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Abstract. In this paper, discrete-continuous project scheduling problems with preemptable activities are considered. In these problems, activities 
of a project simultaneously require discrete and continuous resources for their execution. The activities are preemptable, and the processing rate 
of each activity is a continuous, increasing function of the amount of a single continuous resource allotted to the activity at a time. The problem 
is to find a precedence- and discrete resource-feasible schedule and, simultaneously, continuous resource allocation that would minimize the 
project duration. Convex and concave processing rate functions are considered separately. We show that for convex functions the problem is 
simple, whereas for concave functions a special methodology has to be developed. We discuss the methodology for three cases of the problem: 
no discrete resource constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of discrete resources. 
In each case we analyze separately independent and precedence-related activities. Some conclusions and directions for future research are given.
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Apart from the works concerning power-aware scheduling, 
all the papers mentioned above have dealt with nonpreemptable 
jobs (or activities). In particular, discrete-continuous project 
scheduling problems with preemptable activities have not been 
considered in any paper yet. The aim of this work is to present 
a methodology for solving such problems. To this end, different 
classes of the problems will be considered, as well as different 
processing rate functions of activities. We will consider inde-
pendent and precedence-related activities, as well as three cases 
of constraints imposed on discrete resources: (i) the absence of 
discrete resource constraints, (ii) one discrete resource with unit 
requests, and (iii) an arbitrary number of discrete resources with 
integer resource requests of activities. In this paper we assume 
the project duration (or the schedule length) as the scheduling 
criterion.

This paper is organized as follows. In Section 2 we recall 
the most important results concerning the problem of allo-
cating a continuous, renewable resource among independent 
jobs to minimize the schedule length in the absence of dis-
crete resources. This section reports the basic results known for 
the continuous resource allocation problem obtained for two 
classes of the processing rate functions of jobs: convex and 
concave functions. Section 3 contains the general formulation 
of the problem under consideration. Section 4 is devoted to the 
case of convex processing rate functions. In this section we 
will show that the considered problem is trivial for each case 
analyzed in the paper. The main section of this work is Section 
5, which deals with concave processing rate functions. We di-
vide that section into three subsections. The first one – Sect. 
5.1 – concerns the case with no discrete resources. In Sect. 5.2 
we consider one discrete resource and unit resource requests 
of activities. In other words, it is a case of scheduling on par-
allel, identical machines. Finally, in Sect. 5.3 we deal with the 
most general case, where the number of discrete resources is 
arbitrary, and the resource requests of activities are arbitrary 

1.	 Introduction

In the classical project scheduling, only discrete resources 
are considered. Such resources can be assigned to activities 
of a project in amounts from a given finite set (i.e. in discrete 
numbers of units). However, in many practical situations con-
tinuous resources can also appear. These are resources which 
can be allotted to activities in arbitrary numbers from a given 
interval (i.e. in real numbers). Examples of continuous resourc-
es include power, fuel, gas, space, or even money. Discrete-con-
tinuous scheduling problems arise when jobs or activities simul-
taneously require discrete and continuous resources for their 
executions. Machine scheduling problems of this type have 
been discussed in [1–6]. In these problems, a set of machines 
is the only discrete resource. More recently, so-called power- 
(or energy-) aware scheduling problems have been considered, 
where a set of processors is a discrete resource, and power 
(energy) is a continuous resource [7–10]. Discrete-continuous 
project scheduling problems, where activities of a project are 
precedence-dependent and the number of discrete resources is 
arbitrary, have also been considered in a few papers. In [11–
13] minimization of the project duration has been taken into 
account, whereas in [14–16] maximization of the net present 
value has been considered. In all those papers, it has been as-
sumed that one continuous, renewable (or doubly-constrained) 
resource is available. The processing rate vs. resource amount 
model has been considered, in which the processing rate of a job 
(activity) is an increasing function of the amount of a continu-
ous resource allotted to this job at a time. For this model some 
important properties of optimal schedules have been proved, 
leading to several analytical results for some classes of the pro-
cessing rate functions.
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and integer. As a result, we obtain a general discrete-continu-
ous project scheduling problem with preemptable activities. In 
each of the three sections, 5.1 – 5.3, we also analyze two cases 
of precedence constraints: independent and precedence-related 
activities. Some conclusions and directions for future research 
are given in Section 6.

2.	 Continuous resource allocation

In this section we very briefly recall main theoretical results 
concerning the case when a continuous, renewable resource is 
the only limited resource, and discrete resources are not present. 
The results relate to independent jobs with equal ready times, 
the processing rate vs. resource amount job processing model, 
and the minimization of the schedule length.

We assume that one continuous, renewable resource is avail-
able. The availability of the resource over time is constant and, 
without loss of generality, we assume that its total available 
amount is equal to 1. The resource can be allotted to jobs in 
(arbitrary) amounts from the interval [0,1]. The amount (un-
known in advance) of the continuous resource allotted to job 
i at time t is denoted by ui(t), and 
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𝑛𝑛
𝑖𝑖=1 (𝑡𝑡) ≤ 1 

for any t. The resource amount 𝑢𝑢𝑖𝑖(𝑡𝑡) determines the processing rate of job i, which is described by the 
following equation: 
 𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)], 𝑥𝑥𝑖𝑖(0) = 0, 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = 𝑤𝑤𝑖𝑖 , (1) 

where: 
𝑥𝑥𝑖𝑖(𝑡𝑡) is the state of job i at time t; 
fi is the processing rate function of job i, continuous, increasing, and such that fi(0) = 0; 
𝑢𝑢𝑖𝑖(𝑡𝑡) is the continuous resource amount allotted to job i at time t; 
Ci is the completion time (unknown in advance) of job i; 
𝑤𝑤𝑖𝑖 is the size (final state) of job i. 
State 𝑥𝑥𝑖𝑖(𝑡𝑡) of job i at time t is an objective measure of work related to the processing of job i up to time 
t. It may denote, e.g., the number of man-hours already spent on processing job i, the volume (in cubic 
meters) of a constructed building, the number of standard instructions in processing computer program 
i, etc. 
In this case, the problem is to find an allocation of the continuous resource to jobs that minimizes 
the schedule length. The continuous resource allocation is defined by a piecewise continuous, 
nonnegative vector function 𝐮𝐮(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡), … , 𝑢𝑢𝑛𝑛(𝑡𝑡)], whose values 𝐮𝐮∗ = [𝑢𝑢1

∗, 𝑢𝑢2
∗ , … , 𝑢𝑢𝑛𝑛

∗ ] are 
(continuous) resource allocations corresponding to 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

∗  – the minimal value of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Completion of 
job i requires that: 
 

𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = ∫ 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)]
𝐶𝐶𝑖𝑖

0
𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑖𝑖 

(2) 

 for any t. The 
resource amount determines the processing rate of job i, which 
is described by the following equation:
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,� (1)

where:
	 xi(t)	 is the state of job i at time t;
	 fi	� is the processing rate function of job i, continuous, in-

creasing, and such that fi(0) = 0;
	 ui(t)	� is the continuous resource amount allotted to job i at 

time t;
	 Ci	 is the completion time (unknown in advance) of job i;
	 wi	 is the size (final state) of job i.

