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Abstract. In this paper the combined effect of uniform rotation and AC electric field on the onset of instability in a horizontal layer of

an elastico-viscous fluid stimulated by the dielectrophoretic force due to the variation of dielectric constant with temperature is studied.

Walters’ (model B’) fluid model is used to describe rheological behaviour of an elastico-viscous fluid. The onset criterions for stationary and

oscillatory convection are derived for the case of free-free boundaries. It is observed that Walters’ (model B’) fluid behaves like an ordinary

Newtonian fluid and rotation has stabilizing influence whereas AC electric field has destabilizing influence on the stability of the system.

The necessary condition for the occurrence of oscillatory convection is also obtained. The present results are in good agreement with the

earlier published results.
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1. Introduction

A comprehensive account of thermal instability of Newtonian

fluid under the various assumptions of hydrodynamics and hy-

dromagnetics has been given by Chandrasekhar [1] whereas

Landau [2] has been discussed electrodynamics of continu-

ous media and later electrohydrodynamic convection in fluids

was studied by Robert [3] and Castellanos [4]. Electrohydro-

dynamics can be considered as a branch of fluid mechanics

which deals with the effect of electrical forces. It can also be

considered as that part of electrodynamics which is necessi-

tated with the influence of moving media on electric fields.

The most interesting problems in electrohydrodynamics in-

volve both the effect of fluid in motion and the influence of

the field in motion as discussed by Melcher et al. [5] where-

as a review of electrodynamically enhanced heat transfer in

liquids has been studied by Jones [6].

For the last few decades, considerable interest has been

shown in the study of electrohydrodynamic thermal instability

in dielectric fluid because it has various applications in EHD

enhanced thermal transfer, EHD pumps, EHD in microgravi-

ty, micromechanic systems, drug delivery, micro-cooling sys-

tem, nanotechnology etc. Chen et al. [7] discussed advances

and applications of electrohydrodynamics in brief. They say

that EHD heat transfer came out as an alternative method to

enhance heat transfer, which is known as electrothermohy-

drodynamics (ETHD) in which combined action of electric

field and thermal gradient for enhancing the heat transfer is

considered. EHD pumps have great advantage that there is no

need for a moving component such as pistons. Also it is fab-

ricated and assembled. This type of pumps is widely used in

micromechanic systems, drug delivery and micro-cooling sys-

tem. Many researches have been studied the effect of AC or

DC electric field on natural convection in a horizontal dielec-

tric fluid layer by taking different types of fluids. The onset of

electrohydodynamic convection in a horizontal layer of dielec-

tric fluid was studied by Gross and Porter [8], Turnbull [9],

Maekawa et al. [10], Smorodin and Velarde [11], Galal [12],

Rudraiah and Gayathri [13] and Chang et al. [14].

Takashima [15] discussed the effect of uniform rotation

on the onset of convective instability in a dielectric fluid un-

der the simultaneous action of AC electric field and a vertical

temperature gradient and found that the Coriolis force has

an inhibiting effect on the onset of instability even when the

electrical effects are taken into account and as the speed of

rotation increases the coupling between the two agencies caus-

ing instability (electrical and buoyancy force) becomes tighter.

Takashima and Ghosh [16] studied the electrohydrodynamic

instability in a viscoelastic liquid layer and found that oscil-

latory modes of instability exist only when the thickness of

the liquid layer is smaller than about 0.5 mm and for such a

thin layer the force of electrical origin is much more impor-

tant than buoyancy force while Takashima and Hamabata [17]

studied the stability of natural convection in a vertical layer

of dielectric fluid in the presence of a horizontal AC electric

field. Othman [18] studied the electrohydrodynamic instabili-

ty of a rotating layer of a viscoelastic fluid heated from below

while the electroconvective instability in a heat generating di-

electric fluid layer studied by Shivakumara et al. [19].

