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Banach fixed-point theorem in semilinear controllability problems

– a survey

J. KLAMKA, A. BABIARZ∗, and M. NIEZABITOWSKI

Institute of Automatic Control, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland

Abstract. The main aim of this article is to review the existing state of art concerning the complete controllability of semilinear dynamical
systems. The study focus on obtaining the sufficient conditions for the complete controllability for various systems using the Banach fixed-
point theorem. We describe the results for stochastic semilinear functional integro-differential system, stochastic partial differential equations
with finite delays, semilinear functional equations, a stochastic semilinear system, a impulsive stochastic integro-differential system, semilinear
stochastic impulsive systems, an impulsive neutral functional evolution integro-differential system and a nonlinear stochastic neutral impulsive
system. Finally, two examples are presented.
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1. Introduction

Controllability is one of the fundamental concepts in mathe-
matical control theory and plays very important role both in
stochastic and deterministic control systems [1, 2].

We say that control system is controllable if each state
corresponding to this process can be in appropriate time
controlled or affected by some control signals. For finite-
dimensional systems, the notion of controllability was intro-
duced in [3]. A few years later this notion was extended to
infinite-dimensional systems [4, 5]. Over the last decade the
controllability has been extensively studied both for finite and
infinite dimensional systems [6–18]. In the case of finite-
dimensional systems notions of complete and approximate
controllability coincide. In infinite-dimensional spaces there
exist linear subspaces, which are not closed, so we can dis-
tinguish concepts of the approximate and complete controlla-
bility. The approximate controllability means that system can
be steered to an arbitrarily small neighbourhood of the final
state. The complete controllability enables to steer the system
to an arbitrary final state [19]. It means that complete con-
trollability is fundamentally stronger notion, than approximate
controllability.

The controllability of nonlinear deterministic systems in
finite-dimensional space has been extensively studied, see
[20–23] and references therein. The sufficient conditions for
controllability of nonlinear systems in infinite-dimensional
spaces may be found in [7–10, 24–27].

Dynamical systems with distributed delays in control were
also considered in the literature [28, 29]. The sufficient con-
ditions for constrained controllability have been obtained and
proved with some mapping theorems taken from functional
analysis and linear approximation methods.

Controllability of nonlinear stochastic differential systems
were discussed in [30–37]. Controllability of linear stochas-

tic systems in finite-dimensional spaces is studied in [38–44].
Different types of controllability concepts for linear stochastic
evolution equations can be found in papers [45, 46].

A controllability theory for abstract linear control systems
in infinite-dimensional spaces was studied in many papers and
monographs, see for example [47] and [48]. These concepts
have been extended to infinite-dimensional systems represent-
ed by nonlinear evolution equations [49–51]. Most of the con-
trollability results for nonlinear infinite-dimensional control
systems concern the so-called semilinear control system that
consists of a linear part and a nonlinear part.

Stochastic partial functional differential equations with fi-
nite delays are used to present stochastic models of biological,
chemical and physical systems. The qualitative properties, for
example stability, observability, controllability of these sys-
tems have not been studied in detail [52–54]. There exist lit-
erature on the related topics for deterministic partial differ-
ential equations with finite delays, see for example [55, 56].
Problem of controllability for stochastic differential equations
have been investigated in [57, 58].

The impulsive differential equations provide a natural de-
scription of observed evolutionary processes, which are sub-
ject to short term perturbations acting instantaneously in the
form of impulses. Uncertainty can be incorporated either as
an expression of our lack of precise knowledge or as a true
driving force. In the latter case it is useful to model the sys-
tem by a stochastic or noise driven model which leads to the
study of stochastic impulsive differential systems.

The controllability for deterministic impulsive systems
has been studied in [59, 60]. The authors of [61] investigat-
ed the complete controllability of hybrid impulsive integro-
differential systems. In papers [62,63] the necessary and suf-
ficient conditions for state controllability and observability
for a class of linear time-varying impulsive systems were
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considered. In paper [64], the notion of complete control-
lability for nonlinear stochastic neutral impulsive systems in
finite-dimensional spaces is introduced. Moreover, in this pa-
per the sufficient conditions ensuring the complete control-
lability of the nonlinear stochastic impulsive system using
the Banach fixed point theorem are established. The con-
trollability of impulsive functional differential systems with
infinite delay in Banach spaces was discussed in [65]. In
paper [66] a set of sufficient conditions for complete con-
trollability of impulsive neutral functional evolution integro-
differential systems in abstract spaces by using fixed point
technique is established. Complete controllability of impul-
sive stochastic integro-differential systems was investigated
in [67]. The controllability of switched impulsive control sys-
tems was discussed in [68]. The authors of [69] investigate the
controllability of the first-order impulsive functional differen-
tial systems in Banach space. The controllability problem for a
class of controlled switching impulsive systems was discussed
in [70]. The authors of [71] formulate the sufficient conditions
for the complete controllability of the second-order nonlinear
impulsive control differential systems.

2. Preliminaries

2.1. Basic notations. In this paper we adopt the following
notations:

• H , K and U are Hilbert spaces and K and U are separable;
• L(K,H) is the space of all bounded operators from K to
H ;

• for ψ ∈ L(K,H) denote by ψ∗ ∈ L(H,K) the adjoint
operator;

• (e(n))n∈N is a complete orthonormal basis in K;
• A is a closed densely defined operator generating an an-

alytic semigroup {S(t); t > 0} on H with inner product
〈·, ·〉 and norm ‖·‖;

• Aα : Hα ⊂ H → H is the fractional power operator with
domain Hα;

• in Hα we define the norm ‖x‖α := ‖Aαx‖ for x ∈ Hα

(with this norm Hα is a Banach space (see [72]);
• Cα = C ([−r, 0], Hα) is the space of all continuous func-

tions from [−r, 0] into Hα, 0 < r <∞;
• B is a bounded linear operator from U into H ;
• (Ω,F , P ) is a probability space with probability measure
P on Ω;

• E is expected value;
• Lp(Ω, H) is a space of all functions V : Ω → H such that

E ‖V ‖p
<∞;

• {Ft : t ≥ 0} is an increasing and right continuous family
of complete sub−σ – algebras of F ;