State xi(t) of job i at time t is an objective measure of work 
related to the processing of job i up to time t. It may denote, 
e.g., the number of man-hours already spent on processing 
job i, the volume (in cubic meters) of a constructed building, 
the number of standard instructions in processing computer 
program i, etc.

In this case, the problem is to find an allocation of the con-
tinuous resource to jobs that minimizes the schedule length. The 
continuous resource allocation is defined by a piecewise contin-
uous, nonnegative vector function, whose values are (continu-
ous) resource allocations corresponding to C*

max – the minimal 
value of Cmax. Completion of job i requires that:
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For simplicity, we will denote 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖=1,… ,𝑛𝑛

{𝐶𝐶𝑖𝑖} by T throughout the remainder of the paper. The 
following result, proved by Węglarz in [17], is fundamental for the continuous resource allocation 
problem: 
 
Theorem 1. The minimum schedule length T* as a function of sizes of jobs 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛) can 
always be given by: 

𝑇𝑇∗(𝐰𝐰) = min {𝑇𝑇 > 0: 𝐰𝐰 𝑇𝑇 ∈ coV}⁄  
where coV is the convex hull of V, and set V is defined as: 

𝑉𝑉 = {𝐯𝐯: 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, and ∑ 𝑢𝑢𝑖𝑖 ≤ 1
𝑛𝑛

𝑖𝑖=1
} 

𝑇𝑇∗(𝐰𝐰) is a convex function. 
 
Two corollaries follow directly from Theorem 1 [17]: 
 
Corollary 1. For convex processing rate functions of jobs, the schedule length is minimized by 
sequential processing of all jobs, each of them using the total available amount of the continuous 
resource. 
 
Corollary 2. For concave functions fi, i = 1, 2, …, n, the schedule length is minimized by fully parallel 
processing of all jobs using the following resource amounts: 
 𝑢𝑢𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇∗⁄ ), 𝑖𝑖 = 1, 2, … , 𝑛𝑛 , (3) 

where T* is the unique positive root of equation 
 

∑ 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇⁄ )

𝑛𝑛

𝑖𝑖=1
= 1 . 

(4) 

 
Let us comment briefly on Corollaries 1 and 2. 
Firstly, Corollary 1 holds, in fact, for all functions fulfilling the condition 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖, 𝑐𝑐𝑖𝑖 = 𝑓𝑓𝑖𝑖(1), 𝑖𝑖 =
1, 2, … , 𝑛𝑛, i.e. functions growing not faster than a linear function. In the sequel, the results presented for 
convex functions are true for all functions fulfilling the above condition. Secondly, Corollary 2 identifies 
very important cases, in which an optimal resource allocation can be found in an efficient way. Generally 
speaking, these are the cases when (4) can be solved analytically. From among them, the ones in which 
(4) is an algebraic equation of an order ≤ 4 are of special importance. This is, for example, the case of 

power processing rate functions of the form: 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖
1 𝛼𝛼𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖 ∈ {1, 2, 3, 4}, 𝑖𝑖 = 1, 2, … , 𝑛𝑛. Using 

these functions we can model job processing rates in a variety of practical problems, e.g., those arising 
in multiprocessor scheduling with memory allocation [18]. 
Let us finally notice that in both Corollaries preemptability of jobs is of no importance. In Corollary 1 
jobs are processed sequentially, each of them using the total available amount of the continuous 
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Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling 

the condition fi ≤ ciui, ci = fi(1), i = 1, 2, …, n, i.e. functions 
growing not faster than a linear function. In the sequel, the re-
sults presented for convex functions are true for all functions 
fulfilling the above condition. Secondly, Corollary 2 identifies 
very important cases, in which an optimal resource allocation 
can be found in an efficient way. Generally speaking, these 
are the cases when (4) can be solved analytically. From among 
them, the ones in which (4) is an algebraic equation of an order 
≤ 4 are of special importance. This is, for example, the case 
of power processing rate functions of the form: fi(ui) = ciui

1/αi, 
αi 2 {1, 2, 3, 4}, i = 1, 2, …, n. Using these functions we can 
model job processing rates in a variety of practical problems, 
e.g., those arising in multiprocessor scheduling with memory 
allocation [18].

Let us finally notice that in both Corollaries preemptability 
of jobs is of no importance. In Corollary 1 jobs are processed 
sequentially, each of them using the total available amount of 
the continuous resource. In Corollary 2 jobs are processed using 
constant resource amounts (given by Eq. (3)) from their starts 
to their completions. As a result, allowing job preemptions does 
not affect optimal schedules.

3.	 Problem formulation

In Section 2, properties of optimal schedules have been given, 
proved for the case in which a single continuous resource is the 
only limited resource, and independent jobs (activities) may be 
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performed in parallel. However, also discrete limited resources 
can appear, as well as precedence constraints between activ-
ities, which can restrict the execution order of the activities. 
Discrete-continuous project scheduling problems arise when 
precedence-related activities of a project simultaneously require 
discrete and continuous resources for their execution.

The Preemptive Discrete-Continuous Resource-Constrained 
Project Scheduling Problem (PDCRCPSP) considered in this 
paper is defined as follows. Given is a project consisting of n 
precedence-related, preemptable activities which require renew-
able resources of two types: discrete and continuous ones. We 
assume that R discrete resources are available, and ril, i = 1, 2, 
…, n; l = 1, 2, …, R is the (fixed) discrete resource request of 
activity Ai for resource l. The total number of units of discrete 
resource l available in each time period is Rl, l = 1, 2, …, R. The 
activities are subject to finish-to-start precedence constraints 
with zero minimum time lags. The precedence constraints are 
represented by an Activity-On-Arc (AoA) digraph G(Q, A) of 
q nodes, in which each of n arcs represents an activity. In di-
graph G, Q is the set of nodes, |Q| = q, and A is the set of arcs, 
|A| = n. The AoA representation and its consequences will be 
discussed in more detail in point 5.1.2. One continuous resource 
is available, and the processing rate of each activity at a time 
is defined by the amount of the continuous resource allotted to 
the activity, according to (1). Thus, each activity of the proj-
ect is characterized by its processing demand, processing rate 
function, discrete resource requests, and precedence relations 
to other activities. It is assumed that all activities and resources 
are available from the start of the project. The problem is to 
find a precedence- and discrete resource-feasible schedule and, 
simultaneously, a continuous resource allocation that minimize 
the schedule length T. Following the classification given in [19], 
the notation of the PDCRCPSP is m,1| pmtn, cpm, cont |Cmax. All 
the parameters of the PDCRCPSP are summarized in Table 1.

