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A. MAZUR∗ and M. CHOLEWIŃSKI

Chair of Cybernetics and Robotics, Faculty of Electronics,
Wroclaw University of Science and Technology, 11/17 Janiszewskiego St., 50-372 Wroclaw, Poland

Abstract. In the paper implementation of the factitious force concept for a controlling complex mobile manipulator has been presented. As
the nonholonomic constraint only lack of longitudinal slippage of wheels has been chosen – in skid-steering platforms lateral slippage is
necessary to change orientation of such a platform. From a control theory point of view such a system is dynamically underactuated. As a
solution to a underactuation problem a method of factitious force has been proposed. This method assumes extension on the dynamics level,
in the form of an additional control inputs uv , which values are equal to zero equivalently. For a mobile manipulator, consisting of platform
REX and 5R robotic onboard arm, a cascaded control law has been proposed. A simulation study was conducted for a mathematical model
of a considered object with real values of physical parameters, i.e. lengths, masses, inertia moments etc. obtained from the 3D model. Results
obtained in simulations have shown a proper action of the control system and convergence of tracking errors, occurring in a platform and
in joints of a manipulator, to zero.
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1. Introduction

A mobile manipulator, which is the subject of considerations,
consists of a mobile platform and an onboard rigid manipulat-
ing arm. Such a robotic object can execute more complicated
tasks than its components. A manipulating arm is fully con-
trolled while a mobile platform equipped with more than one
axis of fixed wheels is a dynamically underactuated system.

Wheeled mobile platforms can be treated as independent
robots or as a transportation part of the complex robotic as-
semble, for instance mobile manipulators [1]. Depending on
the wheels’ type and a way in which they are fixed to the
chassis, motion of wheeled mobile platforms can be realized
with or without slipping effect. If no slippage effect between
wheels and surface occurs, then there exists an equation de-
scribing forbidden directions for realized velocities of the sys-
tem. Such an equation is called a nonholonomic constraint in
platform’s motion.

A special kind of wheeled mobile platforms are platforms
with tracks. They can be modeled as a chassis equipped with
more than one axis of fixed wheels. These platforms are called
skid-steering mobile platforms, due to skidding effect obse-
rved in theirs behavior. An example of such a platform is the
platform REX developed under the grant RobREx, see Fig. 1.

Designing control algorithms for skid-steering platforms
is a challenging task. First attempts to solve this problem con-
sisted of adding some artificial assumption about lateral slip
during the platform’s motion. Such an assumption can be con-
sidered as an artificial nonholonomic constraint [2] reducing a
number of admissible control inputs in an object. The similar
approach can be found e.g. in [3] or [4].

Fig. 1. Differentially driven skid-steering mobile platform REX

Another approach to the control problem for skid-steering
platform has been presented in [5]. Authors have shown that
the skid-steering platform is an underactuated system on a
dynamic level with non-stationary kinematics (non-stationary
velocity constraint). They have used the tunable dynamic os-
cillator to get globally uniformly bounded stability of the pro-
posed control algorithm. The same idea can be found in [6]
and [7].

First announcements about a new concept in control of the
skid-steering platform can be found in [8]. The main idea of
proposed method was to add a control input, so-called “facti-
tious force”, to make input matrix B∗ square invertible matrix.
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Because this additional control input does not exist in reality,
it was assumed that it is equal to zero.

The main advantage of factitious force is the fact, that it
makes possible to predict slipping effect and include them in-
to a model of the moving platform. It is similar to the idea
of “slipping variables” [9] which have really improved quali-
ty of realized trajectories of a platform moving with wheels’
slippage.

In this paper a new approach to the control problem of
mobile manipulator’s with the skid-steering platform has been
presented. As it has been mentioned earlier, a mobile manip-
ulator with such a platform can be considered as the dynami-
cally underactuated system. Till now every control algorithm
presented in literature tried to avoid a problem of missing
control inputs, e.g. assuming additional constraints, because
the underactuated mobile platform has got rectangular input
matrix (which is non-invertible). A problem with inverting
such a matrix (standing before control signals) can be solved
with the idea of factitious force. This is the essential novelty
in control of skid-steering mobile vehicles.

