
383Bull. Pol. Ac.: Tech. 64(2) 2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 2, 2016
DOI: 10.1515/bpasts-2016-0043

*e-mail: grzegorz.waligora@cs.put.poznan.pl

Abstract. In this paper, discrete-continuous project scheduling problems with preemptable activities are considered. In these problems, activities
of a project simultaneously require discrete and continuous resources for their execution. The activities are preemptable, and the processing rate
of each activity is a continuous, increasing function of the amount of a single continuous resource allotted to the activity at a time. The problem
is to find a precedence- and discrete resource-feasible schedule and, simultaneously, continuous resource allocation that would minimize the
project duration. Convex and concave processing rate functions are considered separately. We show that for convex functions the problem is
simple, whereas for concave functions a special methodology has to be developed. We discuss the methodology for three cases of the problem:
no discrete resource constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of discrete resources.
In each case we analyze separately independent and precedence-related activities. Some conclusions and directions for future research are given.

Key words: project scheduling, discrete-continuous, preemptable activities, project duration.

Discrete-continuous project scheduling with preemptable activities

R. RÓŻYCKI, G. WALIGÓRA*, and J. WĘGLARZ
Institute of Computing Science, Poznan University of Technology, 2 Piotrowo St., 60-965 Poznan, Poland

Apart from the works concerning power-aware scheduling,
all the papers mentioned above have dealt with nonpreemptable
jobs (or activities). In particular, discrete-continuous project
scheduling problems with preemptable activities have not been
considered in any paper yet. The aim of this work is to present
a methodology for solving such problems. To this end, different
classes of the problems will be considered, as well as different
processing rate functions of activities. We will consider inde-
pendent and precedence-related activities, as well as three cases
of constraints imposed on discrete resources: (i) the absence of
discrete resource constraints, (ii) one discrete resource with unit
requests, and (iii) an arbitrary number of discrete resources with
integer resource requests of activities. In this paper we assume
the project duration (or the schedule length) as the scheduling
criterion.

This paper is organized as follows. In Section 2 we recall
the most important results concerning the problem of allo-
cating a continuous, renewable resource among independent
jobs to minimize the schedule length in the absence of dis-
crete resources. This section reports the basic results known for
the continuous resource allocation problem obtained for two
classes of the processing rate functions of jobs: convex and
concave functions. Section 3 contains the general formulation
of the problem under consideration. Section 4 is devoted to the
case of convex processing rate functions. In this section we
will show that the considered problem is trivial for each case
analyzed in the paper. The main section of this work is Section
5, which deals with concave processing rate functions. We di-
vide that section into three subsections. The first one – Sect.
5.1 – concerns the case with no discrete resources. In Sect. 5.2
we consider one discrete resource and unit resource requests
of activities. In other words, it is a case of scheduling on par-
allel, identical machines. Finally, in Sect. 5.3 we deal with the
most general case, where the number of discrete resources is
arbitrary, and the resource requests of activities are arbitrary

1.	 Introduction

In the classical project scheduling, only discrete resources
are considered. Such resources can be assigned to activities
of a project in amounts from a given finite set (i.e. in discrete
numbers of units). However, in many practical situations con-
tinuous resources can also appear. These are resources which
can be allotted to activities in arbitrary numbers from a given
interval (i.e. in real numbers). Examples of continuous resourc-
es include power, fuel, gas, space, or even money. Discrete-con-
tinuous scheduling problems arise when jobs or activities simul-
taneously require discrete and continuous resources for their
executions. Machine scheduling problems of this type have
been discussed in [1–6]. In these problems, a set of machines
is the only discrete resource. More recently, so-called power-
(or energy-) aware scheduling problems have been considered,
where a set of processors is a discrete resource, and power
(energy) is a continuous resource [7–10]. Discrete-continuous
project scheduling problems, where activities of a project are
precedence-dependent and the number of discrete resources is
arbitrary, have also been considered in a few papers. In [11–
13] minimization of the project duration has been taken into
account, whereas in [14–16] maximization of the net present
value has been considered. In all those papers, it has been as-
sumed that one continuous, renewable (or doubly-constrained)
resource is available. The processing rate vs. resource amount
model has been considered, in which the processing rate of a job
(activity) is an increasing function of the amount of a continu-
ous resource allotted to this job at a time. For this model some
important properties of optimal schedules have been proved,
leading to several analytical results for some classes of the pro-
cessing rate functions.

384 Bull. Pol. Ac.: Tech. 64(2) 2016

R. Różycki, G. Waligóra, and J. Węglarz

and integer. As a result, we obtain a general discrete-continu-
ous project scheduling problem with preemptable activities. In
each of the three sections, 5.1 – 5.3, we also analyze two cases
of precedence constraints: independent and precedence-related
activities. Some conclusions and directions for future research
are given in Section 6.

2.	 Continuous resource allocation

In this section we very briefly recall main theoretical results
concerning the case when a continuous, renewable resource is
the only limited resource, and discrete resources are not present.
The results relate to independent jobs with equal ready times,
the processing rate vs. resource amount job processing model,
and the minimization of the schedule length.

We assume that one continuous, renewable resource is avail-
able. The availability of the resource over time is constant and,
without loss of generality, we assume that its total available
amount is equal to 1. The resource can be allotted to jobs in
(arbitrary) amounts from the interval [0,1]. The amount (un-
known in advance) of the continuous resource allotted to job
i at time t is denoted by ui(t), and

2

absence of discrete resource constraints, (ii) one discrete resource with unit requests, and (iii) an
arbitrary number of discrete resources with integer resource requests of activities. In this paper we
assume the project duration (or the schedule length) as the scheduling criterion.
This paper is organized as follows. In Section 2 we recall the most important results concerning
the problem of allocating a continuous, renewable resource among independent jobs to minimize
the schedule length in the absence of discrete resources. This section reports the basic results known for
the continuous resource allocation problem obtained for two classes of the processing rate functions of
jobs: convex and concave functions. Section 3 contains the general formulation of the problem under
consideration. Section 4 is devoted to the case of convex processing rate functions. In this section we
will show that the considered problem is trivial for each case analyzed in the paper. The main section of
this work is Section 5, which deals with concave processing rate functions. We divide that section into
three subsections. The first one – Sect. 5.1 – concerns the case with no discrete resources. In Sect. 5.2
we consider one discrete resource and unit resource requests of activities. In other words, it is a case of
scheduling on parallel, identical machines. Finally, in Sect. 5.3 we deal with the most general case,
where the number of discrete resources is arbitrary, and the resource requests of activities are arbitrary
and integer. As a result, we obtain a general discrete-continuous project scheduling problem with
preemptable activities. In each of the three sections, 5.1 – 5.3, we also analyze two cases of precedence
constraints: independent and precedence-related activities. Some conclusions and directions for future
research are given in Section 6.

2. Continuous resource allocation

In this section we very briefly recall main theoretical results concerning the case when a continuous,
renewable resource is the only limited resource, and discrete resources are not present. The results relate
to independent jobs with equal ready times, the processing rate vs. resource amount job processing
model, and the minimization of the schedule length.
We assume that one continuous, renewable resource is available. The availability of the resource over
time is constant and, without loss of generality, we assume that its total available amount is equal to 1.
The resource can be allotted to jobs in (arbitrary) amounts from the interval [0,1]. The amount (unknown
in advance) of the continuous resource allotted to job i at time t is denoted by 𝑢𝑢𝑖𝑖(𝑡𝑡), and ∑ 𝑢𝑢𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (𝑡𝑡) ≤ 1

for any t. The resource amount 𝑢𝑢𝑖𝑖(𝑡𝑡) determines the processing rate of job i, which is described by the
following equation:
 𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)], 𝑥𝑥𝑖𝑖(0) = 0, 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = 𝑤𝑤𝑖𝑖 , (1)

where:
𝑥𝑥𝑖𝑖(𝑡𝑡) is the state of job i at time t;
fi is the processing rate function of job i, continuous, increasing, and such that fi(0) = 0;
𝑢𝑢𝑖𝑖(𝑡𝑡) is the continuous resource amount allotted to job i at time t;
Ci is the completion time (unknown in advance) of job i;
𝑤𝑤𝑖𝑖 is the size (final state) of job i.
State 𝑥𝑥𝑖𝑖(𝑡𝑡) of job i at time t is an objective measure of work related to the processing of job i up to time
t. It may denote, e.g., the number of man-hours already spent on processing job i, the volume (in cubic
meters) of a constructed building, the number of standard instructions in processing computer program
i, etc.
In this case, the problem is to find an allocation of the continuous resource to jobs that minimizes
the schedule length. The continuous resource allocation is defined by a piecewise continuous,
nonnegative vector function 𝐮𝐮(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡), … , 𝑢𝑢𝑛𝑛(𝑡𝑡)], whose values 𝐮𝐮∗ = [𝑢𝑢1

∗, 𝑢𝑢2
∗ , … , 𝑢𝑢𝑛𝑛

∗] are
(continuous) resource allocations corresponding to 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

∗ – the minimal value of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Completion of
job i requires that:

𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = ∫ 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)]
𝐶𝐶𝑖𝑖

0
𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑖𝑖

(2)

 for any t. The
resource amount determines the processing rate of job i, which
is described by the following equation:

2

absence of discrete resource constraints, (ii) one discrete resource with unit requests, and (iii) an
arbitrary number of discrete resources with integer resource requests of activities. In this paper we
assume the project duration (or the schedule length) as the scheduling criterion.
This paper is organized as follows. In Section 2 we recall the most important results concerning
the problem of allocating a continuous, renewable resource among independent jobs to minimize
the schedule length in the absence of discrete resources. This section reports the basic results known for
the continuous resource allocation problem obtained for two classes of the processing rate functions of
jobs: convex and concave functions. Section 3 contains the general formulation of the problem under
consideration. Section 4 is devoted to the case of convex processing rate functions. In this section we
will show that the considered problem is trivial for each case analyzed in the paper. The main section of
this work is Section 5, which deals with concave processing rate functions. We divide that section into
three subsections. The first one – Sect. 5.1 – concerns the case with no discrete resources. In Sect. 5.2
we consider one discrete resource and unit resource requests of activities. In other words, it is a case of
scheduling on parallel, identical machines. Finally, in Sect. 5.3 we deal with the most general case,
where the number of discrete resources is arbitrary, and the resource requests of activities are arbitrary
and integer. As a result, we obtain a general discrete-continuous project scheduling problem with
preemptable activities. In each of the three sections, 5.1 – 5.3, we also analyze two cases of precedence
constraints: independent and precedence-related activities. Some conclusions and directions for future
research are given in Section 6.

2. Continuous resource allocation

In this section we very briefly recall main theoretical results concerning the case when a continuous,
renewable resource is the only limited resource, and discrete resources are not present. The results relate
to independent jobs with equal ready times, the processing rate vs. resource amount job processing
model, and the minimization of the schedule length.
We assume that one continuous, renewable resource is available. The availability of the resource over
time is constant and, without loss of generality, we assume that its total available amount is equal to 1.
The resource can be allotted to jobs in (arbitrary) amounts from the interval [0,1]. The amount (unknown
in advance) of the continuous resource allotted to job i at time t is denoted by 𝑢𝑢𝑖𝑖(𝑡𝑡), and ∑ 𝑢𝑢𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (𝑡𝑡) ≤ 1

for any t. The resource amount 𝑢𝑢𝑖𝑖(𝑡𝑡) determines the processing rate of job i, which is described by the
following equation:
 𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)], 𝑥𝑥𝑖𝑖(0) = 0, 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = 𝑤𝑤𝑖𝑖 , (1)

where:
𝑥𝑥𝑖𝑖(𝑡𝑡) is the state of job i at time t;
fi is the processing rate function of job i, continuous, increasing, and such that fi(0) = 0;
𝑢𝑢𝑖𝑖(𝑡𝑡) is the continuous resource amount allotted to job i at time t;
Ci is the completion time (unknown in advance) of job i;
𝑤𝑤𝑖𝑖 is the size (final state) of job i.
State 𝑥𝑥𝑖𝑖(𝑡𝑡) of job i at time t is an objective measure of work related to the processing of job i up to time
t. It may denote, e.g., the number of man-hours already spent on processing job i, the volume (in cubic
meters) of a constructed building, the number of standard instructions in processing computer program
i, etc.
In this case, the problem is to find an allocation of the continuous resource to jobs that minimizes
the schedule length. The continuous resource allocation is defined by a piecewise continuous,
nonnegative vector function 𝐮𝐮(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡), … , 𝑢𝑢𝑛𝑛(𝑡𝑡)], whose values 𝐮𝐮∗ = [𝑢𝑢1

∗, 𝑢𝑢2
∗ , … , 𝑢𝑢𝑛𝑛

∗] are
(continuous) resource allocations corresponding to 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

∗ – the minimal value of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Completion of
job i requires that:

𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = ∫ 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)]
𝐶𝐶𝑖𝑖

0
𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑖𝑖

(2)

,� (1)

where:
	 xi(t)	 is the state of job i at time t;
	 fi	� is the processing rate function of job i, continuous, in-

creasing, and such that fi(0) = 0;
	 ui(t)	� is the continuous resource amount allotted to job i at

time t;
	 Ci	 is the completion time (unknown in advance) of job i;
	 wi	 is the size (final state) of job i.