Table 1  
Parameters of the PDCRCPSP

Symbol Definition

G(Q, A) AoA graph representing project

q  = |Q| number of nodes in digraph G

n = |A| number of arcs in digraph G, i.e. number of activities
R number of discrete resources
Rl number of available units of discrete resource l
ril request for discrete resource l by activity Ai

fi processing rate function of activity Ai

wi size of activity Ai

Si starting time of activity Ai

Ci completion time of activity Ai

It has been shown in previous works that the methodol-
ogy for solving the discrete-continuous resource-constrained 
project scheduling problem (DCRCPSP) with nonpreemptable 
activities critically depends on the form of the processing rate 
functions. Based on Corollary 1, it was proved in [15] that 

for the DCRCPSP with convex processing rate functions, in 
an optimal schedule activities are processed sequentially, each 
of them using the total available amount of the continuous re-
source. On the other hand, following Corollary 2, it was also 
shown in [15] that for the DCRCPSP with concave functions 
the schedule length is optimized by fully parallel precedence- 
and discrete resource-feasible execution of all activities. Con-
sequently, we will also distinguish between these two classes 
of functions for the preemptive DCRCPSP, which is described 
in the next two sections.

4.	 Convex processing rate functions

As mentioned in Section 3, it was proved that for the DCRCP-
SP with convex processing rate functions, the schedule length 
is minimized by sequential processing of all activities, where 
each activity uses the total available amount of the continu-
ous resource. Obviously, in the PDCRCPSP activities may be 
preempted, however, in a sequential schedule it will not affect 
the schedule length unless there are idle times between the ac-
tivities. Since preemptions cannot improve the schedule, it is 
reasonable not to take them into account. Thus, the same se-
quential schedule with full utilization of the continuous resource 
is optimal for the PDCRCPSP as it is for the DCRCPSP with 
nonpreemptable activities.

Let us now stress that since a sequential schedule is consid-
ered, the appearance of discrete resources is of no importance. 
The same sequential schedule leads to optimum in all the three 
cases considered in this paper: (i) in the absence of discrete 
resources, (ii) one discrete resource being a set of identical ma-
chines (in this case all activities are scheduled on one machine, 
whereas the other machines remain idle), and (iii) an arbitrary 
number of discrete resources. However, precedence relations 
between activities have to be taken into account in each case. 
Summarizing, we can state that:

●	 for the PDCRCPSP with convex processing rate func-
tions and independent activities, the schedule length is 
minimized by sequential execution of all activities in an 
arbitrary order, in which each activity uses the total avail-
able amount of the continuous resource, and

●	 for the PDCRCPSP with convex processing rate functions 
and precedence-related activities, the schedule length is 
minimized by sequential execution of all activities in any 
precedence-feasible order, in which each activity uses the 
total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount 
allotted to activity Ai does not change over the whole time of 
its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the 
moment of completion of activity Ai as:
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= 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), (5) 

where pi is the processing time of activity Ai, and, in consequence: 
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) , (6) 

Since in this case each activity uses the total available amount of the continuous resource, i.e. ui = 1 
for each activity Ai, i = 1, 2, …, n, thus (6) can be rewritten as: 
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(1) (7) 

and the length of the optimal schedule can easily be calculated as: 
 

𝑇𝑇∗ = ∑ 𝑤𝑤𝑖𝑖
𝑓𝑓𝑖𝑖(1)

𝑛𝑛

𝑖𝑖=1
 

(8) 

Thus, for convex processing rate functions of activities, the PDCRCPSP is trivial since any schedule, in 
which activities are processed one after another in any precedence-feasible order, each of them using 
the total amount of the continuous resource, is optimal. The optimum schedule length can be easily 
calculated from (8). Also, as mentioned before, this result is independent of the occurrence of discrete 
resources in the PDCRCPSP. 
Figure 1 shows two examples of optimal schedule for different problem instances with n = 4 under 
convex processing rate functions of activities. The actual problem parameters are of no importance for 
the figure, it only shows the important features of the optimal schedule: sequencing and full usage of 
the continuous resource (equal to 1). 
 
a)       b)          
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Fig. 1. Two exemplary optimal schedules for different problem instances with n = 4 
 
 
5. Concave processing rate functions 
 
As mentioned in Section 3, it was proved that for the DCRCPSP with concave functions, the schedule 
length is optimized by fully parallel precedence- and discrete resource-feasible execution of all 
activities. Since a parallel execution can be restricted by both discrete resource constraints and 
precedence relations between activities, these factors have to be analyzed separately. In the next three 
sections, we will consider the following cases of the discrete resource constraints: 
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where pi is the processing time of activity Ai, and, in conse-
quence:
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Thus, for convex processing rate functions of activities, the 
PDCRCPSP is trivial since any schedule, in which activities are 
processed one after another in any precedence-feasible order, 
each of them using the total amount of the continuous resource, 
is optimal. The optimum schedule length can be easily calculat-
ed from (8). Also, as mentioned before, this result is indepen-
dent of the occurrence of discrete resources in the PDCRCPSP.

Figure 1 shows two examples of optimal schedule for dif-
ferent problem instances with n = 4 under convex processing 
rate functions of activities. The actual problem parameters are 
of no importance for the figure, it only shows the important 
features of the optimal schedule: sequencing and full usage of 
the continuous resource (equal to 1).

In the next three sections, we will consider the following cases 
of the discrete resource constraints:

●	 no discrete resource constraints – Sect. 5.1
●	 one discrete resource being a set of identical machines 

– Sect. 5.2
●	 an arbitrary number of discrete resources – Sect. 5.3.
In each case we also have to distinguish between indepen-

dent and precedence-related activities.

5.1 No discrete resource constraints. In this section we con-
sider a special case of the PDCRCPSP in which there are no 
discrete resource constraints, i.e. the continuous resource is the 
only limited resource. Still, we have to analyze the cases of 
independent and precedence-related activities.
5.1.1 Independent activities. For the case of independent ac-
tivities the problem is simple because, neither discrete resource 
constraints nor precedence relations between activities restrict 
a parallel execution of the activities. Thus, the schedule length 
is minimized by fully parallel execution of all activities, each 
of them using the continuous resource amount given by (3). 
The optimum schedule length can be immediately calculated 
from Eq. (4).
5.1.2 Precedence-related activities. For the case of dependent 
activities the problem becomes more complicated, as the prece-
dence relations between activities restrict a parallel execution. 
At a given moment only those activities may be executed in 
parallel, all predecessors of which have already been completed.

As mentioned in Section 3, in this work precedence con-
straints between activities are represented by an Activity-on-Arc 
digraph G in which q nodes represent events and n arcs repre-
sent activities. We assume that G is connected, acyclic, has one 
initial and one terminal node, and each pair of nodes is connect-
ed by one arc at most. Such a precedence constraints representa-
tion is always possible, although it sometime requires inserting 
so-called dummy nodes (events) and/or activities (arcs).