The paper is organized in a following way. Section 2 illus-
trates theoretical design of the mathematical model of the non-
holonomic mobile platform REX. In Sec. 3 a concept of the
factitious force approach to the control nonholonomic mobile
manipulators is presented. A model of the whole mobile ma-
nipulator including a nonholonomic platform and holonomic
5R manipulator is presented in Sec. 4. In Sec. 5 the control
problem is formulated. In Sec. 6 the main result, i.e. new
control algorithm including kinematic and dynamic control
law, is designed. Section 7 contains the simulation results.
Section 8 presents some conclusions.

2. Mathematical model of platform REX

Object description. In the paper the skid-steering mobile
platform REX, presented in Fig. 1, is considered. Each pair
of wheels on the same side is coupled by the transmission
belt or the track, thus the angular velocities of wheels on the
same side are the same. Additionally, it means that the re-
sulting torque acting on one side of a platform is a sum of
torques generated from both motors.

The distances from the front and back axis of robot wheels
to the center of the mass are denoted as b and a respectively.
The half of the platform width is signed as c.

The state vector of a platform can be denoted as follows

qm = ( x y θ φ1 φ2 )T ∈ R5, (1)

where x, y are cartesian coordinates of the platform’s mass
center, θ is orientation of the platform and φ1 and φ2 are the
rotational angles of wheels at left and right side, respectively.

Dynamics of mobile platform can be derived from the
Lagrange formula

Lp(qm, q̇m) = Ekp − Epp.

The platform moves on an equipotential plane and therefore,
its potential energy is equal to zero (Epp = 0), hence, the
Lagrange formula is composed only of kinetic energy of a
platform and its wheels

Lp =
1

2

(

Iz + 4Izz + mk

4
∑

i=1

d2

i

)

θ̇2 +
1

2
Ixx(φ̇2

1 + φ̇2

2)

+
1

2
(mp + 4mk)(ẋ2 + ẏ2) =

1

2
q̇T
mMpq̇m,

(2)

where mp, mk are mass of a platform and a wheel respec-
tively. In turn, Iz is inertia moment of a platform and Izz and
Ixx are inertia moments of wheel (expressed relative to local
Z and X axis). The distance between platform‘s center of
mass and the point of contact of i-th wheel with the ground
is marked as di. The symbol Mp denotes inertia matrix for
platform REX

Mp =

















mt 0 0 0 0

0 mt 0 0 0

0 0 Ip 0 0

0 0 0 Ixx 0

0 0 0 0 Ixx

















, (3)

with elements defined below

• Ip = Iz + 4Izz +mk

4
∑

i=1

d2

i – total inertia moment of plat-

form with wheels,
• mt = mp + 4mk – total mass of a platform,

• Ixx =
1

2
mkr2 – inertia moment of wheel relative to rota-

tion axis.

Kinematics. In the skid-steering platforms the lateral slip-
page is needed to change the orientation. Thus, only the con-
straints for lack of longitudinal slippage can be introduced to
the system equations.

Nonholonomic constraints coming from lack of longi-
tudinal slippage can be expressed in the following Pfaffian
form [3]

A(qm)q̇m =

[

cos θ sin θ −c −r 0

cos θ sin θ c 0 −r

]

















ẋ

ẏ

θ̇

φ̇1

φ̇2

















=0, (4)

where r is a radius of platform wheel.

2.1. Model in generalized coordinates. Dynamics of a mo-
bile platform can be derived from the d‘Alembert princi-
ple [10] and have the following form

M(qm)q̈m + F (qm, q̇m) = B(qm)um + AT (qm)λ, (5)

where M(qm) = Mp is constant inertia matrix of platform
given by (3), B(qm) is input matrix describing which state
variables are directly actuated by motors, um is a vector of
control inputs, AT (qm)λ describes forces of nonholonom-
ic constraints and λ is a vector of Lagrange multipliers. In
turn, F (qm, q̇m) is vector of non-conservative forces, respon-
sible for friction and reaction forces of a ground, described
as below
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F (qm, q̇m) =

















Fx cos θ − Fy sin θ

Fx sin θ + Fy cos θ

Mr

0

0

















, (6)

where [2]

Fx =

4
∑

i=1

Fxi, Fxi = µsgn{ẋi},

Fy =

4
∑

i=1

Fyi, Fyi = fsgn{ẏi},

Mr = a(Fy1 + Fy2) − b(Fy3 + Fy4)

+c(Fx1 + Fx3 − Fx2 − Fx4).

