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Repetitive neurocontroller with disturbance feedforward path active

in the pass-to-pass direction for a VSI inverter

with an output LC filter
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Abstract. An enhancement to the previously developed repetitive neurocontroller (RNC) is discussed and investigated in the paper. Originally,

the time-base generator (TBG) has been used to produce the only input signal for the neural approximator. The resulting search space makes

the dynamic optimization problem (DOP) of shaping the control signal solvable with the help of a function approximator such as the

feed-forward neural network (FFNN). The plant under consideration, i.e. a constant-amplitude constant-frequency voltage-source inverter

(CACF VSI) with an output LC filter, is assumed to be equipped with the disturbance load current sensor to enable implementation of the

disturbance feed-forward (pDFF) path as a part of the non-repetitive subsystem acting in the along the pass p-direction. An investigation

has been undertaken to explore potential benefits of using this signal also as an additional input for the RNC to augment the approximation

space and potentially enhance the convergence rate of the real-time search process. It is numerically demonstrated in the paper that the

disturbance feed-forward path active in the pass-to-pass k-direction (kDFF) improves the dynamics of the repetitive part as well indeed.

Key words: repetitive control, feedforward neural network, dynamic optimization problem, repetitive disturbance rejection, voltage-source

inverter, disturbance dual feedforward path.

Nomenclature

2D – Two-dimensional (here control system),

ANN – Artificial Neural Network,

BP (L–M) – Error Back-Propagation learning/optimization al-

gorithm (here the Levenberg-Marquardt algo-

rithm),

CACF VSI – Constant-Amplitude Constant-Frequency Volta-

ge-Source Inverter,

DDFF – Disturbance Dual Feed-Forward path, i.e. acting

in both p- and k-directions,

DFF – Disturbance Feed-Forward,

DOP – Dynamic Optimization Problem,

EDO – Evolutionary dynamic optimization,

FFNN – Feed-Forward Neural Network (here of the multi-

layer perceptron type),

FSF – Full-State Feedback (controller),

ILC – Iterative Learning Control(ler),

IMP – Internal Model Principle,

kDFF – Disturbance Feed-Forward path in the k-di-

rection, i.e. acting in the pass-to-pass direction

(a novel approach),

k-direction – Pass-to-pass direction,

k-path – Pass-to-pass controller path,

nonRC – Non-repetitive part of controller (or signal),

pDFF – Disturbance Feed-Forward path in the p-direc-

tion, i.e. acting in the along-the-pass direction

(a standard approach),

p-direction – Along the pass direction,

p-path – Along the pass controller path,

PDPSRC – Plug-in Direct Particle Swarm Repetitive Con-

troller,

RC – Repetitive Control(ler),

RFF – Reference Feed-Forward,

RMS – Root Mean Square value of a signal (here cal-

culated within one period of a reference signal),

RMSE – Root Mean Squared Error (here calculated

within one period of a reference signal),

RNC – Repetitive Neuro-Controller,

SOP – Static Optimization Problem,

TBG – Time-Base Generator,

w
(i)
nm – Neural weight connecting input/neuron m with

neuron n in the i-th layer,

w
(i) – Matrix of neural weights in the i-th layer,

•
m – Measurement signal corrupted with noise,

•
ref – Reference signal.

1. Introduction

The repetitiveness of a process to be controlled is innate to

many industrial systems. Its presence creates new possibili-

ties in developing control laws that take into account the 2D

nature of a plant. Therefore, the repetitive control (RC) or

iterative learning control (ILC) are often an appealing solu-

tion. It should be noted that the difference between RC and

ILC is rather subtle and both of them can be analyzed in a

uniformed framework [1]. The ILC community mainly focus-

es on batch processes and it is common to assume that the
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initial state of each batch can (and usually is) reset. ILC has

gained some acceptance in industrial robotics [2, 3] and the

ABB robotic laser cutting solutions [4] can serve as an exam-

ple. By contrast, RC is mainly used in continuous processes

characterized by the initial state of each pass originating from

the final state of the previous pass, i.e. no resetting is accept-

able. Control tasks encountered in power electronic converters

are sometimes related to continuous repetitive processes. Any

CACF converter may work here as an illustrative example.