State xi(t) of job i at time t is an objective measure of work
related to the processing of job i up to time t. It may denote,
e.g., the number of man-hours already spent on processing
job i, the volume (in cubic meters) of a constructed building,
the number of standard instructions in processing computer
program i, etc.

In this case, the problem is to find an allocation of the con-
tinuous resource to jobs that minimizes the schedule length. The
continuous resource allocation is defined by a piecewise contin-
uous, nonnegative vector function, whose values are (continu-
ous) resource allocations corresponding to C*

max – the minimal
value of Cmax. Completion of job i requires that:

2

absence of discrete resource constraints, (ii) one discrete resource with unit requests, and (iii) an
arbitrary number of discrete resources with integer resource requests of activities. In this paper we
assume the project duration (or the schedule length) as the scheduling criterion.
This paper is organized as follows. In Section 2 we recall the most important results concerning
the problem of allocating a continuous, renewable resource among independent jobs to minimize
the schedule length in the absence of discrete resources. This section reports the basic results known for
the continuous resource allocation problem obtained for two classes of the processing rate functions of
jobs: convex and concave functions. Section 3 contains the general formulation of the problem under
consideration. Section 4 is devoted to the case of convex processing rate functions. In this section we
will show that the considered problem is trivial for each case analyzed in the paper. The main section of
this work is Section 5, which deals with concave processing rate functions. We divide that section into
three subsections. The first one – Sect. 5.1 – concerns the case with no discrete resources. In Sect. 5.2
we consider one discrete resource and unit resource requests of activities. In other words, it is a case of
scheduling on parallel, identical machines. Finally, in Sect. 5.3 we deal with the most general case,
where the number of discrete resources is arbitrary, and the resource requests of activities are arbitrary
and integer. As a result, we obtain a general discrete-continuous project scheduling problem with
preemptable activities. In each of the three sections, 5.1 – 5.3, we also analyze two cases of precedence
constraints: independent and precedence-related activities. Some conclusions and directions for future
research are given in Section 6.

2. Continuous resource allocation

In this section we very briefly recall main theoretical results concerning the case when a continuous,
renewable resource is the only limited resource, and discrete resources are not present. The results relate
to independent jobs with equal ready times, the processing rate vs. resource amount job processing
model, and the minimization of the schedule length.
We assume that one continuous, renewable resource is available. The availability of the resource over
time is constant and, without loss of generality, we assume that its total available amount is equal to 1.
The resource can be allotted to jobs in (arbitrary) amounts from the interval [0,1]. The amount (unknown
in advance) of the continuous resource allotted to job i at time t is denoted by 𝑢𝑢𝑖𝑖(𝑡𝑡), and ∑ 𝑢𝑢𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (𝑡𝑡) ≤ 1

for any t. The resource amount 𝑢𝑢𝑖𝑖(𝑡𝑡) determines the processing rate of job i, which is described by the
following equation:
 𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)], 𝑥𝑥𝑖𝑖(0) = 0, 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = 𝑤𝑤𝑖𝑖 , (1)

where:
𝑥𝑥𝑖𝑖(𝑡𝑡) is the state of job i at time t;
fi is the processing rate function of job i, continuous, increasing, and such that fi(0) = 0;
𝑢𝑢𝑖𝑖(𝑡𝑡) is the continuous resource amount allotted to job i at time t;
Ci is the completion time (unknown in advance) of job i;
𝑤𝑤𝑖𝑖 is the size (final state) of job i.
State 𝑥𝑥𝑖𝑖(𝑡𝑡) of job i at time t is an objective measure of work related to the processing of job i up to time
t. It may denote, e.g., the number of man-hours already spent on processing job i, the volume (in cubic
meters) of a constructed building, the number of standard instructions in processing computer program
i, etc.
In this case, the problem is to find an allocation of the continuous resource to jobs that minimizes
the schedule length. The continuous resource allocation is defined by a piecewise continuous,
nonnegative vector function 𝐮𝐮(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡), … , 𝑢𝑢𝑛𝑛(𝑡𝑡)], whose values 𝐮𝐮∗ = [𝑢𝑢1

∗, 𝑢𝑢2
∗ , … , 𝑢𝑢𝑛𝑛

∗] are
(continuous) resource allocations corresponding to 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

∗ – the minimal value of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Completion of
job i requires that:

𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖) = ∫ 𝑓𝑓𝑖𝑖[𝑢𝑢𝑖𝑖(𝑡𝑡)]
𝐶𝐶𝑖𝑖

0
𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑖𝑖

(2)
� (2)

For simplicity, we will denote

3

For simplicity, we will denote 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖=1,… ,𝑛𝑛

{𝐶𝐶𝑖𝑖} by T throughout the remainder of the paper. The
following result, proved by Węglarz in [17], is fundamental for the continuous resource allocation
problem:

Theorem 1. The minimum schedule length T* as a function of sizes of jobs 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛) can
always be given by:

𝑇𝑇∗(𝐰𝐰) = min {𝑇𝑇 > 0: 𝐰𝐰 𝑇𝑇 ∈ coV}⁄
where coV is the convex hull of V, and set V is defined as:

𝑉𝑉 = {𝐯𝐯: 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, and ∑ 𝑢𝑢𝑖𝑖 ≤ 1
𝑛𝑛

𝑖𝑖=1
}

𝑇𝑇∗(𝐰𝐰) is a convex function.

Two corollaries follow directly from Theorem 1 [17]:

Corollary 1. For convex processing rate functions of jobs, the schedule length is minimized by
sequential processing of all jobs, each of them using the total available amount of the continuous
resource.

Corollary 2. For concave functions fi, i = 1, 2, …, n, the schedule length is minimized by fully parallel
processing of all jobs using the following resource amounts:
 𝑢𝑢𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇∗⁄), 𝑖𝑖 = 1, 2, … , 𝑛𝑛 , (3)

where T* is the unique positive root of equation

∑ 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇⁄)

𝑛𝑛

𝑖𝑖=1
= 1 .

(4)

Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling the condition 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖, 𝑐𝑐𝑖𝑖 = 𝑓𝑓𝑖𝑖(1), 𝑖𝑖 =
1, 2, … , 𝑛𝑛, i.e. functions growing not faster than a linear function. In the sequel, the results presented for
convex functions are true for all functions fulfilling the above condition. Secondly, Corollary 2 identifies
very important cases, in which an optimal resource allocation can be found in an efficient way. Generally
speaking, these are the cases when (4) can be solved analytically. From among them, the ones in which
(4) is an algebraic equation of an order ≤ 4 are of special importance. This is, for example, the case of

power processing rate functions of the form: 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖
1 𝛼𝛼𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖 ∈ {1, 2, 3, 4}, 𝑖𝑖 = 1, 2, … , 𝑛𝑛. Using

these functions we can model job processing rates in a variety of practical problems, e.g., those arising
in multiprocessor scheduling with memory allocation [18].
Let us finally notice that in both Corollaries preemptability of jobs is of no importance. In Corollary 1
jobs are processed sequentially, each of them using the total available amount of the continuous
resource. In Corollary 2 jobs are processed using constant resource amounts (given by Eq. (3)) from
their starts to their completions. As a result, allowing job preemptions does not affect optimal schedules.

3. Problem formulation

In Section 2, properties of optimal schedules have been given, proved for the case in which a single
continuous resource is the only limited resource, and independent jobs (activities) may be performed in
parallel. However, also discrete limited resources can appear, as well as precedence constraints between
activities, which can restrict the execution order of the activities. Discrete-continuous project scheduling
problems arise when precedence-related activities of a project simultaneously require discrete and
continuous resources for their execution.
The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem (PDCRCPSP)
considered in this paper is defined as follows. Given is a project consisting of n precedence-related,
preemptable activities which require renewable resources of two types: discrete and continuous ones.

 by T
throughout the remainder of the paper. The following result,
proved by Węglarz in [17], is fundamental for the continuous
resource allocation problem:

Theorem 1. The minimum schedule length T* as a function
of sizes of jobs w = (w1, w2, …, wn) can always be given by:

T*(w) = min{T ˃ 0: w /T 2 coV}

where coV is the convex hull of V, and set V is defined as:

3

For simplicity, we will denote 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖=1,… ,𝑛𝑛

{𝐶𝐶𝑖𝑖} by T throughout the remainder of the paper. The
following result, proved by Węglarz in [17], is fundamental for the continuous resource allocation
problem:

Theorem 1. The minimum schedule length T* as a function of sizes of jobs 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛) can
always be given by:

𝑇𝑇∗(𝐰𝐰) = min {𝑇𝑇 > 0: 𝐰𝐰 𝑇𝑇 ∈ coV}⁄
where coV is the convex hull of V, and set V is defined as:

𝑉𝑉 = {𝐯𝐯: 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, and ∑ 𝑢𝑢𝑖𝑖 ≤ 1
𝑛𝑛

𝑖𝑖=1
}

𝑇𝑇∗(𝐰𝐰) is a convex function.

Two corollaries follow directly from Theorem 1 [17]:

Corollary 1. For convex processing rate functions of jobs, the schedule length is minimized by
sequential processing of all jobs, each of them using the total available amount of the continuous
resource.

Corollary 2. For concave functions fi, i = 1, 2, …, n, the schedule length is minimized by fully parallel
processing of all jobs using the following resource amounts:
 𝑢𝑢𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇∗⁄), 𝑖𝑖 = 1, 2, … , 𝑛𝑛 , (3)

where T* is the unique positive root of equation

∑ 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇⁄)

𝑛𝑛

𝑖𝑖=1
= 1 .

(4)

Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling the condition 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖, 𝑐𝑐𝑖𝑖 = 𝑓𝑓𝑖𝑖(1), 𝑖𝑖 =
1, 2, … , 𝑛𝑛, i.e. functions growing not faster than a linear function. In the sequel, the results presented for
convex functions are true for all functions fulfilling the above condition. Secondly, Corollary 2 identifies
very important cases, in which an optimal resource allocation can be found in an efficient way. Generally
speaking, these are the cases when (4) can be solved analytically. From among them, the ones in which
(4) is an algebraic equation of an order ≤ 4 are of special importance. This is, for example, the case of

power processing rate functions of the form: 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖
1 𝛼𝛼𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖 ∈ {1, 2, 3, 4}, 𝑖𝑖 = 1, 2, … , 𝑛𝑛. Using

these functions we can model job processing rates in a variety of practical problems, e.g., those arising
in multiprocessor scheduling with memory allocation [18].
Let us finally notice that in both Corollaries preemptability of jobs is of no importance. In Corollary 1
jobs are processed sequentially, each of them using the total available amount of the continuous
resource. In Corollary 2 jobs are processed using constant resource amounts (given by Eq. (3)) from
their starts to their completions. As a result, allowing job preemptions does not affect optimal schedules.

3. Problem formulation

In Section 2, properties of optimal schedules have been given, proved for the case in which a single
continuous resource is the only limited resource, and independent jobs (activities) may be performed in
parallel. However, also discrete limited resources can appear, as well as precedence constraints between
activities, which can restrict the execution order of the activities. Discrete-continuous project scheduling
problems arise when precedence-related activities of a project simultaneously require discrete and
continuous resources for their execution.
The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem (PDCRCPSP)
considered in this paper is defined as follows. Given is a project consisting of n precedence-related,
preemptable activities which require renewable resources of two types: discrete and continuous ones.

T*(w) is a convex function.
Two corollaries follow directly from Theorem 1 [17]:

Corollary 1. For convex processing rate functions of jobs, the
schedule length is minimized by sequential processing of all
jobs, each of them using the total available amount of the con-
tinuous resource.

Corollary 2. For concave functions fi, i = 1, 2, …, n, the sched-
ule length is minimized by fully parallel processing of all jobs
using the following resource amounts:

3

For simplicity, we will denote 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖=1,… ,𝑛𝑛

{𝐶𝐶𝑖𝑖} by T throughout the remainder of the paper. The
following result, proved by Węglarz in [17], is fundamental for the continuous resource allocation
problem:

Theorem 1. The minimum schedule length T* as a function of sizes of jobs 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛) can
always be given by:

𝑇𝑇∗(𝐰𝐰) = min {𝑇𝑇 > 0: 𝐰𝐰 𝑇𝑇 ∈ coV}⁄
where coV is the convex hull of V, and set V is defined as:

𝑉𝑉 = {𝐯𝐯: 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, and ∑ 𝑢𝑢𝑖𝑖 ≤ 1
𝑛𝑛

𝑖𝑖=1
}

𝑇𝑇∗(𝐰𝐰) is a convex function.

Two corollaries follow directly from Theorem 1 [17]:

Corollary 1. For convex processing rate functions of jobs, the schedule length is minimized by
sequential processing of all jobs, each of them using the total available amount of the continuous
resource.

Corollary 2. For concave functions fi, i = 1, 2, …, n, the schedule length is minimized by fully parallel
processing of all jobs using the following resource amounts:
 𝑢𝑢𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇∗⁄), 𝑖𝑖 = 1, 2, … , 𝑛𝑛 , (3)

where T* is the unique positive root of equation

∑ 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇⁄)

𝑛𝑛

𝑖𝑖=1
= 1 .