With the growing importance of non-Newtonian fluids

having applications in geophysical fluid dynamics, chemical

technology and petroleum industry attracted widespread in-
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terest in the study on non-Newtonian nanofluids. There are

many elastico-viscous fluids that cannot be characterized by

Maxwell’s constitutive relations or by Oldroyd’s constitutive

relations. One such a class of fluids is Walters’ (model B’)

elastico-viscous fluid having relevance to chemical technology

and industry. Walters [20] reported that the mixture of poly-

methyl methacrylate and pyridine at 25◦C containg 30.5 g

of polymer per litre with density 0.98 g per litre behaves

very nearly as the Walters’ (model B’) elastico-viscous flu-

id. Walters’ (model B’) elastic-viscous fluid form the basis

for the manufacture of many important polymers and useful

products. In the case of Walters’ (model B’) fluid, the term
[

µ∇2q
]

in the equations of motion (Chandrasekhra [1]) is re-

placed by the term

[(

µ − µ′
∂

∂t

)

∇2q

]

, where µ and µ′ are

the viscosity and viscoelasticity of the incompressible Wal-

ters’ (model B’) fluid, ∇2 is the Laplacian operator and q

is the Darcian (filter) velocity of the fluid. Rotation plays an

important role as rotating system occurs in various astrophys-

ical, geophysical and industrial processes. A good account of

thermal instability problems of a rotating viscoelastic fluid is

given by Sharma and Rana [21] and Shivakumara et al. [22],

Rana and Jamwal [23], Chand and Rana [24] and Rana et al.

[25]. Ruo et al. [26] studied the effect of rotation on the elec-

trohydrodynamic instability of a fluid layer with an electrical

conductivity gradient whereas Shivakumara et al. [27] studied

the electrohydrodynamic instability of rotation couple stress

dielectric fluid layer and found that the effect of increasing AC

electric field number is to increase the transfer of heat more

effectively and hasten the onset of convection and rotation

inhibits the onset of electrohydrodynamic instability.

The growing number of applications of electrohydrody-

namics and rotation, our main aim in the present paper is to

study the effect of uniform rotation on electrohydrodynamic

thermal instability in a Walters’ (model B’) fluid. To the best

of my knowledge, this problem has not been studied yet.

2. Mathematical model

Here we consider an infinite horizontal layer of an incom-

pressible Walters’ (model B’) elastico-viscous fluid of thick-

ness d, bounded by the planes z = 0 and z = d as shown

in Fig. 1. The layer is rotating about the vertical axis with con-

Fig. 1. Physical configuration

stant angular velocity Ω = (0, 0, Ω) and uniform vertical AC

electric field applied across the layer, which is acted upon by

a gravity force g = (0 , 0 ,−g) aligned in the z direction. The

temperature T at the lower and upper boundaries is assumed

to take constant values T and T1 (< T ) respectively.

2.1. Governing equations. Let ρ, µ, µ′, p, K , q(u, v, w), g,

Ω, T , κ and E denote respectively, the density, viscosity, vis-

coelasticity, pressure, dielectric constant, Darcy velocity vec-

tor, acceleration due to gravity, angular velocity, temperature,

thermal diffusivity and the root-mean-square value of electric

field. Then the equations of conservation of mass, momentum

and thermal energy for Walters’ (model B’) elastico-viscous

fluid (Chandrasekhar [1], Walters’ [20], Takashima [15], Shar-

ma and Rana [21], Rana et al. [25], and Shivakumara [27]) are

∇ · q = 0, (1)

ρ
dq

dt
= −∇P + ρg +

(

µ − µ′
∂

∂t

)

∇2q

+2ρ (q × Ω) − 1

2
(E · E)∇K,

(2)

∂T

∂t
+ (q · ∇)T = κ∇2T, (3)

where
d

dt
=

∂

∂t
+

1

ε
(q.∇)

stands for convection derivative and

P = p − ρ

2

∂K

∂ρ
(E.E) (4)

is the modified pressure.