Power electronic practitioners often attack the repetitiveness

of a process with the help of multioscillatory (also known

as multiresonant) controllers [5]. The internal model princi-

ple (IMP) is hence employed. However, more and more often

the distinction between ILC and RC is blurred – this can be

particularly pertinent to control schemes that are developed

for continuous repetitive processes, and as such could be la-

belled as RC, but at the same time the techniques adopted are

clearly of an iterative nature and incorporate some kind of

learning, including reinforcement learning. Learning in this

context means any ability to use past experiences from previ-

ous passes (or at least a single one) in making control deci-

sions in the current pass, which should not be confused here

with adaptive nonlinear operation [6].

If high quality voltage waveform is expected in CACF VSI

with an output LC filter regardless of the nonlinear load cur-

rent presence, the repetitiveness of the process is valuable and

should be exploited. The most common approach is to include

oscillatory terms within the controller to get load harmonics

selective rejection [5,7]. However, there are two major obsta-

cles related to the implementation of that scheme: its compu-

tational burden and the problematic synthesis of oscillatory

terms near the Nyquist limit. That is why many CACF VSI

controllers are still designed as non-repetitive ones, e.g. [8].

There is an emerging group of control solutions for repet-

itive processes and this can be attributed to the growing com-

putational power of the off-the-shelf microcontrollers. Any

control task can be reformulated to pose the problem as an

on-line, and usually dynamic, optimization problem. For ex-

ample, the model predictive control (MPC) is a widely ac-

knowledged optimal control scheme that is designed to shape

a control signal according to a user-defined performance index

(also called cost function, cost functional or fitness function).

In MPC a model of the plant serves the role of a critic. The

formulation of the DOP for repetitive processes is directly

inspired by the ILC technique. The goal is to shape the con-

trol signal according to the user-defined functional. A relevant

solver operates in on-line mode and tackles the DOP in an it-

erative manner, where one iteration of the solver corresponds

to a total multiple of passes and a physical plant handles the

role of the critic. The feasibility of such an approach to repeti-

tive control has already been demonstrated using two types of

DOP solvers. In [9–11] an ANN training algorithm has been

used to solve online the DOP in RC whereas in [12–14] an

evolutionary dynamic optimizer (EDO) based on a modified

particle swarm optimizer (PSO) has been employed to solve

the same problem and as a result the plug-in direct particle

swarm controller (PDPSRC) has been proposed. It was decid-

ed at that time to label both of them as repetitive controllers,

rather than ILCs, and this is continued throughout the present

paper.

In what follows, the basic FFNN-based RC is described

and the enhancement to the approximation space used by the

FFNN is proposed. The performance of both controllers is

then compared numerically.

2. Long-term stability of the classic iterative

learning control system – a critical review

There are also attempts to replace all oscillatory terms with

a single model of any periodic signal

u(p, k) = u(p, k − 1) + kRCe(p, k − 1), (1)

where u denotes the control signal, e is the control error, kRC

is the controller gain, k is the iteration (pass, trial, cycle) in-

dex, p is the time index along the pass (1 ≤ p ≤ α, where

α is the pass length) [15]. This is an example of the classic

ILC law and has its background in IMP for 2D systems. Un-

fortunately, the control law of the form (1) is impractical for

most real-life applications due to the stability issue in a long

time horizon. It should be noted that (1) is nothing more than

integral action in the k-direction. A perfectly repetitive signal

is constant in this direction and integral action is sufficient

to drive the control error to zero, at least theoretically. Any

physical system is subject to some limitations. For example,

the discussed VSI with the LC output filter cannot complete-

ly reject a disturbance load current if a certain value of its

derivative over time is crossed. This happens due to a limited

DC-link voltage and an intentional inductance of the output

filter. This, in turn, implies that such a repetitive load current

tends to destabilize the system. A high value of the derivative

of a discontinuous current drawn by the diode rectifier can

serve as an example. To robustify the system, it is necessary

to introduce filtering to stop learning for higher frequencies

u (p, k) = Q
(
z−1

)
u (p, k − 1)

+ kRCL
(
z−1

)
e (p, k − 1) ,

(2)

where Q and L are non-causal zero-phase-shift low-pass fil-

ters [16–18]. Nonetheless, to stabilize the system in the infinite

time horizon in the presence of every possible repetitive dis-

turbance, L should have infinite attenuation in the stopband,

which is unavailable for any practical digital filter. Alterna-

tively, Q can be designed to introduce a necessary forgetting

of high frequency components. At the moment, there are no

comprehensive theoretical analyses that deal with the stabil-

ity of ILC under unknown repetitive disturbance. However

some of our studies indicate that the filtering in (2) often

only delays the build-up of oscillations in the control signal.