(4)

Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling the condition 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖, 𝑐𝑐𝑖𝑖 = 𝑓𝑓𝑖𝑖(1), 𝑖𝑖 =
1, 2, … , 𝑛𝑛, i.e. functions growing not faster than a linear function. In the sequel, the results presented for
convex functions are true for all functions fulfilling the above condition. Secondly, Corollary 2 identifies
very important cases, in which an optimal resource allocation can be found in an efficient way. Generally
speaking, these are the cases when (4) can be solved analytically. From among them, the ones in which
(4) is an algebraic equation of an order ≤ 4 are of special importance. This is, for example, the case of

power processing rate functions of the form: 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖
1 𝛼𝛼𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖 ∈ {1, 2, 3, 4}, 𝑖𝑖 = 1, 2, … , 𝑛𝑛. Using

these functions we can model job processing rates in a variety of practical problems, e.g., those arising
in multiprocessor scheduling with memory allocation [18].
Let us finally notice that in both Corollaries preemptability of jobs is of no importance. In Corollary 1
jobs are processed sequentially, each of them using the total available amount of the continuous
resource. In Corollary 2 jobs are processed using constant resource amounts (given by Eq. (3)) from
their starts to their completions. As a result, allowing job preemptions does not affect optimal schedules.

3. Problem formulation

In Section 2, properties of optimal schedules have been given, proved for the case in which a single
continuous resource is the only limited resource, and independent jobs (activities) may be performed in
parallel. However, also discrete limited resources can appear, as well as precedence constraints between
activities, which can restrict the execution order of the activities. Discrete-continuous project scheduling
problems arise when precedence-related activities of a project simultaneously require discrete and
continuous resources for their execution.
The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem (PDCRCPSP)
considered in this paper is defined as follows. Given is a project consisting of n precedence-related,
preemptable activities which require renewable resources of two types: discrete and continuous ones.

,� (3)

where T* is the unique positive root of equation

3

For simplicity, we will denote 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖=1,… ,𝑛𝑛

{𝐶𝐶𝑖𝑖} by T throughout the remainder of the paper. The
following result, proved by Węglarz in [17], is fundamental for the continuous resource allocation
problem:

Theorem 1. The minimum schedule length T* as a function of sizes of jobs 𝐰𝐰 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛) can
always be given by:

𝑇𝑇∗(𝐰𝐰) = min {𝑇𝑇 > 0: 𝐰𝐰 𝑇𝑇 ∈ coV}⁄
where coV is the convex hull of V, and set V is defined as:

𝑉𝑉 = {𝐯𝐯: 𝑣𝑣𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, and ∑ 𝑢𝑢𝑖𝑖 ≤ 1
𝑛𝑛

𝑖𝑖=1
}

𝑇𝑇∗(𝐰𝐰) is a convex function.

Two corollaries follow directly from Theorem 1 [17]:

Corollary 1. For convex processing rate functions of jobs, the schedule length is minimized by
sequential processing of all jobs, each of them using the total available amount of the continuous
resource.

Corollary 2. For concave functions fi, i = 1, 2, …, n, the schedule length is minimized by fully parallel
processing of all jobs using the following resource amounts:
 𝑢𝑢𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇∗⁄), 𝑖𝑖 = 1, 2, … , 𝑛𝑛 , (3)

where T* is the unique positive root of equation

∑ 𝑓𝑓𝑖𝑖
−1(𝑤𝑤𝑖𝑖 𝑇𝑇⁄)

𝑛𝑛

𝑖𝑖=1
= 1 .

(4)

Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling the condition 𝑓𝑓𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖, 𝑐𝑐𝑖𝑖 = 𝑓𝑓𝑖𝑖(1), 𝑖𝑖 =
1, 2, … , 𝑛𝑛, i.e. functions growing not faster than a linear function. In the sequel, the results presented for
convex functions are true for all functions fulfilling the above condition. Secondly, Corollary 2 identifies
very important cases, in which an optimal resource allocation can be found in an efficient way. Generally
speaking, these are the cases when (4) can be solved analytically. From among them, the ones in which
(4) is an algebraic equation of an order ≤ 4 are of special importance. This is, for example, the case of

power processing rate functions of the form: 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖
1 𝛼𝛼𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖 ∈ {1, 2, 3, 4}, 𝑖𝑖 = 1, 2, … , 𝑛𝑛. Using

these functions we can model job processing rates in a variety of practical problems, e.g., those arising
in multiprocessor scheduling with memory allocation [18].
Let us finally notice that in both Corollaries preemptability of jobs is of no importance. In Corollary 1
jobs are processed sequentially, each of them using the total available amount of the continuous
resource. In Corollary 2 jobs are processed using constant resource amounts (given by Eq. (3)) from
their starts to their completions. As a result, allowing job preemptions does not affect optimal schedules.

3. Problem formulation

In Section 2, properties of optimal schedules have been given, proved for the case in which a single
continuous resource is the only limited resource, and independent jobs (activities) may be performed in
parallel. However, also discrete limited resources can appear, as well as precedence constraints between
activities, which can restrict the execution order of the activities. Discrete-continuous project scheduling
problems arise when precedence-related activities of a project simultaneously require discrete and
continuous resources for their execution.
The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem (PDCRCPSP)
considered in this paper is defined as follows. Given is a project consisting of n precedence-related,
preemptable activities which require renewable resources of two types: discrete and continuous ones.

.� (4)

Let us comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions fulfilling

the condition fi ≤ ciui, ci = fi(1), i = 1, 2, …, n, i.e. functions
growing not faster than a linear function. In the sequel, the re-
sults presented for convex functions are true for all functions
fulfilling the above condition. Secondly, Corollary 2 identifies
very important cases, in which an optimal resource allocation
can be found in an efficient way. Generally speaking, these
are the cases when (4) can be solved analytically. From among
them, the ones in which (4) is an algebraic equation of an order
≤ 4 are of special importance. This is, for example, the case
of power processing rate functions of the form: fi(ui) = ciui

1/αi,
αi 2 {1, 2, 3, 4}, i = 1, 2, …, n. Using these functions we can
model job processing rates in a variety of practical problems,
e.g., those arising in multiprocessor scheduling with memory
allocation [18].

Let us finally notice that in both Corollaries preemptability
of jobs is of no importance. In Corollary 1 jobs are processed
sequentially, each of them using the total available amount of
the continuous resource. In Corollary 2 jobs are processed using
constant resource amounts (given by Eq. (3)) from their starts
to their completions. As a result, allowing job preemptions does
not affect optimal schedules.

3.	 Problem formulation

In Section 2, properties of optimal schedules have been given,
proved for the case in which a single continuous resource is the
only limited resource, and independent jobs (activities) may be

385Bull. Pol. Ac.: Tech. 64(2) 2016

Discrete-continuous project scheduling with preemptable activities

performed in parallel. However, also discrete limited resources
can appear, as well as precedence constraints between activ-
ities, which can restrict the execution order of the activities.
Discrete-continuous project scheduling problems arise when
precedence-related activities of a project simultaneously require
discrete and continuous resources for their execution.

The Preemptive Discrete-Continuous Resource-Constrained
Project Scheduling Problem (PDCRCPSP) considered in this
paper is defined as follows. Given is a project consisting of n
precedence-related, preemptable activities which require renew-
able resources of two types: discrete and continuous ones. We
assume that R discrete resources are available, and ril, i = 1, 2,
…, n; l = 1, 2, …, R is the (fixed) discrete resource request of
activity Ai for resource l. The total number of units of discrete
resource l available in each time period is Rl, l = 1, 2, …, R. The
activities are subject to finish-to-start precedence constraints
with zero minimum time lags. The precedence constraints are
represented by an Activity-On-Arc (AoA) digraph G(Q, A) of
q nodes, in which each of n arcs represents an activity. In di-
graph G, Q is the set of nodes, |Q| = q, and A is the set of arcs,
|A| = n. The AoA representation and its consequences will be
discussed in more detail in point 5.1.2. One continuous resource
is available, and the processing rate of each activity at a time
is defined by the amount of the continuous resource allotted to
the activity, according to (1). Thus, each activity of the proj-
ect is characterized by its processing demand, processing rate
function, discrete resource requests, and precedence relations
to other activities. It is assumed that all activities and resources
are available from the start of the project. The problem is to
find a precedence- and discrete resource-feasible schedule and,
simultaneously, a continuous resource allocation that minimize
the schedule length T. Following the classification given in [19],
the notation of the PDCRCPSP is m,1| pmtn, cpm, cont |Cmax. All
the parameters of the PDCRCPSP are summarized in Table 1.

Table 1
Parameters of the PDCRCPSP

Symbol Definition

G(Q, A) AoA graph representing project

q = |Q| number of nodes in digraph G

n = |A| number of arcs in digraph G, i.e. number of activities
R number of discrete resources
Rl number of available units of discrete resource l
ril request for discrete resource l by activity Ai

fi processing rate function of activity Ai

wi size of activity Ai

Si starting time of activity Ai

Ci completion time of activity Ai

It has been shown in previous works that the methodol-
ogy for solving the discrete-continuous resource-constrained
project scheduling problem (DCRCPSP) with nonpreemptable
activities critically depends on the form of the processing rate
functions. Based on Corollary 1, it was proved in [15] that

for the DCRCPSP with convex processing rate functions, in
an optimal schedule activities are processed sequentially, each
of them using the total available amount of the continuous re-
source. On the other hand, following Corollary 2, it was also
shown in [15] that for the DCRCPSP with concave functions
the schedule length is optimized by fully parallel precedence-
and discrete resource-feasible execution of all activities. Con-
sequently, we will also distinguish between these two classes
of functions for the preemptive DCRCPSP, which is described
in the next two sections.

4.	 Convex processing rate functions

As mentioned in Section 3, it was proved that for the DCRCP-
SP with convex processing rate functions, the schedule length
is minimized by sequential processing of all activities, where
each activity uses the total available amount of the continu-
ous resource. Obviously, in the PDCRCPSP activities may be
preempted, however, in a sequential schedule it will not affect
the schedule length unless there are idle times between the ac-
tivities. Since preemptions cannot improve the schedule, it is
reasonable not to take them into account. Thus, the same se-
quential schedule with full utilization of the continuous resource
is optimal for the PDCRCPSP as it is for the DCRCPSP with
nonpreemptable activities.

Let us now stress that since a sequential schedule is consid-
ered, the appearance of discrete resources is of no importance.
The same sequential schedule leads to optimum in all the three
cases considered in this paper: (i) in the absence of discrete
resources, (ii) one discrete resource being a set of identical ma-
chines (in this case all activities are scheduled on one machine,
whereas the other machines remain idle), and (iii) an arbitrary
number of discrete resources. However, precedence relations
between activities have to be taken into account in each case.
Summarizing, we can state that:

●	 for the PDCRCPSP with convex processing rate func-
tions and independent activities, the schedule length is
minimized by sequential execution of all activities in an
arbitrary order, in which each activity uses the total avail-
able amount of the continuous resource, and

●	 for the PDCRCPSP with convex processing rate functions
and precedence-related activities, the schedule length is
minimized by sequential execution of all activities in any
precedence-feasible order, in which each activity uses the
total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount
allotted to activity Ai does not change over the whole time of
its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the
moment of completion of activity Ai as:

5

idle), and (iii) an arbitrary number of discrete resources. However, precedence relations between
activities have to be taken into account in each case. Summarizing, we can state that:
 for the PDCRCPSP with convex processing rate functions and independent activities, the schedule

length is minimized by sequential execution of all activities in an arbitrary order, in which each
activity uses the total available amount of the continuous resource, and

 for the PDCRCPSP with convex processing rate functions and precedence-related activities, the
schedule length is minimized by sequential execution of all activities in any precedence-feasible
order, in which each activity uses the total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount allotted to activity Ai does not change over
the whole time of its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the moment of completion
of activity Ai as:
 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), (5)

where pi is the processing time of activity Ai, and, in consequence:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) , (6)

Since in this case each activity uses the total available amount of the continuous resource, i.e. ui = 1
for each activity Ai, i = 1, 2, …, n, thus (6) can be rewritten as:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(1) (7)

and the length of the optimal schedule can easily be calculated as:

𝑇𝑇∗ = ∑ 𝑤𝑤𝑖𝑖
𝑓𝑓𝑖𝑖(1)

𝑛𝑛

𝑖𝑖=1

(8)

Thus, for convex processing rate functions of activities, the PDCRCPSP is trivial since any schedule, in
which activities are processed one after another in any precedence-feasible order, each of them using
the total amount of the continuous resource, is optimal. The optimum schedule length can be easily
calculated from (8). Also, as mentioned before, this result is independent of the occurrence of discrete
resources in the PDCRCPSP.
Figure 1 shows two examples of optimal schedule for different problem instances with n = 4 under
convex processing rate functions of activities. The actual problem parameters are of no importance for
the figure, it only shows the important features of the optimal schedule: sequencing and full usage of
the continuous resource (equal to 1).