• φ is F0 – measurable stochastic process;
• if T > 0, X – metric space and F : Ω → X , then F is

called Ft – adapted if F is Ft – measurable for almost
all t ∈ [0, T ], and is called F0 – adapted if it is F0 –
measurable for almost all t ∈ [−r, 0];

• X(t) : Ω → Hα, t ≥ −r, is a continuous Ft – adapted,
Hα – valued stochastic process;

• Xt : Ω → Cα, t ≤ 0 is defined by

Xt(ω) = {X(t+ s)(ω) : s ∈ [−r, 0]}

and it is called Cα – valued stochastic process;
• (βn(t))n∈N

is the sequence of real-valued one-dimensional
standard Brownian motions mutually independent over
(Ω,F , P );

• for a sequence (λn)n∈N, λn ≥ 0 we define

W (t) =

∞∑

n=1

√
λnβn(t)en, t ≥ 0,

then W (t) is a K – valued Wiener process with a fi-
nite trace nuclear covariance operator Q ≥ 0, where Q ∈
L(K,K) is the operator with the property Qen = λnen

and a finite trace

trQ =

∞∑

n=1

λn <∞;

• Ft = σ (W (s) : 0 ≤ s ≤ t) is the σ – algebra generated by
W and Ft = F ;

• let ψ ∈ L(K,H) and define

‖ψ‖2
Q = tr [ψQψ∗] =

∞∑

n=1

∥∥∥
√
λnψen

∥∥∥
2

;

• ψ is a Q – Hilbert-Schmidt operator if ‖ψ‖Q <∞;
• L0

2(K,H) is the space of all Q – Hilbert Schmidt operators
from K into H ;

•
f : [0,∞) × Cα ×H → H,

σ : [0,∞) × Cα ×H → L0
2(K,H)

and

g : [0,∞) × [0,∞) × Cα → H

are measurable mappings such that f(t, 0, 0), σ(t, 0, 0) and
g(t, s, 0) are locally bounded in H – norm, L0

2(K,H) –
norm and H – norm, respectively;

• MCα(0, p), p > 2 is the space of all F0 – measurable Cα

– valued functions ς : Ω → Cα with the norm

E ‖ς‖p
Cα

= E

{
sup

−r≤s≤0
‖Aας (s)‖p

}
<∞;

• LF
p ([0, T ], H) is the closed subspace of

Lp ([0, T ]× Ω × Ω, H)

consisting of all Ft – adapted processes;
• C ([−r, T ], Lp(Ω, H)) is the Banach space of all continuous

maps from [−r, T ] into Lp(Ω, H) satisfying the condition

sup
t∈[−r,T ]

E ‖X(t)‖p <∞;

• Hp is the closed subspace of all continuous processes X
with trajectories in C ([−r, T ], Lp(Ω, H)) with
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‖X‖Hp
=

(
sup

t∈[0,T ]

E ‖Xt‖p
C

)1/p

=

(
sup

t∈[0,T ]

E sup
−r≤s≤0

‖Xt(ω)‖p
C

)1/p

<∞.

2.2. The Banach fixed-point theorem. Let us start with the
following definition.

Definition 1 [47]. Let (X , d) be a metric space and F : X →
X . We will say that operator F is a contraction if there exists
some k ∈ (0, 1) such that:

∧

x,y∈X

d(F (x), F (y)) ≤ kd(x, y).

Then, the Banach fixed-point theorem has a form:

Theorem 1 [47]. Let X be a Banach space and F be a con-
traction on X . Then, there exists a unique x0 ∈ X such that:

F (x0) = x0.

3. Complete controllability

of semilinear systems

In this section, we present dynamical systems described by
various kind of semilinear abstract state equations.

3.1. The stochastic semilinear functional integro-diffe-

rential system. In papers [73] and [74] the authors present
sufficient conditions for the controllability of stochastic
integro-differential systems in a finite-dimensional space. Two
years later in paper [75] Balachandran, Park and Subalakshmi
examine the complete controllability of the stochastic semi-
linear functional integro-differential system defined as follows

dX(t) = [−AX(t) +Bu(t)]dt

+f



t,Xt,

t∫

0

g(t, s,Xs)ds



 dt

+ σ



t,Xt,

t∫

0

g(t, s,Xs)ds



 dW (t),

t ∈ [0, T ], X0 = φ ∈ Lp(Ω, Cα).

(1)

The above-mentioned dynamical systems (1) have, the so-
called mild solution, defined as follows:

Definition 2 [75]. A stochastic process X is said to be a
mild solution of the system (1) if the following conditions are
satisfied:

1. X(t, ω) is measurable as a function from [0, T ]× Ω to H
and X(t) is Ft – adapted;

2. E ‖X(t)‖p
<∞ for each t ∈ [−r, T ];

3. for each u ∈ LF
p ([0, T ], U) the process X satisfies the

following integral equation:

X(t) = S(t)φ(0) +

t∫

0

S(t− s)Bu(s)ds

+

t∫

0

S(t− s)f


s,Xs,

s∫

0

g(s, τ,Xτ )dτ


 ds

+

t∫

0

S(t− s)σ


s,Xs,

s∫

0

g (s, τ,Xτ ) dτ


 dW (s)

for t ≥ 0, X0 = φ ∈MCα(0, p),

where S(t) is an analytical semigroup.

The definition of the complete controllability of the sto-
chastic semilinear functional integro-differential system has
the following form:

Definition 3. System (1) is complete controllable [0, T ] if

R(t) = Lp(Ω,F , P,H),

where

R(t) =
{
X(t) = X(T ;u) : u(·) ∈ LF

p ([0, T ], U)
}

is the reachable set at time T .
It means that all the points in Lp(Ω,F , P,H) can be

reached from initial state φ(0) at time T .
In order to define complete controllability, we should put

some hypotheses [75]:

Hypothesis 1. The functions f , σ and g satisfy the following
Lipschitz condition and for arbitrary γi, ξi ∈ Cα, i = 1, 2 and
0 ≤ t ≤ T , suppose that there exist positive real constants
N1, Ñ1, K , K̃ > 0 such that

‖f (t, γ1, ξ1) − f (t, γ2, ξ2)‖p

+ ‖σ (t, γ1, ξ1) − σ (t, γ2, ξ2)‖p
Q

≤ N1 [‖γ1 − γ2‖p + ‖ξ1 − ξ2‖p] ,

‖f (t, γ, ξ)‖p
+ ‖σ (t, γ, ξ)‖p

Q ≤ Ñ1,

‖g (t, s, γ1) − g (t, s, γ2)‖p ≤ K ‖γ1 − γ2‖p
,

‖g(t, s, ξ)‖p ≤ K̃.