Moreover, it is often true that a sufficiently strong filtering de-

teriorates the performance of the system to the point of being

practically equivalent to standard 1D feedback control [19].

Obviously, the infinite time horizon is not required in real-

life control systems. Hence, the minimum necessary level of

filtering is always problem specific and its goal is to stabi-

lize the system for a given number of repetitions. Also, not
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all industrial repetitive processes are significantly disturbed

by non-stationary exogenous phenomena, which makes some

practical tasks much easier as only the reference tracking prob-

lem has to be addressed. On the other hand, if the system is

disturbed by significant yet stationary exogenous phenomena,

the learning can just be stopped by setting kRC equal to zero

after the initial drop of control error to prevent any further

overlearning. The ILC approach gained some acceptance in

robotics due to the usually moderate number of required rep-

etitions, i.e. up to hundreds of thousands, and often stationary

disturbances. In contrast, power electronics practitioners deal

with repetitive processes that can require more than tens of

millions of stable repetitions and are often subject to non-

stationary disturbances, e.g. CACF VSI operating continuous-

ly for one month under different load types, which is why the

control law (2) has not yet gained much (if any) acceptance

among power electronics control engineers.

3. FFNN-based repetitive controller

The main motivation is to develop repetitive control schemes

that innately do not suffer from long-term stability issue and

thus no special measures have to be taken to ensure stable op-

eration. For example, the PDPSRC cost function is the com-

bination of the control error cost and the control signal dy-

namics cost [12, 20]. The latter component does not allow

for the high-frequency oscillations build-up. Also the FFNN-

based RC [9, 10], although using the cost of a control error

as the only objective, does not produce high-frequency os-

cillations thanks to the limited approximation capability of

the FFNN with a fixed number of neurons, fixed activation

functions and a constrained weight space. It is important to

note that if the FFNN’s activation functions obey an explicit

set of assumptions, then the network is a universal function

approximator, provided that sufficiently many hidden neurons

are available [21]. It is then clear that, on the one hand, the

limited number of neurons is essential to prevent overlearn-

ing. On the other hand, it is challenging (or even impossible

in some approximation spaces) to select the complexity of the

network equally effective in the case of linear loads as well as

for highly nonlinear loads. It is demonstrated here that adding

a disturbance feedforward path in the k-direction improves the

performance and also makes selecting the number of neurons

less challenging.

3.1. The p-direction controller. The proposed system is

sketched in Fig. 1. The FFNN-based repetitive controller, sim-

ilarly to any plug-in RC, needs to be accompanied by a p-

direction controller if the dynamics requires to be shaped also

along the pass, which could be the case in some applications

of the highly underdamped CACF VSI (see parameters in Ta-

ble 1). In this study, the full state feedback (FSF) controller

is used for this purpose

uFSF = −(k11i
m
L + k12u

m
C ), (3)

where {k11, k12} are the controller gains and {imL , um
C} are the

measured state variables of the output LC filter. Moreover, the

FSF shapes the dynamics seen by the plug-in repetitive con-

Fig. 1. Schematic diagram of the proposed system with a disturbance dual feedforward path (the block Load depicts an exemplary diode

rectifier)
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Table 1

Selected parameters of the model

Component/Parameter Description/Value

Inverter and measurement interface

LC output filter 300 µH, 160 µF, Rf = 0.6 Ω

Resonant frequency 726 Hz

Critical damping resistance 2.74 Ω (highly underdamped)

Reference output voltage fref = 50 Hz, U ref
RMS = 230 V, sinusoidal

Sampling time Ts = 100 µs (α = 200 points per pass)

Measurement noise 3% of 100 A or 325 V (band-limited white noise with 95% of samples

within the range)

Test loads

Load-1 Resistive: 4 kW

Load-2 Diode rectifier: 500 µH, 3 mF, 6 kW, crest factor of ca. 2.5

FSF and pDFF – the non-repetitive controller

Closed-loop system damping 3 times higher than in the open-loop system

Identified filter resistance bRf = 0.25Rf (significant identification error assumed to highlight the

dynamics of the repetitive part)