a) b)

w1 w2 w3 w4

w1 w2 w3 w4

Fig. 1. Two exemplary optimal schedules for different problem instances with n = 4

5. Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCPSP with concave functions, the schedule
length is optimized by fully parallel precedence- and discrete resource-feasible execution of all
activities. Since a parallel execution can be restricted by both discrete resource constraints and
precedence relations between activities, these factors have to be analyzed separately. In the next three
sections, we will consider the following cases of the discrete resource constraints:

t t

u u

1 1

T* T*

,� (5)

where pi is the processing time of activity Ai, and, in conse-
quence:

5

idle), and (iii) an arbitrary number of discrete resources. However, precedence relations between
activities have to be taken into account in each case. Summarizing, we can state that:
 for the PDCRCPSP with convex processing rate functions and independent activities, the schedule

length is minimized by sequential execution of all activities in an arbitrary order, in which each
activity uses the total available amount of the continuous resource, and

 for the PDCRCPSP with convex processing rate functions and precedence-related activities, the
schedule length is minimized by sequential execution of all activities in any precedence-feasible
order, in which each activity uses the total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount allotted to activity Ai does not change over
the whole time of its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the moment of completion
of activity Ai as:
 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), (5)

where pi is the processing time of activity Ai, and, in consequence:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) , (6)

Since in this case each activity uses the total available amount of the continuous resource, i.e. ui = 1
for each activity Ai, i = 1, 2, …, n, thus (6) can be rewritten as:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(1) (7)

and the length of the optimal schedule can easily be calculated as:

𝑇𝑇∗ = ∑ 𝑤𝑤𝑖𝑖
𝑓𝑓𝑖𝑖(1)

𝑛𝑛

𝑖𝑖=1

(8)

Thus, for convex processing rate functions of activities, the PDCRCPSP is trivial since any schedule, in
which activities are processed one after another in any precedence-feasible order, each of them using
the total amount of the continuous resource, is optimal. The optimum schedule length can be easily
calculated from (8). Also, as mentioned before, this result is independent of the occurrence of discrete
resources in the PDCRCPSP.
Figure 1 shows two examples of optimal schedule for different problem instances with n = 4 under
convex processing rate functions of activities. The actual problem parameters are of no importance for
the figure, it only shows the important features of the optimal schedule: sequencing and full usage of
the continuous resource (equal to 1).

a) b)

w1 w2 w3 w4

w1 w2 w3 w4

Fig. 1. Two exemplary optimal schedules for different problem instances with n = 4

5. Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCPSP with concave functions, the schedule
length is optimized by fully parallel precedence- and discrete resource-feasible execution of all
activities. Since a parallel execution can be restricted by both discrete resource constraints and
precedence relations between activities, these factors have to be analyzed separately. In the next three
sections, we will consider the following cases of the discrete resource constraints:

t t

u u

1 1

T* T*

.� (6)

386 Bull. Pol. Ac.: Tech. 64(2) 2016

R. Różycki, G. Waligóra, and J. Węglarz

Since in this case each activity uses the total available amount
of the continuous resource, i.e. ui = 1 for each activity Ai, i = 1,
2, …, n, thus (6) can be rewritten as:

5

idle), and (iii) an arbitrary number of discrete resources. However, precedence relations between
activities have to be taken into account in each case. Summarizing, we can state that:
 for the PDCRCPSP with convex processing rate functions and independent activities, the schedule

length is minimized by sequential execution of all activities in an arbitrary order, in which each
activity uses the total available amount of the continuous resource, and

 for the PDCRCPSP with convex processing rate functions and precedence-related activities, the
schedule length is minimized by sequential execution of all activities in any precedence-feasible
order, in which each activity uses the total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount allotted to activity Ai does not change over
the whole time of its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the moment of completion
of activity Ai as:
 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), (5)

where pi is the processing time of activity Ai, and, in consequence:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) , (6)

Since in this case each activity uses the total available amount of the continuous resource, i.e. ui = 1
for each activity Ai, i = 1, 2, …, n, thus (6) can be rewritten as:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(1) (7)

and the length of the optimal schedule can easily be calculated as:

𝑇𝑇∗ = ∑ 𝑤𝑤𝑖𝑖
𝑓𝑓𝑖𝑖(1)

𝑛𝑛

𝑖𝑖=1

(8)

Thus, for convex processing rate functions of activities, the PDCRCPSP is trivial since any schedule, in
which activities are processed one after another in any precedence-feasible order, each of them using
the total amount of the continuous resource, is optimal. The optimum schedule length can be easily
calculated from (8). Also, as mentioned before, this result is independent of the occurrence of discrete
resources in the PDCRCPSP.
Figure 1 shows two examples of optimal schedule for different problem instances with n = 4 under
convex processing rate functions of activities. The actual problem parameters are of no importance for
the figure, it only shows the important features of the optimal schedule: sequencing and full usage of
the continuous resource (equal to 1).

a) b)

w1 w2 w3 w4

w1 w2 w3 w4

Fig. 1. Two exemplary optimal schedules for different problem instances with n = 4

5. Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCPSP with concave functions, the schedule
length is optimized by fully parallel precedence- and discrete resource-feasible execution of all
activities. Since a parallel execution can be restricted by both discrete resource constraints and
precedence relations between activities, these factors have to be analyzed separately. In the next three
sections, we will consider the following cases of the discrete resource constraints:

t t

u u

1 1

T* T*

� (7)

and the length of the optimal schedule can easily be calculated
as:

5

idle), and (iii) an arbitrary number of discrete resources. However, precedence relations between
activities have to be taken into account in each case. Summarizing, we can state that:
 for the PDCRCPSP with convex processing rate functions and independent activities, the schedule

length is minimized by sequential execution of all activities in an arbitrary order, in which each
activity uses the total available amount of the continuous resource, and

 for the PDCRCPSP with convex processing rate functions and precedence-related activities, the
schedule length is minimized by sequential execution of all activities in any precedence-feasible
order, in which each activity uses the total available amount of the continuous resource.

Now, let us notice that if the continuous resource amount allotted to activity Ai does not change over
the whole time of its execution, i.e. ui(t) = ui for every t, we can rewrite (1) at the moment of completion
of activity Ai as:
 𝑥𝑥𝑖𝑖(𝐶𝐶𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖), (5)

where pi is the processing time of activity Ai, and, in consequence:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(𝑢𝑢𝑖𝑖) , (6)

Since in this case each activity uses the total available amount of the continuous resource, i.e. ui = 1
for each activity Ai, i = 1, 2, …, n, thus (6) can be rewritten as:
 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑓𝑓𝑖𝑖(1) (7)

and the length of the optimal schedule can easily be calculated as:

𝑇𝑇∗ = ∑ 𝑤𝑤𝑖𝑖
𝑓𝑓𝑖𝑖(1)

𝑛𝑛

𝑖𝑖=1

(8)

Thus, for convex processing rate functions of activities, the PDCRCPSP is trivial since any schedule, in
which activities are processed one after another in any precedence-feasible order, each of them using
the total amount of the continuous resource, is optimal. The optimum schedule length can be easily
calculated from (8). Also, as mentioned before, this result is independent of the occurrence of discrete
resources in the PDCRCPSP.
Figure 1 shows two examples of optimal schedule for different problem instances with n = 4 under
convex processing rate functions of activities. The actual problem parameters are of no importance for
the figure, it only shows the important features of the optimal schedule: sequencing and full usage of
the continuous resource (equal to 1).

a) b)

w1 w2 w3 w4

w1 w2 w3 w4

Fig. 1. Two exemplary optimal schedules for different problem instances with n = 4

5. Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCPSP with concave functions, the schedule
length is optimized by fully parallel precedence- and discrete resource-feasible execution of all
activities. Since a parallel execution can be restricted by both discrete resource constraints and
precedence relations between activities, these factors have to be analyzed separately. In the next three
sections, we will consider the following cases of the discrete resource constraints:

t t

u u

1 1

T* T*

� (8)

Thus, for convex processing rate functions of activities, the
PDCRCPSP is trivial since any schedule, in which activities are
processed one after another in any precedence-feasible order,
each of them using the total amount of the continuous resource,
is optimal. The optimum schedule length can be easily calculat-
ed from (8). Also, as mentioned before, this result is indepen-
dent of the occurrence of discrete resources in the PDCRCPSP.

Figure 1 shows two examples of optimal schedule for dif-
ferent problem instances with n = 4 under convex processing
rate functions of activities. The actual problem parameters are
of no importance for the figure, it only shows the important
features of the optimal schedule: sequencing and full usage of
the continuous resource (equal to 1).

In the next three sections, we will consider the following cases
of the discrete resource constraints:

●	 no discrete resource constraints – Sect. 5.1
●	 one discrete resource being a set of identical machines

– Sect. 5.2
●	 an arbitrary number of discrete resources – Sect. 5.3.
In each case we also have to distinguish between indepen-

dent and precedence-related activities.

5.1 No discrete resource constraints. In this section we con-
sider a special case of the PDCRCPSP in which there are no
discrete resource constraints, i.e. the continuous resource is the
only limited resource. Still, we have to analyze the cases of
independent and precedence-related activities.
5.1.1 Independent activities. For the case of independent ac-
tivities the problem is simple because, neither discrete resource
constraints nor precedence relations between activities restrict
a parallel execution of the activities. Thus, the schedule length
is minimized by fully parallel execution of all activities, each
of them using the continuous resource amount given by (3).
The optimum schedule length can be immediately calculated
from Eq. (4).
5.1.2 Precedence-related activities. For the case of dependent
activities the problem becomes more complicated, as the prece-
dence relations between activities restrict a parallel execution.
At a given moment only those activities may be executed in
parallel, all predecessors of which have already been completed.

As mentioned in Section 3, in this work precedence con-
straints between activities are represented by an Activity-on-Arc
digraph G in which q nodes represent events and n arcs repre-
sent activities. We assume that G is connected, acyclic, has one
initial and one terminal node, and each pair of nodes is connect-
ed by one arc at most. Such a precedence constraints representa-
tion is always possible, although it sometime requires inserting
so-called dummy nodes (events) and/or activities (arcs).

Usually, there can be many different activity execution or-
ders and, in consequence, different feasible schedules, associ-
ated with a particular graph G. If there is only one activity ex-
ecution order possible due to the existing precedence relations,
graph G representing such relations is then called uniconnected
activity network (UAN). It is a case which makes the search for
optimal solution much easier, as we will show in the sequel.
However, in general, we have to assume that graph G does
not have the UAN property. In such a case, a methodology for
solving the considered problem based on the assumed ordering
O of nodes in graph G was discussed in [20]. In the proposed
methodology the ordering of nodes is decisive for the unique
activity execution order in the resulting feasible schedule. For
ordering O we will assume that the only initial node has number
1, the only terminal node has number q, and each arc starts in
a node with a smaller number and ends in a node with a larger
number. Obviously, if graph G is not a UAN, there are many
different orderings of nodes satisfying the above assumptions.

For a given graph G the activity execution order following
from an assumed node ordering O can be represented by a se-
quence SQ = [Q1, Q2, ..., Qq-1] of so-called main sets. The main
set Qk, k = 1, 2, ..., q–1 contains activities that can be executed

Fig. 1. Two exemplary optimal schedules for different problem in-
stances with n = 4

(a)

(b)

5.	 Concave processing rate functions

As mentioned in Section 3, it was proved that for the DCRCP-
SP with concave functions, the schedule length is optimized by
fully parallel precedence- and discrete resource-feasible execu-
tion of all activities. Since a parallel execution can be restricted
by both discrete resource constraints and precedence relations
between activities, these factors have to be analyzed separately.

387Bull. Pol. Ac.: Tech. 64(2) 2016

Discrete-continuous project scheduling with preemptable activities

in parallel between events represented by nodes k and k+1 in
graph G, and corresponds to the k-th fragment of the feasible
schedule following from ordering O.

An example of graph G with a fixed node ordering and the
corresponding sequence of main sets is presented in Fig. 2.

where

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

, k = 1, 2, ..., q–1 is the unique positive root of
the equation:

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

� (12)

For concave processing rate functions of activities, Prob-
lem P1 is an NLP (convex) problem. The schedule length T is
calculated in (9) as the sum of the lengths of all the fragments
of the schedule. Constraints (10) correspond to the condition of
executing each activity in its full size, whereas constraints (11)
ensure that the wik's are nonnegative. Condition (12) allows to
calculate the minimal length of the k-th fragment following from
an optimal continuous resource allocation. Note that the equation
in (12) is an adaptation of (4) to a single main set Qk. It can be
solved analytically for some important cases, as discussed in
Sect. 2. Table 2 shows the notation used for Problem P1.

Table 2
Notation for Problem P1

Symbol Definition

Qk k-th main set
Tk length of the k-th fragment of schedule (corresponding

to Qk)
wik part of the size of activity Ai assigned to the k-th

fragment of the schedule
Ki set of indices of main sets containing activity Ai

Figure 3 presents an example of a feasible schedule, follow-
ing from an assumed division of activity sizes among main sets
under the fixed node ordering presented in Fig. 2.