The Coulomb force term ρeE, where ρe is the free charge

density, is of negligible order as compared with the dielec-

trophoretic force term for most dielectric fluids in a 60 Hz AC

electric field [Takashima (1972)]. Thus, we retain only the di-

electrophoretic term, i. e. last term in Eq. (2) and neglect the

Coulomb force term. Furthermore, the electrical relaxation

times of most dielectric liquids appear to be sufficient long

to prevent the build up of free charge at standard power line

frequencies. At the same time, dielectric loss at these frequen-

cies is very low that it makes no significant contribution to

the temperature field. It is also seen that the dielectrophoretic

force term depends on (E ·E)rather than E. As the variation

of E is so speedy, the root-mean-square value of E is used as

effective value in determining the motion of fluids. So we can

consider the AC electric field as the DC electric field whose

strength is equal to the root mean square value of the AC

electric field.

A charged body in an electric field tends to along the

electric field lines and impart momentum to the surrounding

fluid. The Maxwell equations are

∇× E = 0, (5)

∇ · (KE) = 0. (6)

Using Eq. (5), the electric potential can be expressed as

E = −∇V, (7)
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where V is the root mean square value of electric potential.

The dielectric constant is assumed to be linear function of

temperature and is of the form

K = K0 [1 − γ (T − T0)], (8)

where γ > 0, is the thermal coefficient of expansion of di-

electric constant and is assumed to be small.

The equation of state is

ρ = ρ0 [1 − α (T − T0)] , (9)

where α is coefficient of thermal expansion and the suffix

zero refers to values at the reference level z = 0.

2.2. Basic state. The basic state of the system is taken to be

quiescent layer (no settling) and is given by

q = qb(z), P = Pb(z), T = Tb(z),

E = Eb(z), K = Kb(z), ρ = ρb(z),
(10)

where the subscript b denotes the basic state.

Substituting equations given in (10) in Eqs. (1)–(9), we

obtain

0 = −∇Pb (z)

ρ0

+
ρb(z)

ρ0

g − 1

2ρ0

(

E2
)

∇K, (11)

d2Tb(z)

dz2
= 0, (12)

Kb(z) = K0 [1 − γ (Tb − T0)], (13)

ρb(z) = ρ0 [1 − α (Tb − T0)], (14)

∇ · (KbEb) = 0. (15)

Solving Eq. (12) by using the following boundary conditions

Tb(z) = T0 at z = 0

and Tb(z) = T1 at z = 1,
(16)

we obtain

Tb = T0 − ∆Tz/d. (17)

In view of Eq. (15) and noting that Ebx = Eby = 0. It follows

that

KbEbz = K0E0 = constant (say). (18)

Then

E = Eb(z) =
E0

1 + γ∆Tz/d
. (19)

Hence

Vb(z) = − E0d

γ∆T
log (1 + γ∆Tz/d), (20)

where

E0 = − V1γ∆T/d

log (1 + γ∆T )
, (21)

is the root-mean-square value of the electric field at z = 0.

These results are identical with the results obtained by

Shivakumara et al. [27].

2.3. Perturbation solutions. To study the stability of the sys-

tem, we superimposed infinitesimal perturbations on the basic

state, so that

q = q′, T = Tb + T ′,

E = Eb + E′, ρ = ρb + ρ′,

K = Kb + K ′, P = Pb + P ′,

(22)

where q′, T ′, E′, ρ′, K ′, P ′ be the perturbations in q, T ,

E′, ρ, K ′, P ′ respectively. Substituting Eq. (10) in Eqs. (1)–

(9), linearizing the equations by neglecting the product of

primed quantitities, eliminating the pressure from the momen-

tum Eq. (2) by operating curl twice and retaining the vertical

component and non-dimensionalizing the resulting equations

by introducing the dimensionless variables as follows:

(x′, y′, z′) =
(x, y, z

d

)

, q′ =
d

κ
q,

t′ =
κ

d2
t, T ′ =

1

∆T
T,

ξ′ =
d2

κ
ξ, V ′ =

1

γE0∆Td
V.