Multilayer perceptron – the repetitive controller with kDFF

Number of hidden neurons 17 (or 7 for purposes of comparison)

Type of neurons tansig∗ (excl. the output purelin neuron)

Training method type Levenberg–Marquardt backpropagation (Matlab’s trainlm())

Learning parameters default trainlm() settings, except net.trainParam.epochs=1

Weight constraints Yes, in the interval [−25,25]

FFNN input(s) scaling Yes, into the interval [−1,1]

Measurement and reference scaling None

FFNN output signal gain k1 = 100 (by trial and error method)

Control error gain (scaling done before error

backpropagation)

k2 = 1/100 (by trial and error method)

∗ the hyperbolic tangent (tanh).

troller and by increasing damping makes the relevant approxi-

mation task easier. Also the reference feedforward (RFF) path

uRFF = k10u
ref
C = (1 + k12)u

ref
C (4)

is introduced to keep the unity gain for the zero frequency and

the disturbance feedforward (pDFF) path is added to compen-

sate partially for the resistive voltage drop

upDFF = k13i
m
load = (R̂f + k11)i

m
load, (5)

where R̂f is the identified resistance of the output LC fil-

ter. A significant identification error is assumed in this study

(R̂f = 0.25Rf) to make the control errors produced by the

non-repetitive path more realistic. The sum of all these three

paths

unonRC = uRFF + uFSF + upDFF (6)

represents the non-repetitive part of the overall control struc-

ture.

3.2. The k-direction controller (the basic approach). The

repetitive path includes a universal function approximator in

the form of FFNN and an accompanying DOP-capable learn-

ing algorithm – here the Levenberg-Marquard (L-M) training

method has been used. It has been demonstrated in numer-

ous studies that an FFNN trained in the online mode using

error backpropagation (BP) methods such as L-M or resilient

BPs (RPROPs) can effectively control non-repetitive process-

es [22–31]. Surprisingly, the well-documented usefulness of

online trained neurocontrollers for non-repetitive processes in

adjustable speed drives and generators has not been followed

by a similarly rich literature on neurocontrollers for repetitive

processes. The repetitiveness of the process can be easily ex-

ploited by the neurocontroller simply by using an adequate

cost function.

For the purpose of controlling an output voltage of the

CACF VSI, the following cost function is used

Eα,k2

ANN (k) =
k2
2

2

α∑

p=1

(
uref

C (p) − um
C (k, p)

)2
, (7)

where uref
C is the reference voltage, um

C denotes the measured

output filter capacitor voltage and k2 is the error scaling fac-

tor. It should be noted that Eα,k2

ANN is proportional to the mean

squared error (MSE) calculated over the entire period of the

reference signal (α is again the pass length), hence the repet-

itiveness of the process at hand is directly incorporated into

the functional definition. The basic FFNN [9,10] has only one

input connected to the time-base generator. The saw-shaped

input signal is sufficient to turn the problem into constructing

a relation of function type

uFFNN(p) = w
(2)
10 +

N∑

n=1

w
(2)
1n vn(p), (8)
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where

vn(p) = f1

(
w

(1)
n0 + w

(1)
n1 uTBG(p)

)
, (9)

with uTBG denoting the time-base generator signal, w being

the ANN’s weights (see Nomenclature section for details) and

f1 expressing an activation function. It is common to use the

hyperbolic tangent

f tanh
1 (y) =

1 − e−2y

1 + e−2y
=

2

1 + e−2y
− 1 (10)

or the Elliott function

fElliott
1 (y) =

y

1 + |y|
(11)

as the activation function with an emphasis on the latter if

the computational burden of the neurocontroller needs to be

considered for the final implementation of the training algo-

rithm in a cost-effective microcontroller. The relevant discus-

sion takes place in [32]. The functional (7) should then be

seen as a function of the neural weights

Eα,k2

ANN (k) = EANN(w(1)(k),w(2)(k)) (12)

and the training algorithm is employed to continuously solve

the DOP of the form:

reduce iteratively
w

(1),w(2)

EANN(w(1)(k),w(2)(k))

subject to system nonlinearities,

system uncertainties,

system nonstationarity,

N = const,

constrained weight space,
(13)

where N is the number of hidden neurons (here organized

into a single layer). The resulting output signal of the neural

network is summed with (6) to produce reference signal for

the modulator

uPWM = unonRC + uFFNN. (14)

One strength of such an approach is that it uses the phys-

ical plant as the critic. It is also important to recall that the

training algorithm is always on. In consequence, the action

of the controller in the k-path considers plant nonlinearities

such as converter saturation and PWM dead-time, uncertain-

ties such as the Rf identification error in the p-path, and ob-

viously the nonstationarity coming from variable load condi-

tions. The k-path also compensates for the phase shift inherent

to the proposed p-path, which is important if the synchroniza-

tion is needed.