(7)

Fxi is i-th wheel static force, which turn agrees with direction
of a wheel, and Fyi is static friction force, perpendicular to
the vehicle motion. Coefficients µ and f are the static friction
coefficients along, respectively, i-th wheel local Xi and Yi

axis. Mr is resultant moment, responsible for platform orien-
tation. A detailed description of reaction forces can be found
in [2] or [3].

As it was mentioned earlier, the skid-steering platform is
provided with side torques generated by the sum of all mo-
tors torques at a given side. Hence, the input matrix has the
following form

B(qm) =

[

0 0 0 0 1

0 0 0 1 0

]T

. (8)

Control theory of noholonomic objects stands, that if the state
vector has n elements and there is l nonholonomic constraints
introduced to the system, the set of control inputs must be
equal to m = n − l [11].

2.2. Model in auxiliary velocities. Since due to (4) the plat-
form velocity q̇m is in a null space of matrix A(qm), it is
always possible [12] to find a vector of special auxiliary ve-
locities η ∈ Rm, such that

q̇m = G(qm)η, (9)

where G is an n×m full rank matrix satisfying the relation-
ship A(qm)G(qm) = 0.

Dynamics. After substituting the Eq. (9) into the dynamics
(5) we get

M∗η̇ + C∗η + F ∗ = B∗um (10)

with elements defined in the following way

M∗ = GT MpG, C∗ = GT MpĠ,

F ∗ = GT F, B∗ = GT B.
(11)

Equation (10) describes the dynamics of nonholonomic mo-
bile platform expressed in the auxiliary coordinates.

Kinematics. For the platform REX size n of the state vec-
tor qm is equal to 5 from (1) and number of nonholonomic
constraints for lack of longitudinal slippage equals to l = 2.
It strictly means, that matrix G(qm) should have three inde-
pendent columns spanning kernel of A(qm) matrix.

As it can be concluded from (9), real velocity of the plat-
form q̇m can be expressed as linear combination of auxiliary
velocities η. It is very desirable if signals ηi have physical
meaning, therefore control inputs η1 and η2 are usually chosen
as angular velocities of left and right wheels in differentially
driven platform with one axis of fixed wheels. From this point
of view two columns in G(qm) i.e. G1 and G2 are determined
and only third column should be selected in appropriate way

G(qm) =

























cos θ cos θ a1

sin θ sin θ a2

1

c
−

1

c
a3

0
2

r
a4

2

r
0 a5

























=
[

G1 G2 G3

]

.

(12)
Third column of matrix G(qm) is selected properly only if
following conditions are fulfilled:

• First condition: column G3 has to be linearly independent
from G1 and G2, hence

rank G(qm) = 3. (13)

• Second condition: column G3 has to belong to kernel of
A(qm) matrix, i.e. A(qm)G3 = 0. It means that following
equations can be fulfilled

a1 cos θ + a2 sin θ − a3c − a4r = 0, (14)

a1 cos θ + a2 sin θ + a3c − a5r = 0. (15)

Subtracting sides of Eqs. (14) and (15) the following con-
dition can be obtained

a5 − a4 =
2

c
a3. (16)

Input matrix. The most interesting part of dynamics (10) is
the input matrix B∗(qm). For matrix G selected as in (12)
such matrix has a form

B∗(qm) =











2

r
0

0
2

r
a5 a4











. (17)

This matrix is rectangular and, consequently, non-invertible.
It means that dynamics defined by (10) are underactuated on
dynamic level.

3. Concept of factitious force

The mobile platform REX should be considered as an under-
actuated system because it has got a rectangular input matrix
(which is non-invertible). There are two ways to solve the
problem of inverting B∗ matrix (standing before control sig-
nals):
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• avoid a problem of missing control inputs assuming ad-
ditional artificial constraints. Then a model in auxiliary
velocities has the same size of reduced state variables as
the number of control inputs,

• avoid a problem of missing control inputs assuming the

additional factitious input. Then a model in auxiliary

velocities has the same number of state variables and

control inputs.

The first approach has been explored intensively in recent
years. First attempt to solve the problem of underactuation in
skid-steering mobile platforms can be found in [2], in which
some additional assumption about lateral slipping has been
done. Such an equation, although derived from the slipping
effect, can be treated as a special nonholonomic constraint.