Neglecting the primes for simplicity, we obtain the linear sta-

bility equations in the form
[

1

Pr

∂

∂t
−

(

1 − F
∂

∂t

)

∇2

]

∇2w

= Rat∇2

hT −
√

Ta
∂ξ

∂z
+ Rae∇2

h

(

T − ∂V

∂z

)

,

(23)

[

1

Pr

∂

∂t
−

(

1 − F
∂

∂t

)

∇2

]

ξ =
√

Ta
∂w

∂z
, (24)

[

∂

∂t
−∇2

]

T = w, (25)

∇2V =
∂T

∂z
, (26)

where we have dimensionless parameters as:

Pr =
ν

κ
, (27a)

F =
µ′

µ
, (27b)

Ta =
4Ω2d4

ν2
, (27c)

Rat =
gα∆Td3

νκ
, (28)

Rae =
γ2K0E

2

0 (∆T )
2
d2

µκ
, (29)

ξ =
∂v

∂x
− ∂u

∂y
. (30)
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The parameter Pr is The Prandtl number, F is the viscoelas-

ticity parameter and Ta is the Taylor number, while Rat is

the familiar thermal Rayleigh number, Rae is the AC electric

Rayleigh number and ξ is the z-component of vorticity.

Here we assume that the temperature at the boundaries is

kept fixed, the fluid layer is confined between two boundaries.

The boundary conditions appropriate (Chandrasekhar [1],

Takashima [15], Rana and Jamwal [23] and Shivakumara et al.

[27]) to the problem are

w =
∂2w

∂z2
=

∂ξ

∂z
=

∂V

∂z
= 0,

T = 0 or DT = 0 .

(31)

3. Linear stability analysis

Following the normal mode analyses, we assume that the per-

turbation quantities have x, y and t dependence of the form

[w, T, V, ξ] = [W (z), Θ(z), Φ(z), Z(z)]

· exp (ilx + imy + ωt),
(32)

where l and m are the wave numbers in the x and y direc-

tion, respectively, and ω is the complex growth rate of the

disturbances.

Substituting Eq. (32) in Eqs. (23)–(26) and (31), we get
[ ω

Pr
− (1 − Fω)

(

D2 − a2
)

]

(

D2 − a2
)

W

= −Rata
2Θ −

√
TaDZ + Raea

2 (Θ − DΦ),

(33)

[ ω

Pr
− (1 − Fω)

(

D2 − a2
)

]

Z =
√

TaDW, (34)

[

ω −
(

D2 − a2
)]

Θ = W, (35)

(

D2 − a2
)

Φ = DΘ, (36)

w = D2W = DZ = DΦ = 0,

Θ = 0 or DΘ = 0,
(37)

where

a2 = l2 + m2, D =
d

dz
.

Equations (33)–(36) form a double eigenvalue problem for

Rat or Rae and ω with respect to the boundary conditions

(37).

We assume the solution to W , Θ, Φ and Z of the form

W = W0 sinπz,

Θ = Θ0 sin πz,

Φ = Φ0 cosπz,

Z = Z0 cosπz,

(38)

which satisfy the boundary conditions of Eq. (37). Substi-

tuting Eq. (38) into Eqs. (33)–(36), we obtain the following

matrix equation





















(

1

Pr
− FJ2

)

J2ω + J4 −a2 (Rat + Rae) π
√

Ta −Raea
2π

−1 ω + J2 0 0

−π
√

Ta 0

(

1

Pr
− FJ2

)

ω + J2 0

0 π 0 J2





































W0

Θ0

Z0

Φ0

















=

















0

0

0

0

















, (39)

where J2 = π2 + a2is the total wave number.

The linear system (39) has a non-trivial solution if and only if

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

Pr
− FJ2

)

J2ω + J4 −a2 (Rat + Rae) π
√

Ta −Raea
2π

−1 ω + J2 0 0

−π
√

Ta 0

(

1

Pr
− FJ2

)

ω + J2 0

0 π 0 J2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

which yields

Rat =
J2

(

J2 + ω
)

a2

[(

1

Pr
− FJ2

)

ω + J2

]

+
π2Ta

a2

J2 + ω
(

1

Pr
− FJ2

)

ω + J2

− a2

J2
Rae. (40)
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Equation (40) is the dispersion relation accounting for the

effect of Prandtl number, electric Rayleigh number, Taylor

number and kinematic visco-elasticity parameter in a layer of

Walters’ (model B’) elastic-viscous dielectric fluid.