8

Constraints (10) correspond to the condition of executing each activity in its full size, whereas
constraints (11) ensure that the 𝑤𝑤𝑖𝑖𝑖𝑖 's are nonnegative. Condition (12) allows to calculate the minimal
length of the k-th fragment following from an optimal continuous resource allocation. Note that the
equation in (12) is an adaptation of (4) to a single main set Qk. It can be solved analytically for some
important cases, as discussed in Sect. 2. Table 2 shows the notation used for Problem P1.

Table 2. Notation for Problem P1
Symbol Definition
Qk k-th main set
Tk length of the k-th fragment of schedule (corresponding to Qk)
wik part of the size of activity Ai assigned to the k-th fragment of the schedule
Ki set of indices of main sets containing activity Ai

Figure 3 presents an example of a feasible schedule, following from an assumed division of activity
sizes among main sets under the fixed node ordering presented in Fig. 2.

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

w21 w22
w23

w74 w53
w11

w52

w42 w63 w64
w31 w32
T1 T2 T3 T4

w1 = w11
w2 = w21 + w22 + w23

w3 = w31 + w32
w4 = w42
w5 = w52 + w53
w6 = w63 + w64
w7 = w74
T = T1 + T2 + T3 + T4

Fig. 3. Example of a feasible schedule for node ordering presented in Fig. 2

Let us stress again that the schedule generated as a result of solving Problem P1 is of the minimum
length only for a given node ordering O. If this is the unique ordering for graph G (G is a UAN), the
schedule is optimal. Otherwise, in order to find an optimal schedule it is necessary to enumerate all
feasible orderings of nodes and solve Problem P1 for each of them. However, in general, the number of
all feasible node orderings grows exponentially with the number of nodes, and therefore, the full
enumeration approach can be justified only for small problem instances.
Thus, in practice, a reasonable approach could be to apply local search metaheuristics searching over
the set of all feasible orderings. Obviously, in such a case, the set of all feasible orderings is only partially

u

1

Fig. 2. Example of graph G with a fixed node ordering and the corre-
sponding sequence of main sets SQ

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

If we assume that for main set Qk the sizes (or parts of sizes)
of activities occurring in Qk are known, then the length of the
fragment of the schedule corresponding to Qk can be calculat-
ed by using Corollary 2. Let us call such a division of activity
sizes among main sets by size division. Thus, the methodolo-
gy for solving the considered problem consists in formulating
a mathematical programming (MP) problem (in general, a non-
linear one – NLP), in which such a size division is searched that
– after applying Corollary 2 to each main set – minimizes the
length of the entire schedule. Let us denote by wik the part of the
size of activity Ai assigned to the k-th fragment of the schedule
(i.e. corresponding to main set Qk), and by Tk the length of the
fragment as a function of vector wk = {wik}Ai2Qk

. Moreover, let
Ki denote the set of indices of those main sets which contain
activity Ai. The following MP problem finds the optimal sched-
ule length for a given node ordering O in graph G:

Problem P1
minimize

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

� (9)

subject to

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

� (10)

7

𝑆𝑆𝑄𝑄 = [{
1,
2,
3

} , {
2,
3,
4,
5

} , {
2,
5,
6

} , {6,
7}]

Fig. 2. Example of graph G with a fixed node ordering and the corresponding sequence of main sets SQ

If we assume that for main set Qk the sizes (or parts of sizes) of activities occurring in Qk are known,
then the length of the fragment of the schedule corresponding to Qk can be calculated by using Corollary
2. Let us call such a division of activity sizes among main sets by size division. Thus, the methodology
for solving the considered problem consists in formulating a mathematical programming (MP) problem
(in general, a nonlinear one – NLP), in which such a size division is searched that – after applying
Corollary 2 to each main set – minimizes the length of the entire schedule. Let us denote by wik the part
of the size of activity Ai assigned to the k-th fragment of the schedule (i.e. corresponding to main set
Qk), and by Tk the length of the fragment as a function of vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘. Moreover, let Ki
denote the set of indices of those main sets which contain activity Ai. The following MP problem finds
the optimal schedule length for a given node ordering O in graph G:

Problem P1
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑞𝑞−1

𝑘𝑘=1

(9)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (10)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (11)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘), k = 1, 2, ..., q–1 is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄)
𝐴𝐴𝑖𝑖∈𝑄𝑄𝑘𝑘

= 1 (12)

For concave processing rate functions of activities, Problem P1 is an NLP (convex) problem. The
schedule length T is calculated in (9) as the sum of the lengths of all the fragments of the schedule.

1

2

3

5

6

7


















3
,2
,1

1Q























3
,2
,4
,5

2Q

















6
,2
,5

3Q









6
,7

4Q

2

1

3

4

5

4

� (11)
Fig. 3. Example of a feasible schedule for node ordering presented

in Fig. 2

w1 = w11
w2 = w21 + w22 + w23
w3 = w31 + w32
w4 = w42
w5 = w52 + w53
w6 = w63 + w64
w7 = w74
T = T1 + T2 + T3 + T4

388 Bull. Pol. Ac.: Tech. 64(2) 2016

R. Różycki, G. Waligóra, and J. Węglarz

Let us stress again that the schedule generated as a result of
solving Problem P1 is of the minimum length only for a given
node ordering O. If this is the unique ordering for graph G (G
is a UAN), the schedule is optimal. Otherwise, in order to find
an optimal schedule it is necessary to enumerate all feasible
orderings of nodes and solve Problem P1 for each of them.
However, in general, the number of all feasible node orderings
grows exponentially with the number of nodes, and therefore,
the full enumeration approach can be justified only for small
problem instances.

Thus, in practice, a reasonable approach could be to apply
local search metaheuristics searching over the set of all feasi-
ble orderings. Obviously, in such a case, the set of all feasible
orderings is only partially examined by a chosen metaheuristic
approach. Alternatively, constructive heuristics may be designed,
using some rules to generate a single suboptimal node ordering,
and building a feasible schedule on its basis, as presented in [21].

5.2 One discrete resource – a set of identical machines. In
this section we consider a case of the PDCRCPSP with one
discrete resource being a set of parallel, identical machines.
As previously, we analyze independent and precedence-related
activities.

At this point it is worth noticing that the limited amount
of the continuous resource never constrains the possibility of
parallel execution of any activities, at least it affects the rate of
their processing. In the assumed activity model (compare (1) and
(2)) limited discrete resources for which the activities compete
do not affect the processing times of activities; however, they
can constrain the possibility of the activities’ parallel execution.
5.2.1 Independent activities. For independent activities the
(nonexistent) precedence constraints do not restrict a parallel
activity execution. However, since a parallel assignment of ma-
chines to activities can be restricted by the number of machines,
we have to distinguish two cases: n ≤ m and n > m. In the first
case, the number of activities does not exceed the number of
machines, and therefore, all activities can be performed in par-
allel. It is not possible in the second case, where only m out of
n activities can be scheduled in the first step, and n–m activities

have to initially wait for machines. Since these two cases re-
sult in two completely different methodologies, we will discuss
them in separate sections.
5.2.1.1 The case of n ≤ m. As mentioned above, in this case all
activities can be performed in parallel, and the set of machines
does not constitute any restriction. In consequence, the result
presented in Corollary 2 can be implicitly applied, as if there
were no discrete resources at all. Obviously, analogically as in
Sect. 2, preemptions cannot improve the schedule and will not
be taken into account. The optimum schedule length can be cal-
culated directly from (4). Two examples of optimal schedules
for the considered case are presented in Fig. 4. As in Fig. 1, the
actual problem parameters do not matter for the figure, it only
shows the important features of the optimal schedule: full usage
of the continuous resource (equal to 1), and parallel execution
in which all activities end at the same time.
5.2.1.2 The case of n > m. In this case the number of machines
restricts parallel assignments of machines to activities, and a
special methodology has to be developed. For the sake of meth-
odology, a structure representing assignment of machines to
activities has to be used, in which combinations of activities
executed in parallel in successive intervals of a schedule are
defined. Since activities are preemptable, in general it is suffi-
cient to consider a so-called maximal sequence Smax composed
of all s = (n

m) m-element combinations of activities [20]. Such
a sequence exhausts all possible assignments of m (identical)
machines to n activities, and therefore guarantees finding an
optimal assignment. Each feasible schedule can be generated
by using the maximal sequence.

We will represent sequences of combinations in a form of
vectors since, in a general case, the position of a combination
in a sequence is important. For instance, the maximal sequence
Smax for an exemplary problem with n = 4 and m = 3 can be
represented as:

Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

However, in the considered problem, since preemptable ac-
tivities are scheduled on identical machines, the order of com-

Fig. 4. Two exemplary optimal schedules for different problem instances with n = 4 and m ≥ 4

(a) (b)

389Bull. Pol. Ac.: Tech. 64(2) 2016

Discrete-continuous project scheduling with preemptable activities

binations in the sequence, as well as the order of activities in a
particular combination, do not matter.

Now, for the maximal sequence we look for a division of
the sizes of activities (i.e. a size division) among combinations
of the sequence that leads to optimum. More precisely, size
wi of each activity Ai, i = 1, 2, …, n has to be divided into
parts wik ≥ 0 (unknown in advance) corresponding to particular
time intervals (combinations), i.e. wik is a part of size of activ-
ity Ai processed in the interval associated with combination
Zk, k = 1, 2, …, s. Note that approaches based on searching for
an optimal division of sizes (or processing times) of jobs in
a schedule are often used to solve classical problems of sched-
uling preemptable jobs [21].

Next, an NLP problem can be formulated finding an optimal
size division for the maximal sequence Smax, i.e. a division that
leads to a schedule of the minimal length from among all sched-
ules generated by Smax. In the problem, the sum of the mini-
mum-length intervals generated by consecutive combinations
in Smax, as functions of the vector wk = {wik}i2zk

, is minimized
subject to the constraints that each activity has to be completed.
Let T*

k (wk) be the minimal length of the fragment of the schedule
generated by Zk 2 Smax, and let Ki be the set of all indices of
Zk’s such that Ai 2 Zk. The following NLP problem finds an op-
timal size division (and, in consequence, an optimal continuous
resource allocation) for the maximal sequence Smax:

Problem P2
minimize

10

5.2.1.2 The case of n > m
In this case the number of machines restricts parallel assignments of machines to activities, and a special
methodology has to be developed. For the sake of methodology, a structure representing assignment of
machines to activities has to be used, in which combinations of activities executed in parallel in
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be
generated by using the maximal sequence.
We will represent sequences of combinations in a form of vectors since, in a general case, the position
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary
problem with n = 4 and m = 3 can be represented as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]
However, in the considered problem, since preemptable activities are scheduled on identical machines,
the order of combinations in the sequence, as well as the order of activities in a particular combination,
do not matter.
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division)
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai,
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling
preemptable jobs [21].
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation)
for the maximal sequence Smax:

Problem P2
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1

(13)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16)

The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule.
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14)
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation
of (4) to a single combination Zk.
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for
different problem instances.

� (13)

subject to

10

5.2.1.2 The case of n > m
In this case the number of machines restricts parallel assignments of machines to activities, and a special
methodology has to be developed. For the sake of methodology, a structure representing assignment of
machines to activities has to be used, in which combinations of activities executed in parallel in
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be
generated by using the maximal sequence.
We will represent sequences of combinations in a form of vectors since, in a general case, the position
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary
problem with n = 4 and m = 3 can be represented as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]
However, in the considered problem, since preemptable activities are scheduled on identical machines,
the order of combinations in the sequence, as well as the order of activities in a particular combination,
do not matter.
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division)
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai,
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling
preemptable jobs [21].
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation)
for the maximal sequence Smax:

Problem P2
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1

(13)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16)

The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule.
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14)
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation
of (4) to a single combination Zk.
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for
different problem instances.

� (14)

10

5.2.1.2 The case of n > m
In this case the number of machines restricts parallel assignments of machines to activities, and a special
methodology has to be developed. For the sake of methodology, a structure representing assignment of
machines to activities has to be used, in which combinations of activities executed in parallel in
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be
generated by using the maximal sequence.
We will represent sequences of combinations in a form of vectors since, in a general case, the position
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary
problem with n = 4 and m = 3 can be represented as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]
However, in the considered problem, since preemptable activities are scheduled on identical machines,
the order of combinations in the sequence, as well as the order of activities in a particular combination,
do not matter.
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division)
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai,
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling
preemptable jobs [21].
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation)
for the maximal sequence Smax:

Problem P2
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1

(13)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16)

The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule.
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14)
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation
of (4) to a single combination Zk.
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for
different problem instances.