Another concept in control of the skid-steering platform
can be found in [8]. The main idea of the proposed method
was to add a control input to make B∗ square invertible ma-
trix. Next, because this additional control does not exist in
practice, it was assumed that it is equal to zero, i.e.

u3m ≡ 0. (18)

Such an approach can be used in other underactuated systems
with greater deficit of control inputs.

3.1. Extension of input matrix B∗. Due to idea of factitious
force, it is necessary to add one control input to the system
(5). As a result of such an exertion, some extension of input
matrix B(qm) defined in (8) has to be made

Be(qm) = [B(qm)|B3] =

















0 0 b1

0 0 b2

0 0 b3

0 1 b4

1 0 b5

















. (19)

The form of an input matrix (19) shows that it is possible
to apply factitious force to any state variable of the platform
REX.

From (11) we can calculate that input matrix for a model
with factitious force can be expressed as

B∗

e = GT Be =













2

r
0 h1

0
2

r
h2

a5 a4 h3













, (20)

where elements hi are denoted as below

h1 = b1 cos θ + b2 sin θ +
b3

c
+

2

r
b5,

h2 = b1 cos θ + b2 sin θ −
b3

c
+

2

r
b4,

h3 = a1b1 + a2b2 + a3b3 + a4b4 + a5b5.

Third condition. Matrix B∗

e can be made invertible if only if

∀ qm det B∗

e 6= 0,

i.e.

∀qm

(

2

r
h3 − h1a5 − h2a4

)

6= 0. (21)

3.2. Model in auxiliary velocities with additional input.

Model of platform REX expressed in auxiliary velocities (10)
with factitious force and column G3 selected as in (12), can
be presented as

M∗η̇ + C∗η + F ∗ = B∗

eum,

with elements defined as follows

M∗ =







m∗

11
m∗

12
m∗

13

m∗

12 m∗

11 m∗

23

m∗

13
m∗

23
m∗

33






,

C∗ =







0 0 C∗

13

0 0 C∗

23

C∗

31
C∗

32
C∗

33






,

F ∗ =







−Fx − Mr

c

−Fx + Mr

c

−Fy






,

and input matrix B∗

e given by (20).
Symbols occurring in model have meaning:

m∗

11
= mt +

Ip

c2
+ 4

Ixx

r2
,

m∗

12
= mt −

Ip

c2
,

m∗

13 = mt(a1 cos θ + a2 sin θ) +
a3Ip

c
+

2

r
a5Ixx,

m∗

23 = mt(a1 cos θ + a2 sin θ) −
a3Ip

c
+

2

r
a4Ixx,

m∗

33
= mt(a

2

1
+ a2

2
) + Ipa

2

3
+ Ixx(a2

4
+ a2

5
).

Elements of the Coriolis matrix, i.e. C∗

13
, C∗

23
, C∗

31
, C∗

32
, C∗

33

cannot be obtained explicitly because parameters ai can de-
pend on control variables qm. Therefore, they should be cal-
culated only as Christoffel’s symbols.

4. Model of platform REX with 5R arm

The object considered in this paper is built with the holonom-
ic rigid manipulator and nonholonomic differentially driven
mobile platform REX. Mathematical model of nonholonomic
system consists of two groups of equations: kinematics and
dynamics. In this case kinematics denote nonholonomic con-
straints present in a mobile platform and dynamics have to
be obtained for whole system including a platform and an
onboard robotic arm.

The state vector of a mobile manipulator has a form

q = ( qm qr )T

= ( x y θ φ1 φ2 q1 q2 q3 q4 q5 )T ∈ R10,
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where qm are state variables associated with a platform and
qr are manipulator’s state variables.

In Fig. 1 differentially driven wheeled mobile platform
REX was presented. A chassis has been modeled as homoge-
neous box with mass mp and moment of inertia Iz , equipped
with four wheels with masses mk and moments of inertia
Izz , Ixx.

In turn, 5R manipulator presented in Fig. 2 was modeled
as a set of three links, each treated as homogeneous stick of
length li and mass mi, i = 1, 2, 3. The last link with parame-
ters l4 and m4, which is in fact gripper holding camera, was
modeled as cuboid with l, w and h parameters.