Setting ω = iωi in Eq. (40) and clearing the complex

quantities from the denominator, we obtain

Rat = ∆1 + iωi∆2, (41)

where

∆1 =
J2

a2

[

J4 −
(

1

Pr
− FJ2

)

ω2

i

]

+
π2Ta

a2











J4 +

(

1

Pr
− FJ2

)

ω2

i

J4 +

(

1

Pr
− FJ2

)2

ω2

i











− a2

J2
Rae

(42)

and

∆2 =
J2

a2

[

J2 +

(

1

Pr
− FJ2

)

J2

−π2Ta

J2 −
(

1

Pr
− FJ2

)

J4 +

(

1

Pr
− FJ2

)2

ω2

i











.

(43)

Since Rat is a physical quantity, it must be a real value.

Hence, it follows from Eq. (43) that either ωi = 0 (exchange

stability, steady onset) or ∆2 = 0 ωi 6= 0 (overstability,

oscillatory onset).

4. Stationary convection

For stationary convection, putting ω = 0 in Eq. (40) reduces

it to

Rat =

(

π2 + a2
)3

a2
+

π2Ta

a2
− a2

π2 + a2
Rae. (44)

Equation (44) expresses the thermal Rayleigh number as a

function of the dimensionless resultant wave number a and

the parameters Ta and Rae. It is found that the kinematic

viscoelasticity parameter F vanishes with ω and the Walters’

(model B’) elastico-viscous dielectric fluid behaves like an

ordinary Newtonian dielectric fluid. Equation (44) is identical

to that obtained by Shivakumara et al. [27] in the absence

couple stress parameter.

In the absence of AC electric field (i. e., when Rae = 0),

Eq. (44) reduces to

Rat =

(

π2 + a2
)3

a2
+

π2Ta

a2
, (45)

which is exactly the same equation as derived by Chan-

drasekhar [1] and Shivakumara [27].

In the absence of rotation (i.e., when Ta = 0), Eq. (44)

reduces to

Rat =

(

π2 + a2
)3

a2
− a2

π2 + a2
Rae. (46)

Equation (46) is in good agreement with the equation obtained

by Roberts [3] and Shivakumara [27].

To find the critical value of Rat, we differentiate Eq. (44)

with respect a2 and equate to zero to obtain a polynomial in

a2
c in the form

2
(

a2

c

)5

+ 5π2
(

a2

c

)4

+ 5π4
(

a2

c

)3

+π2
(

2π4 − Ta− Rae

) (

a2

c

)2

+π4
(

5π4 − 2Ta
) (

a2

c

)

−π6
(

π4 + Ta
)

= 0.

(47)

From Eq. (47), it is observed that the critical wave number

varies with Ta and Raewhich is identical with the equation

obtained by Shivakumara [27] in the absence of couple stress

parameter.

To study the effect of rotation and AC electric field on

electrohydrodynamic stationary convection, we examine the

behaviour of
∂Rat

∂Ta
and

∂Rat

∂Rae

analytically.

From Eq. (44), we obtain

∂Rat

∂Ta
=

π2

a2
, (48)

which is positive, therefore, rotation inhibits the onset of elec-

trohydrodynamic stationary convection implying thereby rota-

tion has stabilizing effect on the system which is an agreement

with the results derived by Takashima [16], Sharma and Rana

[20] Rana and Jamwal [21] and Shivakumara [27].

It is evident from Eq. (44) that

∂Rat

∂Rae

= − a2

π2 + a2
, (49)

which is negative implying thereby AC electric field hastens

the electroconvection implying thereby AC electric field has

destabilizing effect on the system which is in an agreement

with the results derived by Takashima [16] and Shivakumara

[27].

The dispersion relation (44) is analyzed numerically.

Graphs have been plotted by giving some numerical values to

the parameters, to depict the stability characteristics.

In Fig. 2, the thermal Rayleigh number Rat is plotted

against dimensionless wave number a for fixed value of elec-

tric Rayleigh number (i.e., Rae = 500) and for different val-

ues Taylor number (Ta) as shown. This shows that as Ta in-

creases the thermal Rayleigh number Rat also increases. Thus

rotation has stabilizing effect on stationary convection which

is in good agreement with the result obtained analytically from

Eq. (48).