Hypothesis 2. The functions f , σ and g are continuous and
satisfy the usual linear growth condition and for arbitrary γi,
ξi ∈ Cα, i = 1, 2 and t ∈ [0, T ], suppose that there exist
positive real constants N̂1, K̂ > 0 such that

‖f(t, γ, ξ)‖p
+ ‖σ(t, γ, ξ)‖p

Q ≤ N̂1 (1 + ‖γ‖p
+ ‖ξ‖p

) ,

‖g(t, s, ξ)‖p ≤ K̂ (1 + ‖ξ‖p
) .

Hypothesis 3. S(t), t ≥ 0 is the strongly continuous semi-
group of bounded linear operators generated by operator A
and such that

max
0≤t≤T

‖S(t)‖ ≤M,

where M is the positive constant.
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Hypothesis 4. The linear operator LT
0 from LF

p ([0, T ], U)
into Lp (Ω,F , P, U), defined by

LT
0 =

T∫

0

S(t− s)Bu(s)ds,

induces a boundedly invertible operator L̃ defined on

LF
p ([0, T ], U)/ kerLT

0 .

Now, we introduce operator Ψ, defined in the following
way

(ΨZ)(t) = S(t)φ(0) +

t∫

0

S(t− s)Bu(s, Z)ds

+

t∫

0

S(t− s)f



s, Zs,

s∫

0

g (s, τ, Zτ ) dτ



 ds

+

t∫

0

S(t− s)σ



s, Zs,

s∫

0

g (s, τ, Zτ ) dτ



 dW (s).

Under the Hypotheses 1–4, operator Ψ has a fixed point Z
being the solution of the system (1), where the control process
expressed as follows

u(t, Z) = E

{(
L̃
)−1

(
h− S(T )φ(0)

−
T∫

0

S(T − s)f


s, Zs,

s∫

0

g(s, τ, Zτ )dτ


 ds

−
T∫

0

S(t− s)σ
(
s, Zs,

s∫

0

g (s, τ, Zτ ) dτ
)
dW (s)




∣∣∣∣∣∣
Ft






is defined for an arbitrary process Zs.
To formulate the main theorem of this subsection we have

to introduce the next hypothesis:

Hypothesis 5. Let us use the basic notations from the Hy-
potheses 1–4. Then the following inequality holds:

3p−1MpN5 ‖B‖p T p/q + 3p−1MpN1T
p/q
(
1 +KT p/q

)

+3p−1Mp T p(β−1)+p/q

(qβ − q + 1)
p/q

·Cp
T−pβ+p/2

(1 − 2β)p/2
N1

(
1 +KT p/q

)
< 1,

where

q =
p

p− 1
, β ∈

(
α,

1

2

)
,

Cp =
(p

2
(p− 1)

)p/2
(

p

p− 1

)p2/2

, K > 0

and N5 is the positive real constant such that for all
X,Y ∈ Hp

E ‖u(t,X) − u(t, Y )‖p ≤ N5

T∫

0

E ‖Xs − Ys‖p
Cα
ds.

Theorem 2 [75]. Assume that Hypotheses 1–5 are satisfied.
Then the system (1) is complete controllable on [0, T ].

In the proof of Theorem 2 the Banach fixed point theorem
is used.

3.2. The stochastic partial differential equations with fi-

nite delays. Let us consider the special case of the system
(1), which is defined in Hilbert spaces and investigated in [76].
Substituting g (t, s,Xs) = 0 in equation (1) we obtain the fol-
lowing state equation:

dX(t) = [−AX(t) +Bu(t) + f(t,Xt)] dt

+ σ(t,Xt)dW (t),

t ∈ [0, T ], X0 = φ ∈ Lp (Ω, Cα)

(2)

for which almost all basic notations introduced in Subsec. 2.1
are valid. However, it should be pointed out, that there some
essential differences:

• f : [0,∞) × Cα → H and σ : [0,∞) × Cα → L0
2(K,H)

are two measurable mappings such that f(t, 0) and σ(t, 0)
are locally bounded in H – norm and L0

2(K,H) – norm,
respectively;

• LF
p ([0, T ], H) is the closed subspace of Lp ([0, T ]× Ω, H)

consisting of Ft – adapted processes.

The mild solution of dynamical system described by state
Eq. (2) is defined as follows:

Definition 4 [76]. A stochastic process X is said to be a
mild solution of the system (2) if the following conditions are
satisfied:

1. X(t, ω) is measurable as a function from [0, T ]× Ω to H
and X(t) is Ft – adapted;

2. E ‖X(t)‖p <∞ for each t ∈ [−r, T ];
3. for each u ∈ LF

p ([0, T ], U) the process X satisfies the
following integral equation:

X(t) = S(t)φ(0)

+

t∫

0

S(t− s) (Bu(s) + f (s,Xs)) ds

+

t∫

0

S(t− s)σ (s,Xs) dW (s) , t ≥ 0,

X0 = φ ∈MCα (0, p) .

As in the previous subsection, several hypotheses [76] are
specified.
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Hypothesis 6. For arbitrary γ, ξ ∈ Cα and t ∈ [0, T ], suppose
that there exists a positive real constant N1 > 0 such that

‖f(t, γ) − f(t, ξ)‖p
+‖σ(t, γ) − σ(t, ξ)‖p

Q ≤ N1 ‖γ − ξ‖p
Cα
,

‖f(t, ξ)‖p
+ ‖σ(t, ξ)‖p

Q ≤ N1

(
1 + ‖ξ‖p

Cα

)
.

To formulate the main theorem devoted to complete con-
trollability of the stochastic partial differential equations with
finite delays, it is necessary to use Definition 3 and Hypothe-
ses 3, 4. Moreover, under Hypotheses 3, 4 and 6, for an arbi-
trary process Zs, the control process can be defined

u(t, Z) = E

{
(L̃)−1

(
h− S(T )φ(0)−

T∫

0

S(t−s)f(s, Zs)ds

−
T∫

0

S(t− s)σ(s, Zs)dW (s)
)
|Ft

}
.

that guarantees, the nonlinear operator Ψ, defined by the fol-
lowing formula

(ΨZ)(t) = S(t)φ(0) +

t∫

0

S(t− s)Bu(s, Z)ds

+

t∫

0

S(t− s)f(s, Zs)ds+

t∫

0

S(t− s)σ(s, Zs)dW (s)

it has a fixed point Z , which is a solution of (2).