� (15)

where T*
k (wk) is the unique positive root of the equation:

10

5.2.1.2 The case of n > m
In this case the number of machines restricts parallel assignments of machines to activities, and a special
methodology has to be developed. For the sake of methodology, a structure representing assignment of
machines to activities has to be used, in which combinations of activities executed in parallel in
successive intervals of a schedule are defined. Since activities are preemptable, in general it is sufficient
to consider a so-called maximal sequence Smax composed of all 𝑠𝑠 = (𝑛𝑛

𝑚𝑚) m-element combinations of
activities [20]. Such a sequence exhausts all possible assignments of m (identical) machines to n
activities, and therefore guarantees finding an optimal assignment. Each feasible schedule can be
generated by using the maximal sequence.
We will represent sequences of combinations in a form of vectors since, in a general case, the position
of a combination in a sequence is important. For instance, the maximal sequence Smax for an exemplary
problem with n = 4 and m = 3 can be represented as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]
However, in the considered problem, since preemptable activities are scheduled on identical machines,
the order of combinations in the sequence, as well as the order of activities in a particular combination,
do not matter.
Now, for the maximal sequence we look for a division of the sizes of activities (i.e. a size division)
among combinations of the sequence that leads to optimum. More precisely, size w𝑖𝑖 of each activity Ai,
i = 1, 2, …, n has to be divided into parts 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 (unknown in advance) corresponding to particular
time intervals (combinations), i.e. 𝑤𝑤𝑖𝑖𝑖𝑖 is a part of size of activity Ai processed in the interval associated
with combination 𝑍𝑍𝑘𝑘, 𝑘𝑘 = 1, 2, … , 𝑠𝑠. Note that approaches based on searching for an optimal division of
sizes (or processing times) of jobs in a schedule are often used to solve classical problems of scheduling
preemptable jobs [21].
Next, an NLP problem can be formulated finding an optimal size division for the maximal sequence
Smax, i.e. a division that leads to a schedule of the minimal length from among all schedules generated
by Smax. In the problem, the sum of the minimum-length intervals generated by consecutive
combinations in Smax, as functions of the vector w𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖}𝑖𝑖∈𝑍𝑍𝑘𝑘, is minimized subject to the constraints
that each activity has to be completed. Let 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) be the minimal length of the fragment of the schedule
generated by Zk  Smax, and let Ki be the set of all indices of Zk's such that Ai  Zk. The following NLP
problem finds an optimal size division (and, in consequence, an optimal continuous resource allocation)
for the maximal sequence Smax:

Problem P2
minimize

𝑇𝑇 = ∑ 𝑇𝑇𝑘𝑘
∗(w𝑘𝑘)

𝑠𝑠

𝑘𝑘=1

(13)

subject to
 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

 (14)

 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (15)
where 𝑇𝑇𝑘𝑘

∗(w𝑘𝑘) is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1(𝑤𝑤𝑖𝑖𝑖𝑖 𝑇𝑇𝑘𝑘⁄) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘

 (16)

The schedule length T is calculated in (13) as the sum of the lengths of all the intervals of the schedule.
The intervals correspond to combinations Zk, k = 1, 2…, s, and in this case 𝑠𝑠 = (𝑛𝑛

𝑚𝑚). Constraints (14)
and (15) are identical to (10) and (11). Condition (16) allows to calculate the minimal length of the k-th
interval following from an optimal continuous resource allocation. The equation in (16) is an adaptation
of (4) to a single combination Zk.
Figure 5 shows maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for
different problem instances.

� (16)

The schedule length T is calculated in (13) as the sum of
the lengths of all the intervals of the schedule. The intervals
correspond to combinations Zk, k = 1, 2…, s, and in this case
s = (n

m). Constraints (14) and (15) are identical to (10) and (11).
Condition (16) allows to calculate the minimal length of the k-th
interval following from an optimal continuous resource allo-
cation. The equation in (16) is an adaptation of (4) to a single
combination Zk.

Figure 5 shows maximal sequence Smax for n = 4 and m = 3
and two exemplary optimal schedules for different problem in-
stances.
5.2.2 Precedence-related activities. In this case, in order to
find optimal schedules, an approach being an extension of the
method proposed in point 5.1.2 can be used. Obviously, this
time not only precedence- but also resource constraints have to
be taken into consideration, following from the limited number
of m machines.

As shown in 5.1.2, for a given node ordering O in digraph G
an activity execution order feasible with respect to precedence
constraints can be represented by a sequence SQ of main sets.
However, in general, main sets can now contain activities which
cannot be executed in parallel (which is desirable for concave
processing rate functions) because of the existence of additional
resource constraints. Consequently, for each main set a vector of
combinations of activities can be constructed. A single activity
combination is a subset of the considered main set containing
these activities that can be executed in parallel, with respect
to the resource constraints (in this case – a limited number of

Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different problem instances

(a) (b)

Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

390 Bull. Pol. Ac.: Tech. 64(2) 2016

R. Różycki, G. Waligóra, and J. Węglarz

identical machines). Notice, that since such a combination is
constructed as a subset of the main set, precedence constraints
are already satisfied. As discussed in [20], in the considered
case of identical machines and concave processing rate func-
tions, a vector of combinations for a given main set Qk consists
of zk elements, where:

11

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

a) b)

w11 w12
w13

w24

w11

w12

w13
w24

w21

w33
w22

w21

w34 w33

w31 w43
w34

 w22

w31

w44 w44
 w42 w43 w42

Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different

problem instances

5.2.2 Precedence-related activities

In this case, in order to find optimal schedules, an approach being an extension of the method proposed
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have
to be taken into consideration, following from the limited number of m machines.
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general,
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave
processing rate functions) because of the existence of additional resource constraints. Consequently, for
each main set a vector of combinations of activities can be constructed. A single activity combination is
a subset of the considered main set containing these activities that can be executed in parallel, with
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that
since such a combination is constructed as a subset of the main set, precedence constraints are already
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate
functions, a vector of combinations for a given main set Qk consists of zk elements, where:

𝑧𝑧𝑘𝑘 = {
 1 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚) 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| > 𝑚𝑚
(17)

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible
alone. In the second case, the vector of combinations contains all possible m-element combinations of
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk.
In consequence, in order to represent a schedule feasible with respect to both precedence and resource
constraints, we may use a sequence SZ of vectors of combinations of the form:

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]]
In this case, a feasible schedule will be considered as consisting of fragments corresponding to
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource
that minimizes the length of the fragment of the schedule corresponding to this combination. To

u u

t t

1 1

T* T*

� (17)

In the first case, the main set contains no more that m el-
ements (activities), thus, it is resource-feasible alone. In the
second case, the vector of combinations contains all possible
m-element combinations of activities from main set Qk. Let
Zkl denote the l-th activity combination generated from main
set Qk.

In consequence, in order to represent a schedule feasible
with respect to both precedence and resource constraints, we
may use a sequence SZ of vectors of combinations of the form:

11

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

a) b)

w11 w12
w13

w24

w11

w12

w13
w24

w21

w33
w22

w21

w34 w33

w31 w43
w34

 w22

w31

w44 w44
 w42 w43 w42

Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different

problem instances

5.2.2 Precedence-related activities

In this case, in order to find optimal schedules, an approach being an extension of the method proposed
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have
to be taken into consideration, following from the limited number of m machines.
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general,
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave
processing rate functions) because of the existence of additional resource constraints. Consequently, for
each main set a vector of combinations of activities can be constructed. A single activity combination is
a subset of the considered main set containing these activities that can be executed in parallel, with
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that
since such a combination is constructed as a subset of the main set, precedence constraints are already
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate
functions, a vector of combinations for a given main set Qk consists of zk elements, where:

𝑧𝑧𝑘𝑘 = {
 1 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚) 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| > 𝑚𝑚
(17)

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible
alone. In the second case, the vector of combinations contains all possible m-element combinations of
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk.
In consequence, in order to represent a schedule feasible with respect to both precedence and resource
constraints, we may use a sequence SZ of vectors of combinations of the form:

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]]
In this case, a feasible schedule will be considered as consisting of fragments corresponding to
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource
that minimizes the length of the fragment of the schedule corresponding to this combination. To

u u

t t

1 1

T* T*

11

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

a) b)

w11 w12
w13

w24

w11

w12

w13
w24

w21

w33
w22

w21

w34 w33

w31 w43
w34

 w22

w31

w44 w44
 w42 w43 w42

Fig. 5. Maximal sequence Smax for n = 4 and m = 3 and two exemplary optimal schedules for different

problem instances

5.2.2 Precedence-related activities

In this case, in order to find optimal schedules, an approach being an extension of the method proposed
in point 5.1.2 can be used. Obviously, this time not only precedence- but also resource constraints have
to be taken into consideration, following from the limited number of m machines.
As shown in 5.1.2, for a given node ordering O in digraph G an activity execution order feasible with
respect to precedence constraints can be represented by a sequence SQ of main sets. However, in general,
main sets can now contain activities which cannot be executed in parallel (which is desirable for concave
processing rate functions) because of the existence of additional resource constraints. Consequently, for
each main set a vector of combinations of activities can be constructed. A single activity combination is
a subset of the considered main set containing these activities that can be executed in parallel, with
respect to the resource constraints (in this case – a limited number of identical machines). Notice, that
since such a combination is constructed as a subset of the main set, precedence constraints are already
satisfied. As discussed in [20], in the considered case of identical machines and concave processing rate
functions, a vector of combinations for a given main set Qk consists of zk elements, where:

𝑧𝑧𝑘𝑘 = {
 1 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| ≤ 𝑚𝑚
(|𝑄𝑄𝑘𝑘|

𝑚𝑚) 𝑖𝑖𝑖𝑖 |𝑄𝑄𝑘𝑘| > 𝑚𝑚
(17)

In the first case, the main set contains no more that m elements (activities), thus, it is resource-feasible
alone. In the second case, the vector of combinations contains all possible m-element combinations of
activities from main set Qk. Let Zkl denote the l-th activity combination generated from main set Qk.
In consequence, in order to represent a schedule feasible with respect to both precedence and resource
constraints, we may use a sequence SZ of vectors of combinations of the form:

𝑆𝑆𝑍𝑍 = [[𝑍𝑍11, 𝑍𝑍12, … , 𝑍𝑍1𝑧𝑧1], [𝑍𝑍21, 𝑍𝑍22, … , 𝑍𝑍2𝑧𝑧2], … , [𝑍𝑍𝑞𝑞−1,1, 𝑍𝑍𝑞𝑞−1,2, … , 𝑍𝑍𝑞𝑞−1,𝑧𝑧𝑞𝑞−1]]
In this case, a feasible schedule will be considered as consisting of fragments corresponding to
successive combinations in SZ. In order to find a schedule of the minimal length for a given node ordering
O, it is sufficient to formulate and solve an MP problem in which we look for an optimal division of
sizes of activities among the combinations in which they occur. For defined sizes of activities (or their
parts) in a combination we can find, using Corollary 2, such an allocation of the continuous resource
that minimizes the length of the fragment of the schedule corresponding to this combination. To

u u

t t

1 1

T* T*

In this case, a feasible schedule will be considered as con-
sisting of fragments corresponding to successive combinations
in SZ. In order to find a schedule of the minimal length for
a given node ordering O, it is sufficient to formulate and solve
an MP problem in which we look for an optimal division of
sizes of activities among the combinations in which they occur.
For defined sizes of activities (or their parts) in a combination
we can find, using Corollary 2, such an allocation of the con-
tinuous resource that minimizes the length of the fragment of
the schedule corresponding to this combination. To formulate
the appropriate MP problem, we have to slightly modify the
notation used in Problem P1. Let Tkl denote the length of the
fragment of the schedule corresponding to combination Zkl, as
a function of vector wk = {wik}Ai2Zkl

, whereas Kik is the set of
indices of combinations in the vector of combinations generat-
ed from main set Qk and containing activity Ai. If wikl denotes
the part of the size of activity Ai, which is to be executed in
combination Zkl, then the MP problem can be formulated as:

Problem P3
minimize

12

formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai,
which is to be executed in combination Zkl, then the MP problem can be formulated as:

Problem P3
minimize

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘)

(18)

subject to

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
, 𝑖𝑖 = 1, 2, … , 𝑛𝑛

(19)

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20)
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21)

As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex)
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3.

Table 3. Notation for Problem P3
Symbol Definition
Zkl l-th activity combination generated from main set Qk
zk number of combinations constructed out of Qk
Tkl length of the fragment of the schedule corresponding to Zkl
wikl part of size of activity Ai assigned to Zkl
Kik set of indices of combinations generated from Qk and containing Ai

Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence-
and resource-feasible schedule.

� (18)

subject to

12

formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai,
which is to be executed in combination Zkl, then the MP problem can be formulated as:

Problem P3
minimize

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘)

(18)

subject to

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
, 𝑖𝑖 = 1, 2, … , 𝑛𝑛

(19)

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20)
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21)

As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex)
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3.

Table 3. Notation for Problem P3
Symbol Definition
Zkl l-th activity combination generated from main set Qk
zk number of combinations constructed out of Qk
Tkl length of the fragment of the schedule corresponding to Zkl
wikl part of size of activity Ai assigned to Zkl
Kik set of indices of combinations generated from Qk and containing Ai

Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence-
and resource-feasible schedule.

� (19)

12

formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai,
which is to be executed in combination Zkl, then the MP problem can be formulated as:

Problem P3
minimize

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘)

(18)

subject to

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
, 𝑖𝑖 = 1, 2, … , 𝑛𝑛

(19)

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20)
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21)

As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex)
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3.