Usually, there can be many different activity execution or-
ders and, in consequence, different feasible schedules, associ-
ated with a particular graph G. If there is only one activity ex-
ecution order possible due to the existing precedence relations, 
graph G representing such relations is then called uniconnected 
activity network (UAN). It is a case which makes the search for 
optimal solution much easier, as we will show in the sequel. 
However, in general, we have to assume that graph G does 
not have the UAN property. In such a case, a methodology for 
solving the considered problem based on the assumed ordering 
O of nodes in graph G was discussed in [20]. In the proposed 
methodology the ordering of nodes is decisive for the unique 
activity execution order in the resulting feasible schedule. For 
ordering O we will assume that the only initial node has number 
1, the only terminal node has number q, and each arc starts in 
a node with a smaller number and ends in a node with a larger 
number. Obviously, if graph G is not a UAN, there are many 
different orderings of nodes satisfying the above assumptions.

For a given graph G the activity execution order following 
from an assumed node ordering O can be represented by a se-
quence SQ = [Q1, Q2, ..., Qq-1] of so-called main sets. The main 
set Qk, k = 1, 2, ..., q–1 contains activities that can be executed 

Fig. 1. Two exemplary optimal schedules for different problem in-
stances with n = 4

(a)

(b)

5.	 Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCP-
SP with concave functions, the schedule length is optimized by 
fully parallel precedence- and discrete resource-feasible execu-
tion of all activities. Since a parallel execution can be restricted 
by both discrete resource constraints and precedence relations 
between activities, these factors have to be analyzed separately. 
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in parallel between events represented by nodes k and k+1 in 
graph G, and corresponds to the k-th fragment of the feasible 
schedule following from ordering O.

An example of graph G with a fixed node ordering and the 
corresponding sequence of main sets is presented in Fig. 2.

where 
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Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ 
 
If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known, 
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary 
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology 
for solving the considered problem consists in formulating a mathematical programming (MP) problem 
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying 
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part 
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set 
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki 
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds 
the optimal schedule length for a given node ordering O in graph G: 
 
Problem P1 
minimize 
 

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
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 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11) 
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄ )
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12) 

 
For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The 
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule. 
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For concave processing rate functions of activities, Prob-
lem P1 is an NLP (convex) problem. The schedule length T is 
calculated in (9) as the sum of the lengths of all the fragments 
of the schedule. Constraints (10) correspond to the condition of 
executing each activity in its full size, whereas constraints (11) 
ensure that the wik's are nonnegative. Condition (12) allows to 
calculate the minimal length of the k-th fragment following from 
an optimal continuous resource allocation. Note that the equation 
in (12) is an adaptation of (4) to a single main set Qk. It can be 
solved analytically for some important cases, as discussed in 
Sect. 2. Table 2 shows the notation used for Problem P1.

Table 2  
Notation for Problem P1

Symbol Definition

Qk k-th main set
Tk length of the k-th fragment of schedule (corresponding 

to Qk)
wik part of the size of activity Ai assigned to the k-th 

fragment of the schedule
Ki set of indices of main sets containing activity Ai

Figure 3 presents an example of a feasible schedule, follow-
ing from an assumed division of activity sizes among main sets 
under the fixed node ordering presented in Fig. 2.
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T = T1 + T2 + T3 + T4 

 
Fig. 3. Example of a feasible schedule for node ordering presented in Fig. 2 

 
Let us stress again that the schedule generated as a result of solving Problem P1 is of the minimum 
length only for a given node ordering O. If this is the unique ordering for graph G (G is a UAN), the 
schedule is optimal. Otherwise, in order to find an optimal schedule it is necessary to enumerate all 
feasible orderings of nodes and solve Problem P1 for each of them. However, in general, the number of 
all feasible node orderings grows exponentially with the number of nodes, and therefore, the full 
enumeration approach can be justified only for small problem instances. 
Thus, in practice, a reasonable approach could be to apply local search metaheuristics searching over 
the set of all feasible orderings. Obviously, in such a case, the set of all feasible orderings is only partially 
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Fig. 3. Example of a feasible schedule for node ordering presented 

in Fig. 2

w1 = w11
w2 = w21 + w22 + w23
w3 = w31 + w32
w4 = w42
w5 = w52 + w53
w6 = w63 + w64
w7 = w74
T = T1 + T2 + T3 + T4
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Let us stress again that the schedule generated as a result of 
solving Problem P1 is of the minimum length only for a given 
node ordering O. If this is the unique ordering for graph G (G 
is a UAN), the schedule is optimal. Otherwise, in order to find 
an optimal schedule it is necessary to enumerate all feasible 
orderings of nodes and solve Problem P1 for each of them. 
However, in general, the number of all feasible node orderings 
grows exponentially with the number of nodes, and therefore, 
the full enumeration approach can be justified only for small 
problem instances.

Thus, in practice, a reasonable approach could be to apply 
local search metaheuristics searching over the set of all feasi-
ble orderings. Obviously, in such a case, the set of all feasible 
orderings is only partially examined by a chosen metaheuristic 
approach. Alternatively, constructive heuristics may be designed, 
using some rules to generate a single suboptimal node ordering, 
and building a feasible schedule on its basis, as presented in [21].

5.2 One discrete resource – a set of identical machines. In 
this section we consider a case of the PDCRCPSP with one 
discrete resource being a set of parallel, identical machines. 
As previously, we analyze independent and precedence-related 
activities.

At this point it is worth noticing that the limited amount 
of the continuous resource never constrains the possibility of 
parallel execution of any activities, at least it affects the rate of 
their processing. In the assumed activity model (compare (1) and 
(2)) limited discrete resources for which the activities compete 
do not affect the processing times of activities; however, they 
can constrain the possibility of the activities’ parallel execution.
5.2.1 Independent activities. For independent activities the 
(nonexistent) precedence constraints do not restrict a parallel 
activity execution. However, since a parallel assignment of ma-
chines to activities can be restricted by the number of machines, 
we have to distinguish two cases: n ≤ m and n > m. In the first 
case, the number of activities does not exceed the number of 
machines, and therefore, all activities can be performed in par-
allel. It is not possible in the second case, where only m out of 
n activities can be scheduled in the first step, and n–m activities 