Fig. 2. Robotic arm – 5R onboard manipulator

4.1. Dynamics of mobile manipulator. Special kind of
wheeled mobile platforms are platforms with tracks. They can
be modeled as a chassis with more than one axis equipped
with fixed wheels, see Fig. 3. These platforms are called skid-
steering mobile platforms, due to skidding effect observed in
theirs behavior.

Fig. 3. Scheme of mobile manipulator with skid-steering platform
REX

During the modeling process it has been assumed that
a platform moves on an equipotential surface, therefore its
potential energy equals to zero. It implies potential energy
of a mobile manipulator depending only on the position of
manipulating 5R arm. In turn, kinetic energy of a mobile ma-
nipulator is a sum of kinetic energy of a platform and of an
onboard manipulator

L = Lp + Lm = Ekp + Ekm − Epm. (22)

Dynamics in generalized coordinates obtained from (22) have
a block form
[

M11 M12

M21 M22

](

q̈m

q̈r

)

+

[

Mp 0

0 0

](

q̈m

q̈r

)

+

(

F

0

)

+

[

C11 C12

C21 C22

](

q̇m

q̇r

)

+

(

0

D

)

=

(

Beum

ur

)

(23)
The detailed form of above matrix elements has been omit-

ted in the text for sake of briefness.
If we extend dynamics (5) expressed in auxiliary veloc-

ities for nonholonomic skid-steering platform to the system
composed on a platform and a manipulating arm (23), then
we obtain the following equations

M∗

c

(

η̇

q̈r

)

+ C∗

c

(

η

q̇r

)

+ D∗

c + F ∗

c = B∗

c

(

um

ur

)

, (24)

where

M∗

c =

[

GT (M11 + Mp)G GT M12

M21G M22

]

,

C∗

c =

[

GT (C11G + (M11 + Mp)Ġ) GT C12

M21Ġ + C21G C22

]

,

D∗

c =

(

0

D

)

,

F ∗

c =

(

GT F

0

)

=

(

F ∗

0

)

,

B∗

c =

[

GT Be 0

0 I

]

=

[

B∗

e 0

0 I

]

.

Equations (9) and (24) constitute a complete model of a non-
holonomic mobile manipulator with the skid-steering plat-
form, expressed in auxiliary coordinates. This model is a point
of departure to design a control algorithm based on factitious
force approach.

It is worth to mention that a mobile manipulator with a
wheeled platform has a special property, which is not valid
for its both subsystems, [13].

Property 1. For a mobile manipulator with a wheeled non-
holonomic mobile platform a skew-symmetry between inertia
matrix M∗

c and the matrix of Coriolis and centripetal forces
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C∗

c does not hold anymore. To regain the skew-symmetry, a
special nontrivial correction matrix CK has to be added

d

dt
M∗

c = (C∗

c + CK) + (C∗

c + CK)T . (25)

Any matrix, for which the relation (25) holds, can play a role
of the correction matrix. The following expression describing
a form of CK matrix, e.g.

CK = CT
K =

1

2

{

M∗

c − C∗

c − (C∗

c )T
}

should be calculated before starting the regulation process.

5. Control problem statement

In this paper a mobile manipulator with the skid-steering mo-
bile platform is considered. Such a robotic object should move
along the desired trajectory without longitudinal slippage of
its wheels. The desired trajectory is defined separately for
each subsystem, i.e. a platform should move along the trajec-
tory qmd(t) and the rigid onboard manipulator have to track
a vector of the desired trajectory of joint positions qrd(t),
defined relatively to the local frame of the platform.

Our goal is to address the following control problem:

1. Determine the control law u such that mobile manipulator
with the skid-steering platform with known dynamics fol-
lows the desired trajectory even if terrain parameters are
unknown or some measurement disturbances occur.

2. During motion nonholonomic constraints have to be ful-
filled – a platform should move without longitudinal slip-
page of its wheels.