Table 3. Notation for Problem P3
Symbol Definition
Zkl l-th activity combination generated from main set Qk
zk number of combinations constructed out of Qk
Tkl length of the fragment of the schedule corresponding to Zkl
wikl part of size of activity Ai assigned to Zkl
Kik set of indices of combinations generated from Qk and containing Ai

Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence-
and resource-feasible schedule.

� (20)

where T*
kl (wkl), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique

positive root of the equation:

12

formulate the appropriate MP problem, we have to slightly modify the notation used in Problem P1. Let
Tkl denote the length of the fragment of the schedule corresponding to combination Zkl, as a function of
vector w𝑘𝑘𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖}𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘, whereas Kik is the set of indices of combinations in the vector of combinations
generated from main set Qk and containing activity Ai. If wikl denotes the part of the size of activity Ai,
which is to be executed in combination Zkl, then the MP problem can be formulated as:

Problem P3
minimize

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑘𝑘𝑘𝑘
∗

𝑧𝑧𝑘𝑘

𝑙𝑙=1

𝑞𝑞−1

𝑘𝑘=1
(w𝑘𝑘𝑘𝑘)

(18)

subject to

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐾𝐾𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖

𝑞𝑞−1

𝑘𝑘=1
, 𝑖𝑖 = 1, 2, … , 𝑛𝑛

(19)

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, 2, … , 𝑛𝑛; 𝑘𝑘 = 1, 2, … , 𝑞𝑞 − 1; 𝑙𝑙 ∈ 𝐾𝐾𝑖𝑖𝑖𝑖 (20)
where 𝑇𝑇𝑘𝑘𝑘𝑘

∗ (w𝑘𝑘𝑘𝑘), k = 1, 2, ..., q–1; l = 1, 2, ..., zk is the unique positive root of the equation:
 ∑ 𝑓𝑓𝑖𝑖

−1 (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑘𝑘𝑘𝑘

) = 1
𝐴𝐴𝑖𝑖∈𝑍𝑍𝑘𝑘𝑘𝑘

 (21)

As previously, for concave processing rate functions of activities, Problem P3 is an NLP (convex)
problem. The schedule length T is calculated in (18) as the sum of the lengths of all the fragments of the
schedule. Constraints (19) and (20) are analogical as (10) and (11) in Problem P1. Condition (21) allows
to calculate the minimal length of the k-th fragment corresponding to combination Zkl. The equation in
(21) is an adaptation of (4) to a single combination Zkl. Table 3 shows the notation used for Problem P3.

Table 3. Notation for Problem P3
Symbol Definition
Zkl l-th activity combination generated from main set Qk
zk number of combinations constructed out of Qk
Tkl length of the fragment of the schedule corresponding to Zkl
wikl part of size of activity Ai assigned to Zkl
Kik set of indices of combinations generated from Qk and containing Ai

Figure 6 presents an exemplary sequence of vectors of combinations and the corresponding precedence-
and resource-feasible schedule.

� (21)

As previously, for concave processing rate functions of ac-
tivities, Problem P3 is an NLP (convex) problem. The schedule
length T is calculated in (18) as the sum of the lengths of all the
fragments of the schedule. Constraints (19) and (20) are analog-
ical as (10) and (11) in Problem P1. Condition (21) allows to
calculate the minimal length of the k-th fragment corresponding
to combination Zkl. The equation in (21) is an adaptation of (4)
to a single combination Zkl. Table 3 shows the notation used
for Problem P3.

Table 3
Notation for Problem P3

Symbol Definition

Zkl l-th activity combination generated from main set Qk

zk number of combinations constructed out of Qk

Tkl length of the fragment of the schedule corresponding
to Zkl

wikl part of size of activity Ai assigned to Zkl

Kik set of indices of combinations generated from Qk and
containing Ai

Figure 6 presents an exemplary sequence of vectors of com-
binations and the corresponding precedence- and resource-fea-
sible schedule.

13

𝑆𝑆𝑍𝑍 = [[{
1,
2,
3
}] , [{

2,
3,
4
} , {

2,
3,
5
} , {

2,
4,
5
} , {

3,
4,
5
}] , [{

2,
5,
6
}] , [{6,7,}]]

w211 w221
w222 w223 w524

w231
w741 w531

w111 w522
w523

w421 w423
w424 w631 w641

w311 w321 w322 w324
T11 T21 T22 T23 T24 T31 T41

w1 = w111
w2 = w211 + w221 + w222 + w223+ w231

w3 = w311 + w321 + w322 + w324
w4 = w421 + w423 + w424
w5 = w522 + w523 + w524+ w531
w6 = w631 + w641

w7 = w741
T = T11 + T21 + T22 + T23 + T24 + T31 + T41

Fig. 6. Example of a feasible schedule for m = 3 and node ordering presented in Fig. 2

It is easy to notice that for some problem instances the same combinations of activities can occur in
several vectors of sequence SZ. It can be proved that a schedule constructed by solving Problem P3 will
be feasible and not inferior with respect to the considered criterion, if only one such combination is left
in sequence SZ (in any vector of combinations). This is, obviously, justified from the computational point
of view, since it allows to eliminate a number of redundant variables in Problem P3. To this end, for
instance, a modified version of the algorithm presented in [9] can be used. The algorithm generates a
sequence of unique combinations of activities for the case of scheduling dependent jobs (activities) on
parallel machines, as considered in this point.
Finally, let us stress that as discussed in point 5.1.2, in order to find an optimal schedule, an ordering of
nodes in graph G leading to optimum has to be found first.

5.3 Arbitrary discrete resources

In this section we consider a case of the PDCRCPSP with an arbitrary number of discrete resources.
As previously, we separately analyze independent and precedence-related activities.

5.3.1 Independent activities

In this case activities are not precedence-related, however the existence of limited discrete resources
restricts a potential parallel execution of the activities. Additionally, the important difference to the case
considered in point 5.2.1 is that now the number of activities processed in parallel (equal to m for
identical machines) is not known in advance. That number will depend on the combination of activities
processed simultaneously, since the number of discrete resources is arbitrary and activities have different
resource requests. In consequence, all resource-feasible combinations of activities have to be generated,
analogically as it was discussed in point 5.2.1 for the set of identical machines. Since parallel execution

u
1

13

𝑆𝑆𝑍𝑍 = [[{
1,
2,
3
}] , [{

2,
3,
4
} , {

2,
3,
5
} , {

2,
4,
5
} , {

3,
4,
5
}] , [{

2,
5,
6
}] , [{6,7,}]]

w211 w221
w222 w223 w524

w231
w741 w531

w111 w522
w523

w421 w423
w424 w631 w641

w311 w321 w322 w324
T11 T21 T22 T23 T24 T31 T41

w1 = w111
w2 = w211 + w221 + w222 + w223+ w231

w3 = w311 + w321 + w322 + w324
w4 = w421 + w423 + w424
w5 = w522 + w523 + w524+ w531
w6 = w631 + w641

w7 = w741
T = T11 + T21 + T22 + T23 + T24 + T31 + T41

Fig. 6. Example of a feasible schedule for m = 3 and node ordering presented in Fig. 2

It is easy to notice that for some problem instances the same combinations of activities can occur in
several vectors of sequence SZ. It can be proved that a schedule constructed by solving Problem P3 will
be feasible and not inferior with respect to the considered criterion, if only one such combination is left
in sequence SZ (in any vector of combinations). This is, obviously, justified from the computational point
of view, since it allows to eliminate a number of redundant variables in Problem P3. To this end, for
instance, a modified version of the algorithm presented in [9] can be used. The algorithm generates a
sequence of unique combinations of activities for the case of scheduling dependent jobs (activities) on
parallel machines, as considered in this point.
Finally, let us stress that as discussed in point 5.1.2, in order to find an optimal schedule, an ordering of
nodes in graph G leading to optimum has to be found first.

5.3 Arbitrary discrete resources

In this section we consider a case of the PDCRCPSP with an arbitrary number of discrete resources.
As previously, we separately analyze independent and precedence-related activities.

5.3.1 Independent activities

In this case activities are not precedence-related, however the existence of limited discrete resources
restricts a potential parallel execution of the activities. Additionally, the important difference to the case
considered in point 5.2.1 is that now the number of activities processed in parallel (equal to m for
identical machines) is not known in advance. That number will depend on the combination of activities
processed simultaneously, since the number of discrete resources is arbitrary and activities have different
resource requests. In consequence, all resource-feasible combinations of activities have to be generated,
analogically as it was discussed in point 5.2.1 for the set of identical machines. Since parallel execution

u
1

Fig. 6. Example of a feasible schedule for m = 3 and node ordering
presented in Fig. 2

w1 = w111

w2 = w211 + w221 + w222 + w223+ w231

w3 = w311 + w321 + w322 + w324

w4 = w421 + w423 + w424

w5 = w522 + w523 + w524+ w531

w6 = w631 + w641

w7 = w741

T = T11 + T21 + T22 + T23 + T24 + T31 + T41

391Bull. Pol. Ac.: Tech. 64(2) 2016

Discrete-continuous project scheduling with preemptable activities

It is easy to notice that for some problem instances the same
combinations of activities can occur in several vectors of se-
quence SZ. It can be proved that a schedule constructed by solv-
ing Problem P3 will be feasible and not inferior with respect to
the considered criterion, if only one such combination is left in
sequence SZ (in any vector of combinations). This is, obviously,
justified from the computational point of view, since it allows
to eliminate a number of redundant variables in Problem P3. To
this end, for instance, a modified version of the algorithm pre-
sented in [9] can be used. The algorithm generates a sequence
of unique combinations of activities for the case of scheduling
dependent jobs (activities) on parallel machines, as considered
in this point.

Finally, let us stress that as discussed in point 5.1.2, in order
to find an optimal schedule, an ordering of nodes in graph G
leading to optimum has to be found first.

5.3 Arbitrary discrete resources. In this section we consider
a case of the PDCRCPSP with an arbitrary number of discrete
resources.

As previously, we separately analyze independent and pre-
cedence-related activities.
5.3.1 Independent activities. In this case activities are not
precedence-related, however the existence of limited discrete
resources restricts a potential parallel execution of the activi-
ties. Additionally, the important difference to the case consid-
ered in point 5.2.1 is that now the number of activities pro-
cessed in parallel (equal to m for identical machines) is not
known in advance. That number will depend on the combina-
tion of activities processed simultaneously, since the number
of discrete resources is arbitrary and activities have different
resource requests. In consequence, all resource-feasible com-
binations of activities have to be generated, analogically as it
was discussed in point 5.2.1 for the set of identical machines.
Since parallel execution is desired for concave processing rate
functions, only maximal combinations have to be taken into
account. A maximal combination has such a feature, that each
its extension obtained by adding any other activity becomes
resource-infeasible.

Efficient generation of such maximal resource-feasible com-
binations is not a trivial task. To this end, for instance, a pro-
cedure called GEN, proposed in [22] and originally developed
for a more general case (see point 5.3.2), can be applied. As the
procedure allows the existence of precedence constraints be-
tween activities, successive maximal combinations are built on
a basis of the sequence of main sets following from an assumed
node ordering in the precedence-relation graph. The absence of
precedence constraints can be interpreted in this context, as a
case of a single main set containing all activities.

Procedure GEN efficiently finds a sequence of all maxi-
mal combinations due to preliminary ordering of activities in
the main set, according to their decreasing resource requests
with respect to the given discrete resource type. The order of
maximal combinations in the constructed sequence is of no
importance.

Next, Problem P2 (see point 5.2.1.2) can be formulated, in
which s is the number of all maximal combinations. The solu-

tion of Problem P2 defines an optimal size division among the
maximal combinations and, consequently, an optimal schedule
length for the considered case.
5.3.2 Precedence-related activities. The case discussed in this
point is the most general one of all considered in this work.
A parallel execution of activities may be now restricted by
both the precedence and resource constrains with respect to
any number and types of discrete resources. In order to find
an optimal schedule, similarly as in the special cases of the
problem described earlier, an MP problem can be formulated
and solved. In this case, the MP problem will be analogical
to Problem P3 (see point 5.2.2), where the only difference
concerns the way of generating the sequence of vectors of
combinations SZ.

As previously, the initial point for constructing sequence SZ
is the sequence SQ of main sets. Let us remind that it depends on
the assumed node ordering O in the precedence-relation graph
G. It is natural to assume that to each main set from SQ, there
is one corresponding vector of maximal combinations in SZ. As
mentioned in point 5.2.2, it is desirable from the computational
point of view that unique maximal combinations should occur
in successive vectors of sequence SZ. In order to efficiently
generate sequences SZ of that property, procedure GEN [22]
can be adopted again. The procedure generates resource-fea-
sible subsets corresponding to maximal combinations for suc-
cessive main sets in SQ. With respect to the desired property,
the key feature is dividing each main set into “new” and “old”
activities. In a main set Qk, k = 1, 2, …, q–1, “new” are those
activities that do not belong to Ql, l < k. All the other activities
in Qk are “old”. For a given main set, resource-feasible subsets
are generated on a basis of so-called primary subsets, in which
the division into “new” and “old” activities is maintained. In
consequence, to each main set Qk, there is a corresponding vec-
tor of zk such maximal combinations that do not occur in any
vector corresponding to main sets Ql, l < k.