Theorem 3 [76]. Assume that Hypotheses 3–6 are satisfied.
Then the system (2) is completely controllable on [0, T ].

The proof of Theorem 3 can be found in [76] and it is
based on the application of the contraction theorem.

3.3. The semilinear functional equations. Let C([−h, 0],
X) shortly denoted as C be the Banach space of all contin-
uous functions from an interval [−h, 0] to X with the supre-
mum norm. The authors of paper [77] study the complete
controllability of dynamical systems given by the semilinear
evolution equation

dx(t) = [Ax(t) +Bu(t) + f(t, xt, u(t))]dt,

x0(θ) = φ(θ), θ ∈ [−h, 0], t ∈ (0, T ],
(3)

where

• the state x(·) takes values in a Hilbert space X ;
• the control u(·) ∈ L2 ([0, T ], U) takes values in a Hilbert

space U ;
• φ ∈ C.

If x : [−h, T ] → X is a continuous function, then xt is
an element in C which has point-wise definition

xt(θ) = x(t + θ) for θ ∈ [−h, 0] .

The solution of system (3) can be expressed as the following
form:

xt(0) = x(t) = S(t)φ (0)

+

t∫

0

S(t− s) [Bu(s) + f (s, xs, u(s))] ds,

x0 (θ) = φ (θ) , θ ∈ [−h, 0] , t ∈ (0, T ] ,

(4)

where S(t) is a linear semigroup on X, B : U → X is a
bounded linear operator.

Definition 5 [77]. System (3) is completely controllable on
the interval [0, T ] if

R (T, φ) = X,

where

R (T, φ) = {xT (φ;u) (0) : u (·) ∈ L2 ([0, T ] , U)}
is the reachable set at time T . It means that all the points in
X can be reached from initial state φ at time T .

For simplicity of considerations let us introduce the fol-
lowing notations

K = max {‖S(t)‖ : 0 ≤ t ≤ T } ,
M = ‖B‖ .

Moreover, let us assume the following hypotheses [77]:

Hypothesis 7. The function f : [0, T ] × C × U → X is
continuous and there exists L > 0 such that

‖f (t, φ, u)‖ ≤ L (1 + ‖φ‖C + ‖u‖)
for all (t, φ, u) ∈ [0, T ]× C × U .

Hypothesis 8. The function f : [0, T ]×C×U → X satisfies
the Lipschitz condition

‖f (t, φ1, u1) − f (t, φ2, u2)‖
≤ L (‖φ1 − φ2‖C + ‖u1 − u2‖) .

Hypothesis 9. Let us introduce two crucial operators:

ΓT
0 =

T∫

0

S(T − s)BB∗S∗(T − s)ds,

R(α,ΓT
0 ) = (αI + ΓT

0 )−1.

Moreover, let us assume that αR(α,ΓT
0 ) → 0 as α → 0+ in

the uniform operator topology.

Hypothesis 10. There exist γ > 0 such that
〈
ΓT

0 x, x
〉
≥ γ ‖x‖2 for all x ∈ X.

It means that ΓT
0 is an invertible operator

∥∥∥
(
ΓT

0

)−1
∥∥∥ ≤ 1

γ
.

Now, let us define the nonlinear operator F
0 on

C ([0, T ] , C) × C ([0, T ] , U)

as follows
F

0 (x, u) = (z, ν) ,
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where

ν(t) = B∗S∗ (T − t)
(
ΓT

0

)−1
p (x, u) ,

z(t) = S(t)φ (θ) +

t∫

0

S(t− s) (Bν(s) + f (s, xs, u(s))) ds,

z0 (θ) = φ (θ) , θ ∈ [−h, 0] ,

p (x, u) = xT − S(t)φ−
T∫

0

S(t− s)f (s, xs, u(s)) ds.

Finally, the theorem about the complete controllability of
dynamical system (3) has the following form:

Theorem 4 [77]. Assume that Hypotheses 7–10 hold. If
(

1

γ
K2M +

1

γ
K3M2T +K

)
TL < 1,

then the operator F
0 has a unique fixed point in

C ([0, T ] , C) × C ([0, T ] , U)

and the system (3) is completely controllable on [0, T ].
Similarly as before, proof is based on the Banach fixed

point theorem.

3.4. Stochastic semilinear system. In paper [78] the com-
plete controllability property of semilinear stochastic systems
assuming controllability of the associated linear systems is
studied. The stochastic linear system is defined by the follow-
ing formula

dx(t) = [Ax(t) +Bu(t)] dt+ σ(t)dW (t),

x(0) = x0, t ∈ [0, T ]
(5)

and the corresponding stochastic semilinear system is as fol-
lows

dx(t) = [Ax(t) +Bu(t) + F (t, x(t), u(t))] dt

+ σ (t, x(t), u(t)) dW (t),

x(0) = x0, t ∈ [0, T ] ,

(6)

where

• A : H → H is an infinitesimal generator of strongly con-
tinuous semi-group S (·);

• B ∈ L (U,H);
• F : [0, T ]×H × U → H and σ : [0, T ]×H × U → L0

2.

The definition of complete controllability of stochastic lin-
ear system (6) is as follows.

Definition 6 [78]. System (6) is completely controllable on
[0, T ] if

RT (x0) = L2 (FT , H) ,

with the set of all states reachable from x0 in time t > 0 is
defined as follows

Rt (x0) =
{
x (t;x0, u) : u ∈ LF

2 ([0, T ] , H)
}
,

where x (t;x0, u) is the solution of system (6).

The solution of system (6) is defined by the solution of
the nonlinear integral equation given by the form:

x(t) = S(t)x0 +

t∫

0

S(t− s)

· [Bu(s) + F (s, x(s), u(s))] ds

+

t∫

0

S(t− s)σ(s, x(s), u(s))dW (s),

(7)

where Uad is the space of admissible controls and u ∈ Uad :=
U2.
For convenience, it poses some hypotheses [78].