3. All factitious forces have to be equal to zero, because they
do not exist in reality.

In order to design a trajectory of the tracking controller for
the considered object, it is necessary to consider a complete
mathematical model of the nonholonomic system (9)–(24) ex-
pressed in auxiliary variables as a cascade composed of two
groups of equations: kinematics (nonholonomic constraints)
and dynamics, see Fig. 4:

Fig. 4. Structure of the control algorithm (backstepping): cascade
with two stages

For this reason the structure of the controller is divided into
two parts working simultaneously (backstepping control ap-
proach, see [14]):

• kinematic controller ηr – represents a vector of embed-
ded control inputs, which ensure realization of the task for
the kinematics (nonholonomic constraints) if the dynam-
ics were not present. Such a controller generates ’velocity

profile’ which has to be executed in practice to realize the
trajectory tracking for nonholonomic subsystem. Kinematic
controller plays a role of ‘motion planner’.

• dynamic controller – as a consequence of cascaded struc-
ture of the system model, the system’s velocities cannot be
commanded directly, as it has been assumed in the design-
ing of kinematic control signals, and instead they must be
realized as the output of the dynamics driven by u. Dy-
namics are calculated for the whole system, not for each
subsystem separately.

6. Main result – control law

for mobile manipulator

As we have mentioned in the previous section, the control
algorithm consists of two parts: kinematic controller and dy-
namic controller. Both control algorithms, working simulta-
neously, are necessary to solve the control problem of a non-
holonomic mobile manipulator.

6.1. Kinematic control algorithm. By designing the kine-
matic controller it is worth to notice, that matrix G in (12)
without an additional input, i.e. only with G1 and G2 columns,
has the same form as the relevant matrix for unicycle. For
this reason we have used the kinematic control law appro-
priate for a driving platform with only one fixed wheels axis.
Such a control law is characterized by considerable robustness
even noise and measurement errors occur during the regula-
tion process [15]. In other words, we treat a signal coming
from ‘motion planner’ as some approximation of skid-steering
mobile platform motion.

Hence, the Samson controller developed for the unicycle
can be used

vd = η1d + η2d, ωd =
1

c
(η2d − η1d),







xe

ye

θe






= Rot(z,−θ)







xd − x

yd − y

θd − θ






,

(

vr

ωr

)

=







k1xe + vd cos θe

ωd + k2θe + vdye

sinθe

θe






, k1, k2 > 0,

η1r =
vr − cωr

2
, η2r =

vr + cωr

2
,

where η1d, η2d and xd, yd, θd are desired velocities and posi-
tion coordinates for an unicycle robot tracking the given tra-
jectory; in turn, η1r and η2r are reference velocities signals,
developed in a kinematic controller and used in the dynamic
controller.

6.2. Dynamic control algorithm. Let’s choose the dynamic
control algorithm based on modification of the passivity-based
sliding mode control law [16] given by Slotine & Li for ro-
botic manipulators. If we assume that dynamics of the mobile
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manipulator are known then we can propose the following
control law
(

um

ur

)

= (B∗

c )−1

{

M∗

c

(

η̇r

q̈ref

)

+ C∗

c

(

ηr

q̇ref

)

+D∗

c + F ∗

c − CK

(

eη

s

)

− Kd

(

eη

s

)}

,

(26)

where Kd = diag {kd} is a positive definite diagonal matrix
and CK is the correction matrix necessary to get the skew-
symmetry property (25).

Relevant elements can be defined as follows

eη =







η1 − η1r

η2 − η2r

η3 − η3r






,

s = q̇r − q̇ref = ėq + Λeq,

Λ = ΛT > 0,

eq = qr − qrd.

(27)

The closed-loop system (24) with feedback control (26) is
given by

M∗

c

(

ėη

ṡ

)

+ (C∗

c + CK)

(

eη

s

)

+ Kd

(

eη

s

)

= 0. (28)

6.3. Proof of convergence. For the system (28) we propose
the following Lyapunov-like function

V (eη, s) =
1

2

(

eη s
)

M∗

c

(

eη

s

)

≥ 0, (29)

which is non-negative definite. We compute time derivative
of V along solutions of the closed-loop system (28)

V̇ =
1

2

(

eη s
)

Ṁ∗

c

(

eη

s

)

+
(

eη s
)

M∗

c

(

ėη

ṡ

)

= −
(

eη s
)

Kd

(

eη

s

)

.

From La Salle & Yoshizawa theorem, see [14] for de-
tails, it could be concluded that the errors eη and s converge
asymptotically to zero. Using definition of s given by (27)
and positive definiteness of parameter Λ we get that position
tracking error eq for manipulator joints goes asymptotically
to zero.