In Fig. 3, the thermal Rayleigh number Rat is plotted

against dimensionless wave number a for fixed value Tay-

lor number (Ta = 1000) and for different values of electric

Rayleigh number (Rae) as shown. This shows that as (Rae)

increases the thermal Rayleigh number Rat decreases. Hence

AC electric field has destabilizing effect on stationary con-

vection which is in good agreement with the result obtained

analytically from Eq. (49).
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Fig. 2. Variation of thermal Rayleigh number Rat with the wave

number a for different values of the Taylor number Ta

Fig. 3. Variation of thermal Rayleigh number Rat with the wave

number a for different values of AC electric Rayleigh number Rae

5. Oscillatory convection

The onset of oscillatory convection corresponds to ∆2 = 0
and ω 6= 0 gives an expression for the frequency of oscilla-

tions ω2

i as

ω2

i =
Pr2

(1 − PrFJ2)2

[

−J4 +
π2Ta

J2
.
Pr−1 + F PrJ2

1 − F PrJ2 + Pr

]

.

(50)

Since ω2

i > 0 for the occurrence of oscillatory convec-

tion, the necessary condition for the occurrence of oscillatory

convection is

Ta >
J6

π2

(

Pr+1 − F PrJ2

F PrJ2 + Pr−1

)

. (51)

Thus, it is noted that the necessary condition depends up-

on the viscoelasticity parameter but independent of AC elec-

tric field. Beside the presence of viscoelasticity reduces the

range of Prandtl number for oscillatory convection. The above

condition is identical with the condition given by Chan-

drasekhar [1], when F = 0. Eliminating ω2

i from Eq. (41)

by using Eq. (50) and noting that ∆2 = 0, we get an ex-

pression for the Rayleigh number for the onset of oscillatory

convection in the form

(Rat)osc =
2π2Ta {1 + a∗}

a2 Pr {a∗} {1 + a∗}2
− a2

π2 + a2
Rae, (52)

where

a∗ =
1

Pr
− F (π2 + a2).

Equation (52) is identical with the expression given by

Shivakumara et al. [27] in the absence of viscoelasticity para-

meter F . It is noted from Eq. (52) that oscillatory convection

depends upon rotation, Prandtl number, viscoelasticity and

AC electric field whereas in stationary convection Rayleigh

number depends only on rotation and AC electric field.

In the absence of viscoelasticity and AC electric field (i.

e., F = 0, Rae = 0), Eq. (52) reduces to

(Rat)osc =
2π2Ta

a2

(

1 +
1

Pr

)

which is identical with the expression derived by Chan-

drasekhar [1].

6. Conclusions

The effect of rotation on the onset of electrohydrodynamic

instability of Walters’ (model B’) elastico-viscous dielectric

fluid layer heated from below has been investigated for the

case of free-free boundaries by using perturbation theory and

linear stability analysis based on normal modes. The main

conclusions are as follow:

1. For the case of stationary convection, the non-Newtonian

electrohydrodynamic Walters’ (model B’) elastico-viscous

dielectric fluid behaves like an ordinary Newtonian fluid.

2. Rotation inhibits the onset of electrohydrodynamic station-

ary convection as ∂Rat/∂Ta > 0 indicating that thermal

Rayleigh number Rat is an increasing function of Taylor

number Ta. Thus rotation has stabilizing effect on the sta-

tionary convection. Figure 2 clearly depicts the stabilizing

effect of rotation.

3. AC electric field hasten the onset of electrohydrodynam-

ic stationary convection as ∂Rat/∂Rae < 0 indicating that

the thermal Rayleigh number Rat is an decreasing function

of electric Rayleigh number Rae. Thus AC electric field

has destabilizing effect on the stationary convection. Fig-

ure 3 clearly depicts the destabilizing effect of AC electric

field.

4. The necessary condition for the occurrence of oscillatory

convection is obtained and is given by Eq. (51).
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