4. Disturbance Dual Feed-Forward

It is assumed here that the system is equipped with a load

current sensor. The availability of the disturbance signal has

already been harnessed to add the non-repetitive pDFF. The

pDFF is of the proportional type, i.e. it cannot completely

compensate for the voltage drop across the inductive com-

ponent (Lf). Moreover, the accuracy of the pDFF is affected

by the resistance identification errors whereas potential kDFF

would not be affected by such limitations since the k-path

uses the physical plant as the critic in the relevant DOP. One

of the key design decisions in any ANN-based solution is

related to choosing a robust approximation space. The effec-

tiveness of an ANN-based controller or estimator is highly

influenced by the proper selection of input signals. There are

no explicit rules on how the spanning vectors should be se-

lected. Nevertheless, their correlation with the ANN desired

output signal could serve as one of the hints [33]. Also, aux-

iliary information on the state of a plant can be passed to

the neurocontroller in order to enhance its performance [34].

That information is supplementary in the way that it is not

required to include those paths to secure stable operation

and the desired steady-state performance. Nevertheless, such

additional signals, if appropriately selected, can noticeably

influence transients or simplify a tuning procedure, i.a. by

making a neurocontroller less prone to inadequate ANN si-

zing.

The basic topology of the original RNC assumes that the

ANN’s input nodes are fed only by the TBG. This makes

the DOP well-posed but not always well-conditioned. To

make (9) well-conditioned, the number of neurons N in (13)

would need to vary with the load type, i.e. should reflect

the complexity of the load current shape. It is not uncom-

mon in static optimization problems (SOPs) to enrich the

training procedure with a growing and/or pruning algorithm.

But such solutions for DOPs are rather immature and, to the

best of the authors’ knowledge, have not yet been developed

for DOP-based controllers. In the case of neurocontrollers,

such an architectural dynamic optimization would be very

challenging. The neurocontroller would have to have both

growing and pruning algorithms active at the same time and

the executed architectural modifications should run seamless-

ly, i.e. no auxiliary performance evaluations would be al-

lowed and growing/pruning would have to ensure smooth

transitions on the ANN’s output signal. It has then been

decided that at the current stage of the research the prob-

lem will be converted into well-conditioned by introducing

disturbance feedforward also in the k-direction (depicted as

kDFF in Fig. 1). The equation (9) is modified accordingly

into

vn(p) = f1

(
w

(1)
n0 + w

(1)
n1 uTBG(p) + w

(1)
n2 imload(p, k)

)
, (15)

to accommodate the new ANN’s input signal. The theoretical

perfect control signal would be non-negligibly correlated with

the load current, hence the above candidate modification is

not accidental. The resulting control structure with the initial

pDFF and added kDFF has been named a disturbance dual

feed-forward (DDFF).

The concept of utilizing the information on the exter-

nal disturbance in the k-direction seems to be original for

the ILC/RC systems. The proposed name ‘k-direction distur-

bance feedforward’ needs to be justified. The name could cre-

ate an impression of inconsistency as the disturbance signal
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is passed to the repetitive part of the system that undeni-

ably operates in the feedback mode. The p-direction distur-

bance feedforward used here, often termed for clarification

the static one to indicate that no derivative of the disturbance

signal is calculated [35], has a well-established name. It is

important to note that the pDFF path is always impaired

due to the delay introduced by the digital implementation

of the controller. The term ‘disturbance static feedforward’

