pencil [16], 
we may conclude that the proposed method is 
computationally attractive since the Drazin inverse of 
matrices can be computed by the use of well-known 
numerical methods [17, 19]. The presented method can be 
extended to the positive descriptor fractional continuous-
time linear systems. An open problem is an extension of the 
considerations for standard and positive continuous-
discrete descriptor fractional linear systems. 
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where q is the index of E . 
Therefore, the condition (7c) is also satisfied. 
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