Hypothesis 11. (F, σ) : [0, T ]×H×U → H×L0
2 satisfies the

Lipschitz condition with respect to (x, u) for all t ∈ [0, T ],

‖F (t, x1, u1)−F (t, x2, u2)‖2+‖σ(t, x1, u1)−σ(t, x2, u2)‖2

≤ L(‖x1 − x2‖2 + ‖u1 − u2‖2).

Hypothesis 12. (F, σ) is continuous on [0, T ] ×H × U and
satisfies

‖F (t, x, u)‖2 + ‖σ(t, x, u)‖2 ≤ L(1 + ‖x‖2 + ‖u‖2).

Hypothesis 13. The linear system (5) is completely control-
lable on [0, T ] if there exists γ > 0 such that:

E〈ΓT
0 z, z〉 ≥ γE‖z‖2 for all z ∈ L2(F , H).

In order to study the complete controllability we have to
define the nonlinear operator Φ0 from H2×Uad to H2×Uad

given by the following form:

(z(t), ν(t)) = Φ0 (x, u) (t),

where

z(t) = S(t)x0

t∫

0

S(t− s) [Bν(s) + F (s, x(s), u(s))] ds

+

t∫

0

S(t− s)σ (s, x(s), u (s)) dW (s),

ν(t) = B∗S∗(T − t)E

{
(ΓT

0 )−1
(
h− S(t)x0

−
T∫

0

S(t− s)F (s, x(s), u(s)) ds

−
T∫

0

S(t− s)σ (s, x(s), u (s)) dW (s)
)
|Ft

}
.

Hypothesis 14. The nonlinear operator Φ0 has a fixed point
if formula:
(

2

γ
l2M(T + 1) +

4

γ
l3M2(T + 1)T + 4lT + 4l

)
TL < 1

(8)
is satisfied and M = ‖B‖2, l = max

{
‖S(t)‖2 : t ∈ [0, T ]

}
.

26 Bull. Pol. Ac.: Tech. 64(1) 2016



Banach fixed-point theorem in semilinear controllability problems – a survey

Now, the theorem can be posed.

Theorem 5 [78]. Under Hypotheses 11–14 the system (6) is
completely controllable on [0, T ].

The proof is obtained by using the Banach fixed-point
theorem.

4. Complete controllability of impulsive systems

Moreover, in the literature the complete controllability is stud-
ied for impulsive systems. Different impulsive semilinear sys-
tems are the content of this section.

4.1. Impulsive stochastic integro-differential system. In
[79], authors consider the complete controllability of fol-
lowing impulsive stochastic integro-differential systems in
a Hilbert space:

dx(t) =

[
Ax(t) +Bu(t)

+ F



t, x(t),
t∫

0

f(t, s, x(s))ds







 dt

+G



t, x(t),
t∫

0

g(t, s, x(s))ds



 dW (t),

t 6= tk, t ≥ 0, ∆x(tk) = Ik(xt−
k
),

t = tk, k = 1, 2, · · · ,m, x(0) = x0 ∈ H,

(9)

where

• F : [0, T ]×H ×H → H ;
• G : [0, T ]×H ×H → L2(Q

1/2E,H);
• f, g : [0, T ]× [0, T ]×H → H are measurable mappings;

• Ik

(
xt−

k

)
= x(t+k )−x(t−k ), t = tk, k = 1, 2, · · · , ρ, where

x
(
t+k
)

and x
(
t−k
)

denote the right and left limits of x(t)
at t = tk respectively;

• ∆x (tk) = x
(
t+k
)
−x

(
t−k
)

represents the jump in the state
x at time tk with Ik determining the size of the jump.

The mild solution of system (9) is given by the following
nonlinear integral equation:

x(t) = S(t)x0 +

t∫

0

S(t− s)Bu(s)ds

+

t∫

0

S(t− s)F


s, x(s),

s∫

0

f(s, τ, x(τ))dτ


 ds

+

t∫

0

S(t− s)G


s, x(s),

s∫

0

g(s, τ, x(τ))dτ


 dW (s)

+

ρ∑

k=1

S(t− tk)Ik(x(t−k )).

(10)

The definition of the impulsive stochastic integro-
differential systems in a Hilbert space (9) is the following.

Definition 7 [79]. The dynamical system (9) is completely
controllable on [0, T ] if

RT (x0) = LFT

2 ([0, T ], H). (11)

To formulate the main result of this subsection, i.e. the-
orem about complete controllability using the Banach fixed-
point theorem, we have to introduce the next lemma and a
few hypotheses [79].

Lemma 1. Suppose that the controllability operator ΓT
0 ∈

L (H,H) associated with linear dynamical systems defined
as follows:

ΓT
0 =

T∫

0

S(T − t)BB∗S∗(T − t)dt

is invertible. Then the control, for arbitrary target xT ∈
L2(FT , H), is defined by the following formula

u(t) = B∗S∗(T − t)E

×
{
(ΓT

0 )−1
[
xT − S(T )x0 −

T∫

0

S(T − s)F (s)ds

−
T∫

0

S(T − s)G(s)dw(s)

−
ρ∑

k=1

S(T − tk)Ik(x(t−k ))
]
| Ft

}

(12)

and steers the systems (10) from x0 to xT at time T , where

F (s) = F (s, x(s),

s∫

0

f(s, τ, x(τ))dτ,

G(s) = G(s, x(s),

s∫

0

g(s, τ, x(τ))dτ.

Hypothesis 15. The functions F , G and I are continuous
and satisfy the usual linear growth condition; that is, there
exist positive real constants L1, αk for arbitrary x ∈ H , and
t ∈ [0, T ] such that:

‖F (t, x, y)‖2 + ‖G(t, x, y)‖2
L0

2

≤ L1(1 + ‖x‖2 + ‖y‖2),

‖Ik(x)‖2 ≤ αk(1 + ‖x‖2), k = 1, 2, . . . , ρ,
∥∥∥∥∥∥

t∫

0

f(t, s, x(s))ds

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥

t∫

0

g(t, s, x(s))ds

∥∥∥∥∥∥

2

≤ k1‖x‖2.