On the other hand, the convergence of eη to zero means
that the the velocity profile generated by a kinematic controller
is successfully followed, and therefore one can conclude that
the nonholonomic system i.e. skid-steering platform tracks the
desired trajectory qmd. It ends the proof.

7. Simulation study

For simulations we have applied the factitious force method
with following parameters: third column of G matrix and third
column of B matrix are equal to
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Such choice of parameters means that conditions (13), (16)
and (22) are fulfilled.

7.1. Calculation of artificial signal η3r. The vector of aux-
iliary velocities consists of two groups of states: physical and
factitious. Velocities η1r and η2r have physical meaning of the
desired angular velocities of wheels on the left and right side
of platform moving on the desired trajectory. In turn, third ve-
locity η3r is an auxiliary signal which can be calculated from
the assumption that factitious force equals to zero. A form of
such a signal strictly depends on the selected dynamic control
algorithm.

The dynamic control law given by (26) implies the fol-
lowing form of factitious force

u3m = M∗

c11η̇1r + M∗

c12η̇2r + M∗

c13η̇3r

+ M∗

c14q̈1ref + M∗

c15q̈2ref + M∗

c16q̈3ref

+ M∗

c17q̈4ref + M∗

c18q̈5ref + C∗

c11η1r

+ C∗

c12η2r + C∗

c14q̇1ref + C∗

c15q̇2ref

+ C∗

c16q̇3ref + C∗

c17q̇4ref + C∗

c18q̇5ref

+ F ∗

c3 − Kd(η3 − η3r) ≡ 0.

(30)

From (30) η̇3r can be derived as an implicit function (C∗

c13 =
0) and, in order to get η3r, it must be integrated – obtaining
analytic form of the third reference signal is not possible. η3r

computed in this way fulfils the third subtask of a control
problem.

7.2. Parameters. The simulations were run with MATLAB
package and SIMULINK toolbox. As an object of simulations
we have taken of the skid-steering mobile platform equipped
with two axes of fixed wheels and 5R rigid manipulator.
The parameters of the platform were: mass of the platform
mp, mass of the wheel mk, platform moment of inertia Iz

relative Zp axis, wheel moment of inertia relative Zp axis

Izz =
1

2
mkr2 = 2Ixx, half of platform width c, distances a

and b from mass center to front and back axis of wheels.

Table 1
Simulation parameters

mp = 42 kg mk = 2.38 kg Iz = 5 kg · m2

Izz = 0.15 kg · m2 r = 0.127 m m1 = 3 kg

m2 = 2 kg m3 = 1 kg m4 = 1 kg

l1 = 1 m l2 = 1 m l3 = l4 = 0.5 m

l = 0.3 m w = 0.3 m h = 0.5 m

a = 0.365 m b = 0.365 m c = 0.387 m
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In this section we want to show a behavior of the skid-
steering mobile platform tracking different trajectories – ad-
missible and inadmissible (obtained as bonding of different
admissible trajectories). Simulations should show if the pro-
posed control strategy works properly for mobile 5R manip-
ulator with a skid-steering platform.

Desired joint trajectories have to track trajectories defined
below

qrd =



















q1d = 3 sin

(

t

2

)

rad

q2d = 0.5 rad

q3d = 0.1 rad

q4d = 0.1 rad

q5d = 0.3 rad



















. (31)

Regulation parameters have been chosen as follows: for dy-
namic controller kd = 300 and Λ = 1, for kinematic controller
k1 = 1 and k2 = 1.

7.3. Admissible trajectory. The desired admissible trajecto-
ry has been chosen as a circle with radius Rtraj = 10 m and

frequency ωd = 0.1
rad

s
. From the control point of view such

a trajectory is most exacting because a mobile platform has
persistent lateral slippage during motion.

A real trajectory realized by the platform can be observed
in Fig. 5. Tracking errors of manipulator joints have been
presented in Fig. 6.

7.4. Inadmissible trajectory. The desired inadmissible tra-
jectory has been chosen as a square trajectory. From the con-
trol point of view such a trajectory is interesting because some
problems with bonding points occur.

A real trajectory realized by the platform can be observed
in Fig. 7. Tracking errors of manipulator joints have been
presented in Fig. 8.