have to initially wait for machines. Since these two cases re-
sult in two completely different methodologies, we will discuss 
them in separate sections.
5.2.1.1 The case of n ≤ m. As mentioned above, in this case all 
activities can be performed in parallel, and the set of machines 
does not constitute any restriction. In consequence, the result 
presented in Corollary 2 can be implicitly applied, as if there 
were no discrete resources at all. Obviously, analogically as in 
Sect. 2, preemptions cannot improve the schedule and will not 
be taken into account. The optimum schedule length can be cal-
culated directly from (4). Two examples of optimal schedules 
for the considered case are presented in Fig. 4. As in Fig. 1, the 
actual problem parameters do not matter for the figure, it only 
shows the important features of the optimal schedule: full usage 
of the continuous resource (equal to 1), and parallel execution 
in which all activities end at the same time.
5.2.1.2 The case of n > m. In this case the number of machines 
restricts parallel assignments of machines to activities, and a 
special methodology has to be developed. For the sake of meth-
odology, a structure representing assignment of machines to 
activities has to be used, in which combinations of activities 
executed in parallel in successive intervals of a schedule are 
defined. Since activities are preemptable, in general it is suffi-
cient to consider a so-called maximal sequence Smax composed 
of all s = ( n

m) m-element combinations of activities [20]. Such 
a sequence exhausts all possible assignments of m (identical) 
machines to n activities, and therefore guarantees finding an 
optimal assignment. Each feasible schedule can be generated 
by using the maximal sequence.

We will represent sequences of combinations in a form of 
vectors since, in a general case, the position of a combination 
in a sequence is important. For instance, the maximal sequence 
Smax for an exemplary problem with n = 4 and m = 3 can be 
represented as:

Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

However, in the considered problem, since preemptable ac-
tivities are scheduled on identical machines, the order of com-

Fig. 4. Two exemplary optimal schedules for different problem instances with n = 4 and m ≥ 4

(a) (b)
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binations in the sequence, as well as the order of activities in a 
particular combination, do not matter.

Now, for the maximal sequence we look for a division of 
the sizes of activities (i.e. a size division) among combinations 
of the sequence that leads to optimum. More precisely, size 
wi of each activity Ai, i = 1, 2, …, n has to be divided into 
parts wik ≥ 0 (unknown in advance) corresponding to particular 
time intervals (combinations), i.e. wik is a part of size of activ-
ity Ai processed in the interval associated with combination 
Zk, k = 1, 2, …, s. Note that approaches based on searching for 
an optimal division of sizes (or processing times) of jobs in 
a schedule are often used to solve classical problems of sched-
uling preemptable jobs [21].

Next, an NLP problem can be formulated finding an optimal 
size division for the maximal sequence Smax, i.e. a division that 
leads to a schedule of the minimal length from among all sched-
ules generated by Smax. In the problem, the sum of the mini-
mum-length intervals generated by consecutive combinations 
in Smax, as functions of the vector wk = {wik}i2zk

, is minimized 
subject to the constraints that each activity has to be completed. 
Let T*

k (wk) be the minimal length of the fragment of the schedule 
generated by Zk 2 Smax, and let Ki be the set of all indices of 
Zk’s such that Ai 2 Zk. The following NLP problem finds an op-
timal size division (and, in consequence, an optimal continuous 
resource allocation) for the maximal sequence Smax:

Problem P2
minimize

 

10 
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The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule. 
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14) 
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th 
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation 
of (4) to a single combination Zk. 
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for 
different problem instances. 
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machines to activities has to be used, in which combinations of activities executed in parallel in 
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient 
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of 
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n 
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be 
generated by using the maximal sequence. 
We will represent sequences of combinations in a form of vectors since, in a general case, the position 
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary 
problem with n = 4 and m = 3 can be represented as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}] 
However, in the considered problem, since preemptable activities are scheduled on identical machines, 
the order of combinations in the sequence, as well as the order of activities in a particular combination, 
do not matter. 
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division) 
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai, 
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular 
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated 
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of 
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling 
preemptable jobs [21]. 
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence 
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated 
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive 
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints 
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule 
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP 
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation) 
for the maximal sequence Smax: 
 
Problem P2 
minimize 
 

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1
 

(13) 

subject to 
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 ,   𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14) 

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15) 
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄ ) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16) 

 
The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule. 
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14) 
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th 
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation 
of (4) to a single combination Zk. 
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for 
different problem instances. 
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5.2.1.2 The case of n > m 
In this case the number of machines restricts parallel assignments of machines to activities, and a special 
methodology has to be developed. For the sake of methodology, a structure representing assignment of 
machines to activities has to be used, in which combinations of activities executed in parallel in 
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient 
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of 
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n 
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be 
generated by using the maximal sequence. 
We will represent sequences of combinations in a form of vectors since, in a general case, the position 
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary 
problem with n = 4 and m = 3 can be represented as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}] 
However, in the considered problem, since preemptable activities are scheduled on identical machines, 
the order of combinations in the sequence, as well as the order of activities in a particular combination, 
do not matter. 
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division) 
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai, 
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular 
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated 
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of 
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling 
preemptable jobs [21]. 
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence 
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated 
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive 
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints 
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule 
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP 
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation) 
for the maximal sequence Smax: 
 
Problem P2 
minimize 
 

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1
 

(13) 

subject to 
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 ,   𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14) 

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15) 
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄ ) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16) 

 
The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule. 
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14) 
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th 
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation 
of (4) to a single combination Zk. 
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for 
different problem instances. 
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5.2.1.2 The case of n > m 
In this case the number of machines restricts parallel assignments of machines to activities, and a special 
methodology has to be developed. For the sake of methodology, a structure representing assignment of 
machines to activities has to be used, in which combinations of activities executed in parallel in 
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient 
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of 
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n 
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be 
generated by using the maximal sequence. 
We will represent sequences of combinations in a form of vectors since, in a general case, the position 
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary 
problem with n = 4 and m = 3 can be represented as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}] 
However, in the considered problem, since preemptable activities are scheduled on identical machines, 
the order of combinations in the sequence, as well as the order of activities in a particular combination, 
do not matter. 
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division) 
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai, 
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular 
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated 
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of 
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling 
preemptable jobs [21]. 
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence 
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated 
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive 
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints 
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule 
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP 
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation) 
for the maximal sequence Smax: 
 
Problem P2 
minimize 
 

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1
 

(13) 

subject to 
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 ,   𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14) 

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15) 
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄ ) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16) 

 
The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule. 
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14) 
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th 
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation 
of (4) to a single combination Zk. 
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for 
different problem instances. 
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The schedule length T is calculated in (13) as the sum of 
the lengths of all the intervals of the schedule. The intervals 
correspond to combinations Zk, k = 1, 2…, s, and in this case 
s = ( n

m). Constraints (14) and (15) are identical to (10) and (11). 
Condition (16) allows to calculate the minimal length of the k-th 
interval following from an optimal continuous resource allo-
cation. The equation in (16) is an adaptation of (4) to a single 
combination Zk.