should be interpreted as indicating that the most recent avail-

able sample of the disturbance is used to modify the con-

trol signal. A similar interpretation can be made for the k-

direction disturbance feedforward proposed here – the most

recent complete pass of the disturbance is passed through

the FFNN to produce a signal that directly modifies the con-

trol signal. This is clearly apparent at a steady state in the

k-direction when the training algorithm is in fact superflu-

ous and could be stopped. No k-direction derivative of the

disturbance signal is present here at the inputs of the neuro-

controller, hence this feedforward path could also be regarded

as a static one. The training algorithm introduces the feedback

action needed to relearn the FFNN when new load conditions

arise. Therefore, the name DFF is used here also in relation

to the k-direction. Nevertheless, it has been decided not to

use the term static in connection to the k-direction in order

to avoid potential confusion. The static pDFF cannot com-

pletely compensate for the voltage drop across the inductor

present in the output filter. In contrast, the kDFF does not

have that limitation because it operates on the complete peri-

od of the disturbance signal and contains sufficient informa-

tion needed to compensate for the above-mentioned voltage

drop.

5. Numerical experiment results

Both control strategies (basic and modified) have been tested

in exactly the same load conditions to make results compara-

ble, and the proposed scenario is as follows [36]:

a) the FFNN is initialized with near zero weight matrices

w(1) and w(2) to produce near zero uFFNN(p) within the

entire first pass (1 ≤ p ≤ α), i.e. no pre-tuning, e.g. for

no-load conditions, is introduced,

b) no-load conditions are assumed for the first 1 s (50 passes

at 50 Hz),

c) next the diode rectifier load (ca. 6 kW, current crest factor

ca. 2.5) is applied for 6 s (300 passes at 50 Hz),

d) then the diode rectifier load is switched off and the resis-

tive load of ca. 4 kW is switched on for 2 s (100 passes

at 50 Hz),

d) later the resistive load is switched off and the diode rec-

tifier load is switched on again for 2 s (100 passes at 50

Hz),

f) finally the diode rectifier is switched off and the initial

no-load conditions are applied once again.

Key parameters of the system are summarized in Table 1.

Figures 2 and 3 illustrate the performance of the non-repetitive

part of the controller, i.e. for the switch SRC in Fig. 1 set

permanently to zero. The average voltage u
avg
VSI plotted in the

selected figures is related to the converter output voltage uVSI

labeled in Fig. 1 as follows

u
avg
VSI(t) =

1

Ts

t+Ts∫

t

uVSI(τ) dτ, (16)

where t =
k

f ref
+pTs with f ref denoting the reference voltage

frequency and Ts being the sampling time. Then the repeti-

tive part is switched on (the switch SRC put in the posi-

tion of ‘uFFNN’), initially without the kDFF path and with

N = 17 hidden neurons. The performance improves as shown

in Figs. 4, 5 and 6. Next, the kDFF part is activated, i.e. the

Fig. 2. Poor performance of the FSF+RFF+pDFF non-repetitive con-

troller: the evolution of the RMSE – the measurement noise RMS

given as some sort of referencing point

Fig. 3. Poor performance of the FSF+RFF+pDFF non-repetitive con-

troller: significantly disturbed output voltage under the diode rectifier

load (a) – the control error (b) and the converter average voltage (a)

also provided
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Fig. 4. Evolution of the RMSE for the repetitive neurocontroller

composed of 17 neurons and without the kDFF path

Fig. 5. Evolution of the output voltage in the k-direction after switch-

ing the diode rectifier on while keeping the kDFF path inactive

Fig. 6. Steady-state behavior of the kDFF-disabled controller under the diode rectifier load: a) the LC filter output voltage, the converter

average voltage and b) the control error, c) the ANN’s output signal, the non-repetitive path output and the load current

DDFF control algorithm is running. Figures 7, 8 and 9 demon-

strate the performance of the controller with the DDFF paths.

It can be observed that it is possible for the root mean squared

error (RMSE) to drop below the noise RMS value because of

the low-pass filtering action inherently present in the online

trained neural network having (7) as the cost function. The

kDFF path introduces noticeably faster convergence of the

overall controller, which could be read from the inset inside
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Fig. 7. Evolution of the RMSE for the repetitive neurocontroller

composed of 17 neurons and with the kDFF path activated

Fig. 8. Evolution of the output voltage in the k-direction after switch-

ing the diode rectifier on and for the kDFF path being activated

Fig. 9. Steady-state behavior of the kDFF-enabled controller under the diode rectifier load: a) the LC filter output voltage, the converter

average voltage and b) the control error, c) the ANN’s output signal, the non-repetitive path output and the load current