Fig. 5. Admissible trajectory realized by skid-steering platform

a)

b)

Fig. 6. Errors obtained by trajectory tracking: a) joint errors eq1, eq2

of manipulator, b) joint errors eq3, eq4 and eq5 of manipulator

Fig. 7. Inadmissible trajectory realized by skid-steering platform
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a)

b)

Fig. 8. Errors obtained by trajectory tracking: a) joint errors eq1, eq2

of manipulator, b) joint errors eq3, eq4 and eq5 of manipulator

It can be observed that after 10, 20, 30 and 40 s the de-
sired trajectory changes from one side of the square to the
next one. It means that for these time moments trajectory has
to change a signal coming from kinematic control from one
solution (obtained for one side of the square) to the anoth-
er (obtained for the next side). In other words, in these time
moments some impulse in tracking errors should occur.

8. Conclusions

In the paper the idea of control mobile manipulator with a
skid-steering mobile platform has been presented. It has been
shown that a nonholonomic system with velocity constraints
has a cascaded structure, which requires two simultaneously
working controllers: kinematic controller (‘motion planner’)
and dynamic controller. The most crucial fact is too small
number of dynamic control inputs relatively to a number of
state variables – it means that the system is underactuated
on a dynamic level. In this article an attempt to solve such a
problem with so-called “factitious force” has been made. The

concept of factitious force assumes that dynamics have addi-
tional control inputs uv, which do not exist in reality and are
equal to zero. However, such an assumption makes possible
to invert the input matrix, standing before control inputs in
dynamic equations.

The factitious force method and the proposed control algo-
rithms have been examined in simulations for a mathematical
model of a mobile manipulator with 5R degrees of freedom
and the skid-steering mobile platform REX, built under the
grant RobREx. By theoretical considerations and simulation
study it was confirmed that the control method introduced in
the paper works properly. The examined control algorithm is
implemented in the real REX platform.

In future works the factitious force concept will be extend-
ed to control other dynamically underactuated nonholonomic
systems and to the control skid-steering wheeled mobile plat-
form with other nonholonomic constraints coming e.g. from
lack of lateral or longitudinal slippage only selected axes or
wheels.

Acknowledgements. This work was supported by the Na-
tional Centre for Research and Development under the grant
RobREx PBS1/A3/8/2012, PS0065.

REFERENCES

[1] A. Mazur, “New approach to designing input-output decou-
pling controllers for mobile manipulators”, Bull. Pol. Ac.: Tech.

53 (1), 31–37 (2005).
[2] L. Caracciolo, A. De Luca, and S. Iannitti, “Trajectory track-

ing control of a four-wheel differentially driven mobile robot”,
Proc. IEEE Int. Conf. on Robotics and Automation 4, 2632–
2638 (1999).

[3] K. Kozłowski and D. Pazderski, “Modeling and control of a 4-
wheel skid-steering mobile robot”, Int. J. Appl. Math. Comput.

Sci. 14 (4), 477–496 (2004).
[4] A. Mazur and M. Cholewiński, “Robust control of differential-

ly driven mobile platforms”, Proc. 8th Workshop Robot Motion

and Control RoMoCo 2011 1, 53–64 (2011).
[5] D. Pazderski and K. Kozłowski, “Trajectory tracking of under-

actuated skid-steering robot”, Proc. American Control Conf. 4,
3506–3510 (2008).

[6] E. Mohammadpour, M. Naraghi, and M. Gudarzi, “Posture sta-
bilization of skid steer wheeled mobile robots”, Proc. IEEE Int.

Conf. on Robotics, Automation and Mechatronics 1, 163–169
(2010).

[7] E. Maalouf, M. Saad, and H. Saliah, “A higher level path track-
ing controller for a four-wheel differentially steered mobile ro-
bot”, Robotics and Autonomous Systems 1, 23–33 (2006).

[8] A. Mazur and M. Cholewiński, “Virtual force concept in steer-
ing mobile manipulators with skid-steering platform moving
in unknown environment”, J. Intell. Robot. Syst. 77, 433–443
(2015).

[9] I. Motte and G. Campion, “A slow manifold approach for
the control of mobile robots not satisfying the kinematic con-
straints”, IEEE Trans. Rob. Autom. 16 (6), 875–880 (2000).

[10] K. Tchoń, A. Mazur, I. Dulȩba, R. Hossa, and R. Muszyński,
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