For more details concerning the generation of the maximal
resource-feasible subsets, see [22].

Figure 7 shows an exemplary sequence of vectors of com-
binations for the considered case of the problem, as well as the
corresponding precedence- and resource-feasible schedule. It is
assumed that there are two discrete resources (R = 2), available
in 5 (R1 = 5) and 10 (R2 = 10) units, respectively, and that the
activity resource requests are given in the table below:

i ri1 ri2

1 4 3

2 2 2

3 2 4

4 0 1

5 1 3

6 1 8

7 3 2

392 Bull. Pol. Ac.: Tech. 64(2) 2016

R. Różycki, G. Waligóra, and J. Węglarz

15

𝑆𝑆𝑍𝑍 =
[

[{1}, {2,

3,}] , [{
2
3
4
5
}] , [{2,

5,} , {2,
6,}] , [{

6,
7,}]

]

w111
w212

w221 w231

w232
w741

w531
w521

w421 w641
w312 w632 w321

T11 T12 T21 T31 T32 T41

w1 = w111
w2 = w212 + w221 + w231 + w23

w3 = w312 + w321
w4 = w421
w5 = w521 + w531
w6 = w632 + w641

w7 = w741
T = T11 + T12 + T21 + T31 + T32 + T41

Fig. 7. Example of a feasible schedule for R = 2, R1 = 5, R2 = 10, and node ordering presented in Fig. 2

Let us finally discuss in short the complexity of the presented approaches.
For convex processing rate functions, i.e. for the case described in Sect. 4, the problem is trivial, since
only a precedence-feasible sequence of activities has to be found. The optimal project duration can be
then calculated analytically.
For concave processing rate functions, i.e. for the cases described in Sect. 5, the problem becomes more
complex. From among all the cases, only problems discussed in points 5.1.1 and 5.2.1.1 are
computationally easy. In each of the other cases an NLP problem has to be solved in order to find an
optimal continuous resource allocation, i.e. to find a solution of the continuous part of the problem. Note
that because of the existence of the continuous part, the PDCRCPSP problem, as a whole, cannot be
classified by the computational complexity theory, i.e. in terms of the P and NP classes, since it is not a
combinatorial optimization problem. However, it is worth stressing that for dependent activities the
complexity of the discrete part of the problem is already exponential, since it requires finding an optimal
ordering of nodes in the precedence-relation graph (see point 5.1.2).

6. Conclusions

In this work discrete-continuous project scheduling problems with preemptable activities have been
considered. The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem
(PDCRCPSP) has been defined in the most general form to minimize the project duration. Convex and
concave processing rate functions of activities have been analyzed for the cases of no discrete resource
constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of
discrete resources. Each time independent and precedence-related activities have been separately
considered.
We have shown that for convex functions all cases of the problem are trivial, since discrete resources
do not affect the optimal schedule. In order to minimize the schedule length, the activities have to be
processed sequentially, each of them using the total available amount of the continuous resource.
Obviously, for dependent activities precedence constraints have to be satisfied in a sequential schedule.

u
1

analyzed for the cases of no discrete resource constraints, one
discrete resource being a set of parallel, identical machines,
and an arbitrary number of discrete resources. Each time inde-
pendent and precedence-related activities have been separately
considered.

We have shown that for convex functions all cases of the
problem are trivial, since discrete resources do not affect the
optimal schedule. In order to minimize the schedule length, the
activities have to be processed sequentially, each of them using
the total available amount of the continuous resource. Obvious-
ly, for dependent activities precedence constraints have to be
satisfied in a sequential schedule. For concave functions the
defined problem is simple only in two cases with independent
activities: (i) with no discrete resource constraints, and (ii) with
the number of machines not less than the number of activities.
In all the other cases, an NLP problem has to be solved to find
a minimal-length schedule. Moreover, for precedence-related
activities a special methodology based on main sets has to be
applied.

Future research should be mainly conducted towards heuris-
tic approaches to the computationally hard problems. It can be
done at two levels: the discrete and the continuous part of the
problem. For the discrete part, heuristic (and metaheuristic) ap-
proaches can be developed to construct (or search for) near-op-
timal sequences of vectors of combinations. For the continuous
part, heuristic approaches to allocate the continuous resource
may be designed in order to avoid the necessity of solving the
nonlinear mathematical programming problems.

Acknowledgments. This research has been supported by the
Polish National Science Centre under projects 2013/08/A/
ST6/00296 (R.R., J.W.) and 2013/11/B/ST6/00970 (G.W.).

References
	 [1]	 J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wę-

glarz, “Local search metaheuristics for discrete-continuous
scheduling problems”, European Journal of Operational Rese-
arch 107 (2), 354–370 (1998).

	 [2]	 J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wę-
glarz, “Discrete-continuous scheduling to minimize the make-
span with power processing rates of jobs”, Discrete Applied
Mathematics 94 (1–3), 263–285 (1999).

	 [3]	 J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wę-
glarz, “A heuristic approach to allocating the continuous resour-
ce in discrete-continuous scheduling problems to minimize the
makespan”, Journal of Scheduling 5 (6), 487–499 (2002).

	 [4]	 J. Józefowska, G. Waligóra, and J. Węglarz, “Tabu list manage-
ment methods for a discrete-continuous scheduling problem”,
European Journal of Operational Research 137 (2), 288–302
(2002).

	 [5]	 G. Waligóra, “Tabu search for discrete-continuous scheduling
problems with heuristic continuous resource allocation”, Europe-
an Journal of Operational Research 193 (3), 849–856 (2009).

	 [6]	 M.S. Barketau, M.Y. Kovalyov, J. Węglarz, and M. Machowiak,
“Scheduling arbitrary number of malleable tasks on multiproces-
sor systems”, Bull. Pol. Ac.: Tech. 62 (2), 255–261 (2014).

	 [7]	 R. Różycki and J. Węglarz, “On job models in power manage-
ment problems”, Bull. Pol. Ac.: Tech. 57 (2), 147–151 (2009).

Fig. 7. Example of a feasible schedule for R = 2, R1 = 5, R2 = 10, and
node ordering presented in Fig. 2

w1 = w111

w2 = w212 + w221 + w231 + w23

w3 = w312 + w321

w4 = w421

w5 = w521 + w531

w6 = w632 + w641

w7 = w741

T = T11 + T12 + T21 + T31 + T32 + T41

15

𝑆𝑆𝑍𝑍 =
[

[{1}, {2,

3,}] , [{
2
3
4
5
}] , [{2,

5,} , {2,
6,}] , [{

6,
7,}]

]

w111
w212

w221 w231

w232
w741

w531
w521

w421 w641
w312 w632 w321

T11 T12 T21 T31 T32 T41

w1 = w111
w2 = w212 + w221 + w231 + w23

w3 = w312 + w321
w4 = w421
w5 = w521 + w531
w6 = w632 + w641

w7 = w741
T = T11 + T12 + T21 + T31 + T32 + T41

Fig. 7. Example of a feasible schedule for R = 2, R1 = 5, R2 = 10, and node ordering presented in Fig. 2

Let us finally discuss in short the complexity of the presented approaches.
For convex processing rate functions, i.e. for the case described in Sect. 4, the problem is trivial, since
only a precedence-feasible sequence of activities has to be found. The optimal project duration can be
then calculated analytically.
For concave processing rate functions, i.e. for the cases described in Sect. 5, the problem becomes more
complex. From among all the cases, only problems discussed in points 5.1.1 and 5.2.1.1 are
computationally easy. In each of the other cases an NLP problem has to be solved in order to find an
optimal continuous resource allocation, i.e. to find a solution of the continuous part of the problem. Note
that because of the existence of the continuous part, the PDCRCPSP problem, as a whole, cannot be
classified by the computational complexity theory, i.e. in terms of the P and NP classes, since it is not a
combinatorial optimization problem. However, it is worth stressing that for dependent activities the
complexity of the discrete part of the problem is already exponential, since it requires finding an optimal
ordering of nodes in the precedence-relation graph (see point 5.1.2).

6. Conclusions

In this work discrete-continuous project scheduling problems with preemptable activities have been
considered. The Preemptive Discrete-Continuous Resource-Constrained Project Scheduling Problem
(PDCRCPSP) has been defined in the most general form to minimize the project duration. Convex and
concave processing rate functions of activities have been analyzed for the cases of no discrete resource
constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of
discrete resources. Each time independent and precedence-related activities have been separately
considered.
We have shown that for convex functions all cases of the problem are trivial, since discrete resources
do not affect the optimal schedule. In order to minimize the schedule length, the activities have to be
processed sequentially, each of them using the total available amount of the continuous resource.
Obviously, for dependent activities precedence constraints have to be satisfied in a sequential schedule.

u
1

Let us finally discuss in short the complexity of the pre-
sented approaches.

For convex processing rate functions, i.e. for the case de-
scribed in Sect. 4, the problem is trivial, since only a prece-
dence-feasible sequence of activities has to be found. The op-
timal project duration can be then calculated analytically.

For concave processing rate functions, i.e. for the cases de-
scribed in Sect. 5, the problem becomes more complex. From
among all the cases, only problems discussed in points 5.1.1
and 5.2.1.1 are computationally easy. In each of the other cases
an NLP problem has to be solved in order to find an optimal
continuous resource allocation, i.e. to find a solution of the con-
tinuous part of the problem. Note that because of the existence
of the continuous part, the PDCRCPSP problem, as a whole,
cannot be classified by the computational complexity theory,
i.e. in terms of the P and NP classes, since it is not a combi-
natorial optimization problem. However, it is worth stressing
that for dependent activities the complexity of the discrete part
of the problem is already exponential, since it requires finding
an optimal ordering of nodes in the precedence-relation graph
(see point 5.1.2).

6.	 Conclusions

In this work discrete-continuous project scheduling problems
with preemptable activities have been considered. The Pre-
emptive Discrete-Continuous Resource-Constrained Project
Scheduling Problem (PDCRCPSP) has been defined in the
most general form to minimize the project duration. Convex
and concave processing rate functions of activities have been

,

,
,
,

393Bull. Pol. Ac.: Tech. 64(2) 2016

Discrete-continuous project scheduling with preemptable activities

	 [8]	 R. Różycki and J. Węglarz, “Power-aware scheduling of
preemptable jobs on identical parallel processors to meet de-
adlines”, European Journal of Operational Research 218 (1),
68–75 (2012).

	 [9]	 R. Różycki and J. Węglarz, „Power-aware scheduling of
preemptable jobs on identical parallel processors to minimize
makespan”, Annals of Operations Research 213 (1), 235–252
(2014).

	[10]	 R. Różycki and J. Węglarz, “Solving a power-aware scheduling
problem by grouping jobs with the same processing characteri-
stic”, Discrete Applied Mathematics 182, 150–161 (2015).

	[11]	 J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wę-
glarz, “Solving the discrete-continuous project scheduling pro-
blem via its discretization”, Mathematical Methods of Opera-
tions Research 52 (3), 489–499 (2000).

	[12]	 M. Mika, G. Waligóra, and J. Węglarz, “Modelling and solving
grid resource allocation problem with network resources for
workflow applications”, Journal of Scheduling 14 (3), 291–306
(2011).

	[13]	 G. Waligóra, “Heuristic approaches to discrete-continuous pro-
ject scheduling problems to minimize the makespan”, Com-
putational Optimization and Applications 48 (2), 399–421
(2011).

	[14]	 G. Waligóra, “Discrete-continuous project scheduling with di-
scounted cash flows – a tabu search approach”, Computers &
Operations Research 35 (7), 2141–2153 (2008).

	[15]	 G. Waligóra, “Discrete-continuous project scheduling with disco-
unted cash inflows and various payment models – a review of
recent results”, Annals of Operations Research 213 (1), 319–340
(2014).

	[16]	 G. Waligóra, “Simulated annealing and tabu search for discre-
te-continuous project scheduling with discounted cash flows”,
RAIRO – Operations Research 48 (1), 1–24 (2014).

	[17]	 J. Węglarz, “Time-optimal control of resource allocation in
a complex of operations framework”, IEEE Transactions on
Systems, Man and Cybernetics 6 (11), 783–788 (1976).

	[18]	 J. Węglarz, “Multiprocessor scheduling with memory allocation
– a deterministic approach”, IEEE Transactions on Computers
29 (8), 703–709 (1980).

	[19]	 E.L. Demeulemeester and W.S. Herroelen, Project Scheduling
– A Research Handbook, Kluwer, Boston, 2002.

	[20]	 J. Węglarz, “Project scheduling with discrete and continuous re-
sources”, IEEE Transactions on Systems, Man and Cybernetics
9 (10), 644–651 (1979).

	[21]	 J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J.Wę-
glarz, “An almost optimal heuristic for preemptive Cmax schedu-
ling of dependent tasks on identical parallel processors”, Annals
of Operations Research 129 (1–4), 205–216 (2004).

	[22]	 J. Węglarz, J. Błażewicz, W. Cellary, and R. Słowiński, “An
automatic revised simplex method for constrained resource ne-
twork scheduling”, ACM Transactions on Mathematical Softwa-
re 3 (3), 295–300 (1977).