Figure 5 shows maximal sequence Smax for n = 4 and m = 3 
and two exemplary optimal schedules for different problem in-
stances.
5.2.2 Precedence-related activities. In this case, in order to 
find optimal schedules, an approach being an extension of the 
method proposed in point 5.1.2 can be used. Obviously, this 
time not only precedence- but also resource constraints have to 
be taken into consideration, following from the limited number 
of m machines.

As shown in 5.1.2, for a given node ordering O in digraph G 
an activity execution order feasible with respect to precedence 
constraints can be represented by a sequence SQ of main sets. 
However, in general, main sets can now contain activities which 
cannot be executed in parallel (which is desirable for concave 
processing rate functions) because of the existence of additional 
resource constraints. Consequently, for each main set a vector of 
combinations of activities can be constructed. A single activity 
combination is a subset of the considered main set containing 
these activities that can be executed in parallel, with respect 
to the resource constraints (in this case – a limited number of 

Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different problem instances

(a) (b)

Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]
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identical machines). Notice, that since such a combination is 
constructed as a subset of the main set, precedence constraints 
are already satisfied. As discussed in [20], in the considered 
case of identical machines and concave processing rate func-
tions, a vector of combinations for a given main set Qk consists 
of zk elements, where:
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Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different 

problem instances 
 
5.2.2 Precedence-related activities 
 
In this case, in order to find optimal schedules, an approach being an extension of the method proposed 
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have 
to be taken into consideration, following from the limited number of m machines. 
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with 
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general, 
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave 
processing rate functions) because of the existence of additional resource constraints. Consequently, for 
each main set a vector of combinations of activities can be constructed. A single activity combination is 
a subset of the considered main set containing these activities that can be executed in parallel, with 
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that 
since such a combination is constructed as a subset of the main set, precedence constraints are already 
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate 
functions, a vector of combinations for a given main set Qk consists of zk elements, where: 
 

𝑧𝑧𝑘𝑘 = {
   1          𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚 )    𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| > 𝑚𝑚  
(17) 

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible 
alone. In the second case, the vector of combinations contains all possible m-element combinations of 
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk. 
In consequence, in order to represent a schedule feasible with respect to both precedence and resource 
constraints, we may use a sequence SZ of vectors of combinations of the form: 

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2 ], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]] 
In this case, a feasible schedule will be considered as consisting of fragments corresponding to 
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering 
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of 
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their 
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource 
that minimizes the length of the fragment of the schedule corresponding to this combination. To 
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ements (activities), thus, it is resource-feasible alone. In the 
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set Qk.

In consequence, in order to represent a schedule feasible 
with respect to both precedence and resource constraints, we 
may use a sequence SZ of vectors of combinations of the form:
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Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different 

problem instances 
 
5.2.2 Precedence-related activities 
 
In this case, in order to find optimal schedules, an approach being an extension of the method proposed 
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have 
to be taken into consideration, following from the limited number of m machines. 
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with 
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general, 
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave 
processing rate functions) because of the existence of additional resource constraints. Consequently, for 
each main set a vector of combinations of activities can be constructed. A single activity combination is 
a subset of the considered main set containing these activities that can be executed in parallel, with 
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that 
since such a combination is constructed as a subset of the main set, precedence constraints are already 
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate 
functions, a vector of combinations for a given main set Qk consists of zk elements, where: 
 

𝑧𝑧𝑘𝑘 = {
   1          𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚 )    𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| > 𝑚𝑚  
(17) 

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible 
alone. In the second case, the vector of combinations contains all possible m-element combinations of 
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk. 
In consequence, in order to represent a schedule feasible with respect to both precedence and resource 
constraints, we may use a sequence SZ of vectors of combinations of the form: 

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2 ], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]] 
In this case, a feasible schedule will be considered as consisting of fragments corresponding to 
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering 
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of 
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their 
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource 
that minimizes the length of the fragment of the schedule corresponding to this combination. To 
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Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different 

problem instances 
 
5.2.2 Precedence-related activities 
 
In this case, in order to find optimal schedules, an approach being an extension of the method proposed 
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have 
to be taken into consideration, following from the limited number of m machines. 
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with 
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general, 
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave 
processing rate functions) because of the existence of additional resource constraints. Consequently, for 
each main set a vector of combinations of activities can be constructed. A single activity combination is 
a subset of the considered main set containing these activities that can be executed in parallel, with 
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that 
since such a combination is constructed as a subset of the main set, precedence constraints are already 
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate 
functions, a vector of combinations for a given main set Qk consists of zk elements, where: 
 

𝑧𝑧𝑘𝑘 = {
   1          𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚 )    𝑖𝑖𝑖𝑖  |𝑄𝑄𝑘𝑘| > 𝑚𝑚  
(17) 

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible 
alone. In the second case, the vector of combinations contains all possible m-element combinations of 
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk. 
In consequence, in order to represent a schedule feasible with respect to both precedence and resource 
constraints, we may use a sequence SZ of vectors of combinations of the form: 

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2 ], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]] 
In this case, a feasible schedule will be considered as consisting of fragments corresponding to 
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering 
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of 
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their 
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource 
that minimizes the length of the fragment of the schedule corresponding to this combination. To 
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sisting of fragments corresponding to successive combinations 
in SZ. In order to find a schedule of the minimal length for 
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indices of combinations in the vector of combinations generat-
ed from main set Qk and containing activity Ai. If wikl denotes 
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combination Zkl, then the MP problem can be formulated as:
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formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let 
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of 
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations 
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai, 
which is to be executed in combination Zkl, then the MP problem can be formulated as: 
 
Problem P3 
minimize 
 

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘) 

(18) 

subject to 
 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
,   𝑖𝑖 = 1, 2, … , 𝑛𝑛 

(19) 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20) 
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21) 

 
As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex) 
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the 
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows 
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in 
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3. 
 
Table 3. Notation for Problem P3 
Symbol Definition 
Zkl l-th activity combination generated from main set Qk 
zk number of combinations constructed out of Qk 
Tkl length of the fragment of the schedule corresponding to Zkl 
wikl part of size of activity Ai assigned to Zkl 
Kik set of indices of combinations generated from Qk and containing Ai 

 
Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence- 
and resource-feasible schedule. 
  

� (18)

subject to

 

12 
 

formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let 
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of 
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations 
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai, 
which is to be executed in combination Zkl, then the MP problem can be formulated as: 
 
Problem P3 
minimize 
 

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘) 

(18) 

subject to 
 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
,   𝑖𝑖 = 1, 2, … , 𝑛𝑛 

(19) 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20) 
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21) 

 
As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex) 
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the 
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows 
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in 
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3. 
 
Table 3. Notation for Problem P3 
Symbol Definition 
Zkl l-th activity combination generated from main set Qk 
zk number of combinations constructed out of Qk 
Tkl length of the fragment of the schedule corresponding to Zkl 
wikl part of size of activity Ai assigned to Zkl 
Kik set of indices of combinations generated from Qk and containing Ai 

 
Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence- 
and resource-feasible schedule. 
  