Fig. 10. Also the performance of the kDFF-enabled controller

does not deteriorate significantly with the reduction in the

number of neurons, which is not the case with the kDFF-

disabled controller. The relevant comparison for N = 7 neu-

rons is shown in Fig. 11. This implies that in the DDFF

scheme it is easier to guess an effective number of hidden

neurons. Moreover, in the kDFF case this number can be

much smaller and thus the resulting control algorithm has ap-
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Fig. 10. Comparison of convergence rates (see slopes) and fitting

capabilities (see steady-state values) for pDFF- and DDFF-equipped

systems – the case of N = 17 neurons

Fig. 11. Comparison of convergence rates (see slopes) and fitting

capabilities (see steady-state values) for pDFF- and DDFF-equipped

systems – the case of N = 7 neurons

Fig. 12. Steady-state behavior of the controller after 100,000 iterations (passes) under the diode rectifier load – in this particular experiment

one weight out of 29 has saturated: a) the LC filter output voltage, the converter average voltage and b) the control error, c) the ANN’s

output signal, the non-repetitive path output and the load current

preciably lower computational complexity and memory bur-

den. To demonstrate the above-stated long-term stability, the

neurocontroller has been kept under the diode rectifier load

for one hundred thousand periods of the reference signal. Fig-

ure 12 clearly shows that the control signal uFFNN does not

feature any high-frequency oscillations – here in the case of

N = 7 hidden neurons.
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6. Conclusions

The repetitive neurocontroller has been presented and a mod-

ification to its approximation space has been proposed. The

disturbance feedforward is made active also in the pass-to-

pass direction. The resulting disturbance dual feedforward al-

gorithm manifests faster convergence than the controller with-

out the kDFF path. Moreover, the presence of the kDFF path

allows the number of neurons to be decreased, which in turn

makes the controller less prone to the overlearning phenom-

enon and also reduces its computational complexity. It should

be noted that the approximation task at hand is quite chal-

lenging from the generalization point of view in a noisy envi-

ronment. This happens because the shape of the desired con-

trol signal inherits many features from the shape of the load

current. The number of neurons is then a trade-off between

an accurate control signal shaping for significantly nonlinear

loads and an absence of excessive overlearning for linear loads

and no-load conditions. The numerical experiments indicate

that the kDFF-enabled neurocontroller with less than 10 neu-

rons can effectively reject disturbance caused by linear as well

as nonlinear loads. The proposed control scheme illustrates

simultaneously that the disturbance feedforward path, quite

common in non-repetitive control schemes, can be effective-

ly incorporated also into the repetitive part of the controller.

The latter has been already reported in the topical literature,

e.g. [13, 37], in the form of load current predictors that cal-

culate future values in subsequent periods on the basis of the

previous pass(es). This paper has demonstrated that it is also

possible and beneficial to harness the measured disturbance in

the DOP-solver-based repetitive controller for the CACF VSI

with the output LC filter.
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ences, Köln, 2014.

[14] B. Ufnalski and L.M. Grzesiak, “A performance study on syn-

chronous and asynchronous update rules for a plug-in direct

particle swarm repetitive controller”, Archives of Electrical En-

gineering 63 (4), 635–646 (2014).

[15] B. Ufnalski, L.M. Grzesiak, and K. Galkowski, “Particle

swarm optimization of an iterative learning controller for the

single-phase inverter with sinusoidal output voltage wave-

form”, Bull. Pol. Ac.: Tech. 61 (3), 649–660 (2013).

[16] R.W. Longman, “Iterative/repetitive learning control: learning

from theory, simulations, and experiments”, in: Encyclopedia

of the Sciences of Learning, pp. 1652–1657, Springer, New

York, 2012.

[17] H. Elci, R.W. Longman, M.Q. Phan, J.-N. Juang, and R. Ugo-

letti, “Simple learning control made practical by zero-phase

filtering: applications to robotics”, IEEE Trans. Circuits and

Systems I: Fundamental Theory and Applications 49 (6), 753–

767 (2002).

[18] Y. Shi, “Robustification in repetitive and iterative learning con-

trol”, Ph.D. Thesis, Columbia University, New York, 2013.

[19] M.H.A. Verwoerd, “Iterative learning control – a critical re-

view”, Ph.D. Thesis, University of Twente, Enschede, 2005.