Hypothesis 16. The functions F , G and I satisfy the follow-
ing Lipschitz condition and for every t ≥ 0 and x, y ∈ H
there exist positive real constants L2, βk, k2 such that:

‖F (t, x1, y1) − F (t, x2, y2)‖2

+ ‖G(t, x1, y1) −G(t, x2, y2)‖2
L0

2

≤ L2

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
,

‖Ik(x) − Ik(y)‖ ≤ βk‖x− y‖, k = 1, 2, . . . , ρ,
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t∫

0

{
‖f(t, s, x(s)) − f(t, s, y(s))‖2

+

t∫

0

‖g(t, s, x, x(s)) − g(t, s, y(s))‖2
}
ds ≤ k2‖x− y‖2.

Hypothesis 17. The given linear system:

dx(t) = [Ax(t) +Bu(t)]dt+D(t)dW (t), x(0) = x0

is completely controllable for some γ > 0,

E〈ΓT
0 z, z〉 ≥ γE‖z‖2

for all z ∈ L2 (FT , H). Then,

‖(ΓT
0 )−1‖ ≤ 1

γ
= l2.

For our convenience, we introduce the following notations:

l1 = max
t∈[0,T ]

‖S(t)‖2, M = max
s∈[0,T ]

‖ΓT
s ‖2.

Hypothesis 18. There exist positive real constants l1, l2, ρ,
M , L2, βk and k2 such that

[6T l1L2(Ml1l2 + 1)(T + 4)(1 + k2T )

+ 6l1ρ(Ml2 + 1)Σρ
k=1βk] < 1.

Now, it can be defined a nonlinear operator Φ from H2 to
H2 by the following form:

(Φx)(t) = S(t)x0 +

t∫

0

S(t− s)Bu(s)ds

+

t∫

0

S(t− s)F (s, x)ds +

t∫

0

S(t− s)G(s, x)dW (s) (13)

+

ρ∑

k=1

S(t− tk)Ik(x(t−k )),

where u(t) is defined by Eq. (12).
Then, the following theorem can be posed:

Theorem 6 [79]. Suppose that Hypotheses 15–18 are satisfied
and the operator Φ is a contraction mapping from H2 to H2,
and has a unique fixed point. Therefore, the dynamical system
(10) is completely controllable on [0, T ].

4.2. Semilinear stochastic impulsive systems. The control-
lability of semilinear stochastic impulsive systems in Hilbert
spaces is investigated in [80]. The authors used the Banach
fixed-point theorem and Burkholder-Davis-Gundy inequality
to obtain the sufficient conditions for the complete controlla-
bility. Authors of [80] consider the impulsive stochastic sys-
tems described by the following formula:

dx(t) = [Ax(t) +Bu(t) + F (t, x(t))] dt

+ σ (t, x(t)) dW (t), t 6= tk, t ≥ 0,

∆x (tk) = Ik

(
xt−

k

)
, t = tk,

k = 1, 2, . . . , ρ, x0 (·) = x0,

(14)

where

• A : H → H is the linear unbounded operator;
• B ∈ L (U,H);
• F : [0, T ]×H → H ;
• Σ : [0, T ]×H → L0

2

The mild solution of system (14) is given by the following
nonlinear integral equation:

x(t) = S(t)x0 +

t∫

0

S(t− s)Bu(s)ds

+

t∫

0

S(t− s)F (s, x) ds+

t∫

0

S(t− s)σ (s, x) dW (s)

+

ρ∑

k=1

S(t− tk)Ik(x(t−k )).

In paper [80], the definition of complete controllability of
semilinear stochastic impulsive systems in Hilbert spaces can
be found (14), which is described by the Definition 7.

To formulate the main result of this subsection, i.e. the the-
orem about complete controllability using the Banach fixed-
point theorem, we have to introduce a few hypotheses [79,80].
It should be pointed out that Hypotheses 20–22 are the sim-
pler form of the Hypotheses 15–17.

Hypothesis 19. A is the infinitesimal generator of strongly
continuous semi-group S(t) for t ≥ 0.

Hypothesis 20. The functions F , σ and I (unit operator)
are continuous and satisfy the usual linear growth condition;
that is, there exist positive real constants L1, αk for arbitrary
x ∈ H , and t ∈ [0, T ] such that:

‖F (t, x)‖2 + ‖σ(t, x)‖2
L0

2
≤ L1(1 + ‖x‖2),

‖Ik(x)‖2 ≤ αk(1 + ‖x‖2), k = 1, 2, . . . , ρ.

Hypothesis 21. The functions F , σ and I satisfy the follow-
ing Lipschitz condition and for every t ≥ 0 and x, y ∈ H
there exist positive real constants L2, βk such that:

‖F (t, x) − F (t, y)‖2 + ‖σ(t, x) − σ(t, y)‖2
L0

2

≤ L2 ‖x− y‖2
,

‖Ik(x) − Ik(y)‖ ≤ βk‖x− y‖, k = 1, 2, . . . , ρ.

Hypothesis 22. The given linear system:

dx(t) = [Ax(t) +Bu(t)]dt+D(t)dW (t), x(0) = x0

is completely controllable for some γ > 0,

E〈ΓT
0 z, z〉 ≥ γE‖z‖2

for all z ∈ L2 (FT , H). Then,

‖(ΓT
0 )−1‖ ≤ 1

γ
= l2.

For our convenience, we introduce the following notations:

l1 = max
t∈[0,T ]

‖S(t)‖2, M = max
s∈[0,T ]

‖ΓT
s ‖2.
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Then, the following theorem can be posed:

Theorem 7 [80]. Suppose that assumptions 19–22 hold. Then,
the semilinear stochastic impulsive system (14) is completely
controllable provided:

6l1[TL2(MTl1l2 + 4Ml1l2 + 4T + 1)

+ ρ

ρ∑

k=1

βk(Ml2 + 1)] < 1.

The proof of Theorem 7 contains the nonlinear operator
described by

(Φx)(t) = S(t)x0 +

t∫

0

S(t− s)Bu(s)ds

+

t∫

0

S(t− s)F (s, x)ds+

t∫

0

S(t− s)σ(s, x)dW (s)

+

ρ∑

k=1

S(t− tk)Ik(x(t−k ))

and control given by following formula:

u(t) = B∗S∗(T − t)E
{

(ΓT
0 )−1[x(T ) − S(T )x0

−
T∫

0

S(T − s)F (s, x(s))ds −
T∫

0

S(t− s)σ(s, x)dW (s)

−
ρ∑

k=1

S(T − tk)Ik(x(t−k ))] | Ft

}
.