� (19)
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formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let 
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of 
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations 
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai, 
which is to be executed in combination Zkl, then the MP problem can be formulated as: 
 
Problem P3 
minimize 
 

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘) 

(18) 

subject to 
 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
,   𝑖𝑖 = 1, 2, … , 𝑛𝑛 

(19) 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20) 
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21) 

 
As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex) 
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the 
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows 
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in 
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3. 
 
Table 3. Notation for Problem P3 
Symbol Definition 
Zkl l-th activity combination generated from main set Qk 
zk number of combinations constructed out of Qk 
Tkl length of the fragment of the schedule corresponding to Zkl 
wikl part of size of activity Ai assigned to Zkl 
Kik set of indices of combinations generated from Qk and containing Ai 

 
Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence- 
and resource-feasible schedule. 
  

� (20)
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positive root of the equation:
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formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let 
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of 
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations 
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai, 
which is to be executed in combination Zkl, then the MP problem can be formulated as: 
 
Problem P3 
minimize 
 

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1
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𝑘𝑘=1
(w𝑘𝑘𝑘𝑘) 

(18) 

subject to 
 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖
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 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20) 
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation: 
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21) 

 
As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex) 
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the 
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows 
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in 
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3. 
 
Table 3. Notation for Problem P3 
Symbol Definition 
Zkl l-th activity combination generated from main set Qk 
zk number of combinations constructed out of Qk 
Tkl length of the fragment of the schedule corresponding to Zkl 
wikl part of size of activity Ai assigned to Zkl 
Kik set of indices of combinations generated from Qk and containing Ai 

 
Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence- 
and resource-feasible schedule. 
  

� (21)

As previously, for concave processing rate functions of ac-
tivities, Problem P3 is an NLP (convex) problem. The schedule 
length T is calculated in (18) as the sum of the lengths of all the 
fragments of the schedule. Constraints (19) and (20) are analog-
ical as (10) and (11) in Problem P1. Condition (21) allows to 
calculate the minimal length of the k-th fragment corresponding 
to combination Zkl. The equation in (21) is an adaptation of (4) 
to a single combination Zkl. Table 3 shows the notation used 
for Problem P3.

Table 3  
Notation for Problem P3

Symbol Definition

Zkl l-th activity combination generated from main set Qk

zk number of combinations constructed out of Qk

Tkl length of the fragment of the schedule corresponding 
to Zkl

wikl part of size of activity Ai assigned to Zkl

Kik set of indices of combinations generated from Qk and 
containing Ai

Figure 6 presents an exemplary sequence of vectors of com-
binations and the corresponding precedence- and resource-fea-
sible schedule.
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w211 w221 
w222 w223 w524 

w231 
w741 w531 

w111 w522 
w523 

w421 w423 
w424 w631 w641 

w311 w321 w322 w324 
T11 T21 T22 T23 T24 T31 T41 

 
 

w1 = w111 
w2 = w211 + w221 + w222 + w223+ w231 

w3 = w311 + w321 + w322 + w324 
w4 = w421 + w423 + w424 
w5 = w522 + w523 + w524+ w531 
w6 = w631 + w641 

w7 = w741 
T = T11 + T21 + T22 + T23 + T24 + T31 + T41 

 
Fig. 6. Example of a feasible schedule for m = 3 and node ordering presented in Fig. 2 

 
It is easy to notice that for some problem instances the same combinations of activities can occur in 
several vectors of sequence SZ. It can be proved that a schedule constructed by solving Problem P3 will 
be feasible and not inferior with respect to the considered criterion, if only one such combination is left 
in sequence SZ (in any vector of combinations). This is, obviously, justified from the computational point 
of view, since it allows to eliminate a number of redundant variables in Problem P3. To this end, for 
instance, a modified version of the algorithm presented in [9] can be used. The algorithm generates a 
sequence of unique combinations of activities for the case of scheduling dependent jobs (activities) on 
parallel machines, as considered in this point. 
Finally, let us stress that as discussed in point 5.1.2, in order to find an optimal schedule, an ordering of 
nodes in graph G leading to optimum has to be found first. 
 
 
5.3 Arbitrary discrete resources 
 
In this section we consider a case of the PDCRCPSP with an arbitrary number of discrete resources. 
As previously, we separately analyze independent and precedence-related activities. 
 
5.3.1 Independent activities 
 
In this case activities are not precedence-related, however the existence of limited discrete resources 
restricts a potential parallel execution of the activities. Additionally, the important difference to the case 
considered in point 5.2.1 is that now the number of activities processed in parallel (equal to m for 
identical machines) is not known in advance. That number will depend on the combination of activities 
processed simultaneously, since the number of discrete resources is arbitrary and activities have different 
resource requests. In consequence, all resource-feasible combinations of activities have to be generated, 
analogically as it was discussed in point 5.2.1 for the set of identical machines. Since parallel execution 

u 
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It is easy to notice that for some problem instances the same combinations of activities can occur in 
several vectors of sequence SZ. It can be proved that a schedule constructed by solving Problem P3 will 
be feasible and not inferior with respect to the considered criterion, if only one such combination is left 
in sequence SZ (in any vector of combinations). This is, obviously, justified from the computational point 
of view, since it allows to eliminate a number of redundant variables in Problem P3. To this end, for 
instance, a modified version of the algorithm presented in [9] can be used. The algorithm generates a 
sequence of unique combinations of activities for the case of scheduling dependent jobs (activities) on 
parallel machines, as considered in this point. 
Finally, let us stress that as discussed in point 5.1.2, in order to find an optimal schedule, an ordering of 
nodes in graph G leading to optimum has to be found first. 
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In this section we consider a case of the PDCRCPSP with an arbitrary number of discrete resources. 
As previously, we separately analyze independent and precedence-related activities. 
 
5.3.1 Independent activities 
 
In this case activities are not precedence-related, however the existence of limited discrete resources 
restricts a potential parallel execution of the activities. Additionally, the important difference to the case 
considered in point 5.2.1 is that now the number of activities processed in parallel (equal to m for 
identical machines) is not known in advance. That number will depend on the combination of activities 
processed simultaneously, since the number of discrete resources is arbitrary and activities have different 
resource requests. In consequence, all resource-feasible combinations of activities have to be generated, 
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It is easy to notice that for some problem instances the same 
combinations of activities can occur in several vectors of se-
quence SZ. It can be proved that a schedule constructed by solv-
ing Problem P3 will be feasible and not inferior with respect to 
the considered criterion, if only one such combination is left in 
sequence SZ (in any vector of combinations). This is, obviously, 
justified from the computational point of view, since it allows 
to eliminate a number of redundant variables in Problem P3. To 
this end, for instance, a modified version of the algorithm pre-
sented in [9] can be used. The algorithm generates a sequence 
of unique combinations of activities for the case of scheduling 
dependent jobs (activities) on parallel machines, as considered 
in this point.