[20] B. Ufnalski, “Plug-in direct particle swarm repetitive con-

troller”, MATLAB Central,

http://www.mathworks.com/matlabcentral/fileexchange/47847-

plug-in-direct-particle-swarm-repetitive-controller (2014).

[21] K. Hornik, “Approximation capabilities of multilayer feedfor-

ward networks”, Neural Networks 4 (2), 251–257 (1991).

[22] M. Kaminski and T. Orlowska-Kowalska, “Application of

neural network with adaptive interaction for speed control of

the drive system with elastic joint”, IEEE Int. Symp. Industrial

Electronics (ISIE) 1, 1–6 (2013).

124 Bull. Pol. Ac.: Tech. 64(1) 2016



Repetitive neurocontroller with disturbance feedforward path active in the pass-to-pass direction for a VSI inverter...

[23] M. Kaminski and T. Orlowska-Kowalska, “FPGA implemen-

tation of ADALINE-based speed controller in a two-mass sys-

tem”, IEEE Trans. Industrial Informatics 9 (3), 1301–1311

(2013).

[24] T. Orlowska-Kowalska and M. Kaminski, “Adaptive neurocon-

trollers for drive systems: Basic concepts, theory and applica-

tions”, Advanced and Intelligent Control in Power Electronics

and Drives, Studies in Computational Intelligence 531, 269–

302 (2014).

[25] T. Pajchrowski, “Adaptive neural speed controller for servo-

drive trained online”, 18th Int. Conf. Methods and Models in

Automation and Robotics (MMAR) 1, 183–188 (2013).

[26] T. Pajchrowski and K. Zawirski, “Application of artificial

neural network for adaptive speed control of PMSM drive

with variable parameters”, COMPEL: Int. J. Computation and

Mathematics in Electrical and Electronic Engineering 32 (4),

1287–1299 (2013).

[27] T. Pajchrowski, “Application of artificial neural network

for speed control of servodrive with variable parameters”,

Mechatronics 2013, International Publishing, London, 693–

700 (2014).

[28] J. Sobolewski and L.M. Grzesiak, “Neuro-control system for

converter based electrical energy source – test performed in

laboratory setup with combustion engine emulator”, IEEE Int.

Conf. Industrial Technology (ICIT), 1603–1608 (2013).

[29] B. Ufnalski and L.M. Grzesiak, “Particle swarm optimization

of artificial-neural-network-based on-line trained speed con-

troller for battery electric vehicle”, Bull. Pol. Ac.: Tech. 60 (3),

661–667 (2012).

[30] L.M. Grzesiak, V. Meganck, J. Sobolewski, and B. Ufnalski,

“On-line trained neural speed controller with variable weight

update period for direct-torque-controlled AC drive”, 12th Int.

Power Electronics and Motion Control Conf. (EPE-PEMC) 3,

1127–1132 (2006).

[31] L.M. Grzesiak and J. Sobolewski, “Energy flow control sys-

tem based on neural compensator in the feedback path for au-

tonomous energy source”, Bull. Pol. Ac.: Tech. 54 (3), 335–340

(2006).

[32] D.L. Elliott, “A better activation function for artificial neural

networks”, Institute for Systems Research (ISR) Technical Re-

port 93-8, CD-ROM (1993).

[33] B. Ufnalski and L.M. Grzesiak, “Selected methods in angular

rotor speed estimation for induction motor drives”, IEEE Int.

Conf. Computer as a Tool (EUROCON) 2, 1764–1771 (2007).

[34] M. Kaminski, T. Orlowska-Kowalska, and K. Szabat, “Neural

speed controller based on two state variables applied for a

drive with elastic connection”, 16th Int. Power Electronics and

Motion Control Conference and Exposition (PEMC), 610–615

(2014).

[35] B.W. Bequette, Process Control: Modeling, Design, and Sim-

ulation, Prentice Hall PTR, London, 2003.

[36] B. Ufnalski, “Repetitive neurocontroller with disturbance

feedforward”, MATLAB Central, http://www.mathworks.com/

matlabcentral/fileexchange/47867-repetitive-neurocontroller-

with-disturbance-feedforward (2014).

[37] K. Sozański, Digital Signal Processing in Power Electron-

ics Control Circuits, Power Systems, Springer-Verlag, London,

2013.

Bull. Pol. Ac.: Tech. 64(1) 2016 125