At the end, the authors confirm with the Banach fixed-point
theorem that the system (14) is completely controllable if the
operator Φ has a unique fixed point.

4.3. Impulsive neutral functional evolution integro-

differential system. The special case of semilinear system is
the impulsive neutral functional evolution integro-differential
system given by the form:

d

dt
[x(t) + g(t, xt)] = A(t)x(t)

+

t∫

0

G(t, s)x(s)ds + (Bu)(t)

+ f


t, xt,

t∫

0

h(t, s, xs)ds


,

t ∈ J, t 6= tk, k = 1, 2, . . . ,m,

∆x(tk) = Ik(xt−
k
), x0 = φ ∈ Bh,

(15)

where Bh is the abstract phase space which is defined:

Bh = {ψ : (−∞, 0] → X, such that for any c > 0,

ψ |[−c,0]∈ B and

0∫

∞

h(s)‖ψ‖[c,0]ds <∞}

and for any b > 0, it can define:

B = {ψ : [−b, 0] → X such that ψ(t)

is bounded and measurable}

and equip the space B with the norm:

‖ψ‖[−b,0] = sup
s∈[−b,0]

| ψ (s) |, for all ψ ∈ B.

Moreover:

• the state x(·) takes values in the Hilbert spaceX with norm
‖ · ‖;

• xt represents function xt : (−∞, 0] → X defined by
xt(θ) = x(t + θ), ∞ < θ < 0 which belongs to Bh;

• the control u(·) is given in L2(J, V );
• a Hilbert space of admissible control functions with V as

a Hilbert space and thereby J = [0, b];
• D = {(t, s) : 0 ≤ s ≤ t ≤ b};
• A(t) and G(t) are closed operators on X with dense do-

main D(A) which is independent of t;
• B is a bounded linear operator from V to X ;
• the nonlinear operators g : J×Bh → X, h : D×Bh → X

and f : J × Bh ×X → X are continuous;
• Ik : X → X, 0 = t0 < t1 < . . . < tk < tk+1 = b.

Let

PC((−∞, b], X)={x : x be a function from (−∞, b] into X

such that x(t) is continuous at t 6= tk and left continuous

at t = tk and the right limit x(t+k ) exists for k = 1, 2, ...,m}.

Note, PC((∞, b], X) is a Banach space with norm

‖x‖PC = sup
t∈[0,b]

‖x(t)‖.

Below, we introduce the definitions both of a mild solu-
tion and a reachable set of the impulsive neutral functional
evolution integro-differential system.

Definition 8 [66]. A function x(·) ∈ PC((−∞, b], X) is said
to be a mild solution of dynamical system (15) if the following
hold:

x0 = φ ∈ Bh on (−∞, 0], ∆x |t=tk
, k = 1, 2, . . . ,m;

the restriction of x(·) to the interval Jk, k = 0, 1, . . . ,m,
is continuous; for each t ∈ [0, b), the function
U(t, s)A(s)g(s, xs), s ∈ [0, t) is integrable and the impul-
sive integral equation
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x(t) = U(t, 0)[φ(0) + g(0, φ)] − g(t, xt)

−
t∫

0

U(t, s)A(s)g(s, xs)ds

+

t∫

0

U(t, s)

s∫

0

G(s, τ)x(τ)dτds

+

t∫

0

U(t, s)


Bu(s) + f


s, xs,

s∫

0

h(s, τ, xτ




 ds

+
∑

0<tk<t

U(t, tk)Ik(x(t−k )), t ∈ J,

(16)

is satisfied.

Definition 9 [66]. The reachable set for the system (15) is
described by following formula:

R(b, x0) = {xb(x0;u)(0) : u(·) ∈ L2(J, V )}
with initial value x0 = φ ∈ Bh and state value xb(x0;u) at
terminal time b corresponding to control u.

In order to examine complete controllability of (15), it
should be assumed the following hypotheses [66].

Hypothesis 23. The function g : J × Bh → X is continuous
and there exist constants Lg > 0, Ng > 0 such that:

‖g(t, φ1) − g (s, φ2) ‖ ≤ Lg [| t− s | +‖φ1 − φ2‖Bh
] ,

for every t, s ∈ J and φ1, φ2 ∈ Bh and

‖A(t)g(s1, φ)−A(t)(s2, ψ)‖ ≤ Ng [| s1 − s2 | +‖φ− ψ‖Bh
] ,

s1, s2 ∈ J, φ, ψ ∈ Bh.

Hypothesis 24. A(t) generates a strongly continuous semi-
group of a family of evolution operatorsU(t, s) and there exist
positive constantsM1 > 0,M2 > 0 such that ‖U(t, s)‖ ≤M1

and ‖G (t, s)‖ ≤M2.

Hypothesis 25. The linear operator Λ from L2(J, U) into X
defined by:

Λu =

b∫

0

U(b, s)Bu(s)ds

has an inverse operator Λ−1 defined on L2(J, U)/KerΛ and
there exists a constant KΛ > 0 such that ‖BΛ−1‖ ≤ KΛ.

Hypothesis 26. The nonlinear functions f and h satisfy the
Lipschitz condition and there exist constants FA > 0, HA > 0
such that

‖f(t, xt, ut) − f(t, yt, vt)‖ ≤ FA(‖x− y‖ + ‖u− v‖)
for x, y, u, v ∈ X , t ∈ J ,

t∫

0

‖h(t, s, xs) − h(t, s, ys)‖ds ≤ HA‖x− y‖

for x, y ∈ X, t, s ∈ J .

Hypothesis 27. Ik : X → X is continuous and there exist
constants lk such that

‖Ik(x) − Ik(y)‖ ≤ lk‖x− y‖, k = 1, 2, . . . ,m.

for each x, y ∈ X .
Using Hypothesis 25, the control can be given by follow-

ing form:

u(t) = Λ−1[x1 − U(b, 0)[φ(0) + g(0, φ)]

+ g(b, xb) +

b∫

0

U(b, s)A(s)g(s, xs)ds

−
b∫

0

U(b, s)

s∫

0

G(s, τ)x(τ)dτds

−
b∫

0

U(b, s)f



s, xs,

s∫

0

h(s, τ, xτ )dτ



 ds

−
m∑

k=1

U(b, tk)Ik(x(t−k ))](t).