Finally, let us stress that as discussed in point 5.1.2, in order 
to find an optimal schedule, an ordering of nodes in graph G 
leading to optimum has to be found first.

5.3 Arbitrary discrete resources. In this section we consider 
a case of the PDCRCPSP with an arbitrary number of discrete 
resources.

As previously, we separately analyze independent and pre-
cedence-related activities.
5.3.1 Independent activities. In this case activities are not 
precedence-related, however the existence of limited discrete 
resources restricts a potential parallel execution of the activi-
ties. Additionally, the important difference to the case consid-
ered in point 5.2.1 is that now the number of activities pro-
cessed in parallel (equal to m for identical machines) is not 
known in advance. That number will depend on the combina-
tion of activities processed simultaneously, since the number 
of discrete resources is arbitrary and activities have different 
resource requests. In consequence, all resource-feasible com-
binations of activities have to be generated, analogically as it 
was discussed in point 5.2.1 for the set of identical machines. 
Since parallel execution is desired for concave processing rate 
functions, only maximal combinations have to be taken into 
account. A maximal combination has such a feature, that each 
its extension obtained by adding any other activity becomes 
resource-infeasible.

Efficient generation of such maximal resource-feasible com-
binations is not a trivial task. To this end, for instance, a pro-
cedure called GEN, proposed in [22] and originally developed 
for a more general case (see point 5.3.2), can be applied. As the 
procedure allows the existence of precedence constraints be-
tween activities, successive maximal combinations are built on 
a basis of the sequence of main sets following from an assumed 
node ordering in the precedence-relation graph. The absence of 
precedence constraints can be interpreted in this context, as a 
case of a single main set containing all activities.

Procedure GEN efficiently finds a sequence of all maxi-
mal combinations due to preliminary ordering of activities in 
the main set, according to their decreasing resource requests 
with respect to the given discrete resource type. The order of 
maximal combinations in the constructed sequence is of no 
importance.

Next, Problem P2 (see point 5.2.1.2) can be formulated, in 
which s is the number of all maximal combinations. The solu-

tion of Problem P2 defines an optimal size division among the 
maximal combinations and, consequently, an optimal schedule 
length for the considered case.
5.3.2 Precedence-related activities. The case discussed in this 
point is the most general one of all considered in this work. 
A parallel execution of activities may be now restricted by 
both the precedence and resource constrains with respect to 
any number and types of discrete resources. In order to find 
an optimal schedule, similarly as in the special cases of the 
problem described earlier, an MP problem can be formulated 
and solved. In this case, the MP problem will be analogical 
to Problem P3 (see point 5.2.2), where the only difference 
concerns the way of generating the sequence of vectors of 
combinations SZ.

As previously, the initial point for constructing sequence SZ 
is the sequence SQ of main sets. Let us remind that it depends on 
the assumed node ordering O in the precedence-relation graph 
G. It is natural to assume that to each main set from SQ, there 
is one corresponding vector of maximal combinations in SZ. As 
mentioned in point 5.2.2, it is desirable from the computational 
point of view that unique maximal combinations should occur 
in successive vectors of sequence SZ. In order to efficiently 
generate sequences SZ of that property, procedure GEN [22] 
can be adopted again. The procedure generates resource-fea-
sible subsets corresponding to maximal combinations for suc-
cessive main sets in SQ. With respect to the desired property, 
the key feature is dividing each main set into “new” and “old” 
activities. In a main set Qk, k = 1, 2, …, q–1, “new” are those 
activities that do not belong to Ql, l < k. All the other activities 
in Qk are “old”. For a given main set, resource-feasible subsets 
are generated on a basis of so-called primary subsets, in which 
the division into “new” and “old” activities is maintained. In 
consequence, to each main set Qk, there is a corresponding vec-
tor of zk such maximal combinations that do not occur in any 
vector corresponding to main sets Ql, l < k.

For more details concerning the generation of the maximal 
resource-feasible subsets, see [22].

Figure 7 shows an exemplary sequence of vectors of com-
binations for the considered case of the problem, as well as the 
corresponding precedence- and resource-feasible schedule. It is 
assumed that there are two discrete resources (R = 2), available 
in 5 (R1 = 5) and 10 (R2 = 10) units, respectively, and that the 
activity resource requests are given in the table below:

i ri1 ri2

1 4 3

2 2 2

3 2 4

4 0 1

5 1 3

6 1 8

7 3 2
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Fig. 7. Example of a feasible schedule for R = 2, R1 = 5, R2 = 10, and node ordering presented in Fig. 2 
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that because of the existence of the continuous part, the PDCRCPSP problem, as a whole, cannot be 
classified by the computational complexity theory, i.e. in terms of the P and NP classes, since it is not a 
combinatorial optimization problem. However, it is worth stressing that for dependent activities the 
complexity of the discrete part of the problem is already exponential, since it requires finding an optimal 
ordering of nodes in the precedence-relation graph (see point 5.1.2). 
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concave processing rate functions of activities have been analyzed for the cases of no discrete resource 
constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of 
discrete resources. Each time independent and precedence-related activities have been separately 
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We have shown that for convex functions all cases of the problem are trivial, since discrete resources 
do not affect the optimal schedule. In order to minimize the schedule length, the activities have to be 
processed sequentially, each of them using the total available amount of the continuous resource. 
Obviously, for dependent activities precedence constraints have to be satisfied in a sequential schedule. 
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analyzed for the cases of no discrete resource constraints, one 
discrete resource being a set of parallel, identical machines, 
and an arbitrary number of discrete resources. Each time inde-
pendent and precedence-related activities have been separately 
considered.

We have shown that for convex functions all cases of the 
problem are trivial, since discrete resources do not affect the 
optimal schedule. In order to minimize the schedule length, the 
activities have to be processed sequentially, each of them using 
the total available amount of the continuous resource. Obvious-
ly, for dependent activities precedence constraints have to be 
satisfied in a sequential schedule. For concave functions the 
defined problem is simple only in two cases with independent 
activities: (i) with no discrete resource constraints, and (ii) with 
the number of machines not less than the number of activities. 
In all the other cases, an NLP problem has to be solved to find 
a minimal-length schedule. Moreover, for precedence-related 
activities a special methodology based on main sets has to be 
applied.

Future research should be mainly conducted towards heuris-
tic approaches to the computationally hard problems. It can be 
done at two levels: the discrete and the continuous part of the 
problem. For the discrete part, heuristic (and metaheuristic) ap-
proaches can be developed to construct (or search for) near-op-
timal sequences of vectors of combinations. For the continuous 
part, heuristic approaches to allocate the continuous resource 
may be designed in order to avoid the necessity of solving the 
nonlinear mathematical programming problems.
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