(17)

Then, the nonlinear operator P from PC((−∞, b], X) to
PC((−∞, b], X) defined by

(Px)(t) = U(t, 0)[φ(0) + g(0, φ)] − g(t, xt)

−
t∫

0

U(t, s)A(s)g(s, xs)ds

+

t∫

0

U(t, s)

s∫

0

G(s, τ)x(τ)dτds

+

t∫

0

U(t, η)BΛ−1

[
x1 − U(b, 0)[φ(0) + g(0, φ)]

+ g(b, xb) +

b∫

0

U(b, s)A(s)g(s, xs)ds

−
b∫

0

U(b, s)

s∫

0

G(s, τ)x(τ)dτds

−
b∫

0

U(b, s)f


s, xs,

s∫

0

h(s, τ, xτ )dτ


 ds

−
m∑

k=1

U(b, tk)Ik(x(t−k ))

]
(η)dη

+

t∫

0

U(t, s)f



s, xs,

s∫

0

h(s, τ, xτ )dτ



 ds

+
∑

0<tk<t

U(t, tk)Ik(x(t−k )), t ∈ J,

(18)

has a fixed point x(·) when the control defined by (17) is
used.
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Definition 10 [66]. The dynamical system (15) is said to
be complete controllable on the interval J , if for every ini-
tial function φ ∈ Bh and xb ∈ X , there exists a control
u ∈ L2(J, U) such that the solution x(·) of (15) satisfies
x(b) = xb.

Theorem 8 [66]. If Hypotheses 23–27 are satisfied and

(1 + bM1KΛ)
[
Lg + bM1Ng + b2M1M2

+ bM1FA(1 +HA) +M1Σ
m
k+1lk

]
< 1,

then the dynamical system (15) is completely controllable.
The proof [66] is based on the Banach fixed-point theo-

rem.

4.4. Nonlinear stochastic neutral impulsive systems. The
notion of complete controllability for nonlinear stochastic neu-
tral impulsive systems in finite-dimensional spaces is consid-
ered in paper [64]. In that paper the authors obtained, using
the Banach fixed-point theorem, the sufficient conditions en-
suring the complete controllability of the Itô nonlinear sto-
chastic impulsive system given by the following formula:

d [x(t) − g (t, x(t))] = [A(t)x(t) +B(t)u(t)

+ f (t, x(t))]dt+ σ (t, x(t)) dW (t), t 6= tk

∆x (tk) = Ik
(
tk, x

(
t−k
))
,

t = tk, k = 1, 2, . . . , ρ,

x (t0) = x0, t0 ≥ 0,

(19)

where

• A(t), B(t) are given n× n, n×m continuous matrices;
• x(t) ∈ Rn is the vector describing the instantaneous state

of the stochastic system;
• u(t) ∈ Rm is a control input to the stochastic dynamical

system;
• g : [t0, T ] ×Rn → Rn is differentiable
• σ : [t0, T ] ×Rn → Rn×n;
• Ik : Σ → Rn, Σ ⊂ [t0, T ]× Rn,
•

∆x(t) = x
(
t+
)
− x

(
t−
)
,

where

lim
h→0+

x (t+ h) = x
(
t+
)
, lim

h→0+
x (t− h) = x

(
t−
)

and 0 = t0 < t1 < . . . < tρ < tρ+1 = T ,

Ik
(
x
(
t−k
))

=
(
I1k

(
x
(
t−k
))
, . . . , Ink

(
x
(
t−k
)))T

describes the impulsive perturbation of state x at time tk
and x

(
t−k
)

= x (tk), k = 1, 2, . . . , ρ. Last implies that the
solution of the Itô nonlinear stochastic impulsive system
(19) is left continuous at tk. The solution of the system
(19) in the interval [t0, T ] is expressed by the solution of
the following equation:

x(t) = Φ(t, t0)[x0 − g(t0, x0)] + g(t, x(t))

+

t∫

t0

Φ(t, s)B(s)u(s)ds +

t∫

t0

A(s)Φ(t, s)g(s, x(s))ds

+

t∫

t0

Φ(t, s)f(s, x(s))ds +

t∫

t0

Φ(t, s)σ(s, x(s))dW (s)

+

ρ∑

k=1

Φ(t, tk)Ik(tk, x(t
−
k )),

(20)
where Φ(t, s) is n × n transition matrix associated with
matrix A(t). Similarly as before, it is necessary to assume
some hypotheses [64].

Hypothesis 28. The functions f , g and σ satisfy the following
Lipschitz condition: there exist constants L1, L2, αk > 0 for
x, y ∈ R

n and t ∈ [t0, T ] such that

‖f(t, x) − f(t, y)‖2 + ‖σ(t, x) − σ(t, y)‖2 ≤ L1‖x− y‖2,

‖g(t, x) − g(t, y)‖2 ≤ L2‖x− y‖2,

‖Ik(t, x) − Ik(t, y)‖2 ≤ αk‖x− y‖2, k = 1, 2, . . . , ρ.

Hypothesis 29. The functions f , g and σ are continuous and
satisfy the usual linear growth condition i.e., there exist con-
stants K1, K2, βk > 0 for x ∈ R

n and t ∈ [t0, T ] such
that

‖f(t, x)‖2 + ‖σ(t, x)‖2 ≤ K1(1 + ‖x‖2),

‖g(t, x)‖2 ≤ K2(1 + ‖x‖2),

‖Ik(t, x)‖2 ≤ βk(1 + ‖x‖2), k = 1, 2, . . . , ρ.

In order to apply the Banach fixed-point theorem, the non-
linear operator P from B2 to B2 (Banach space) has to be
defined as follows:

(Px)(t) = Φ(t, t0)[x0 − g(t0, x0)] + g(t, x(t))

+

t∫

t0

Φ(t, s)B(s)u(s)ds+

t∫

t0

A(s)Φ(t, s)g(s, x(s))ds

+

t∫

t0

Φ(t, s)f(s, x(s))ds+

t∫

t0

Φ(t, s)σ(s, x(s))dW (s)

+

ρ∑

k=1

Φ(t, tk)Ik(tk, x(t
−
k ))

(21)
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with control expressed by the following formula:

u(t)=B∗Φ∗(T, t)E

{
(ΓT

t0)
−1
(
xT −Φ(T, 0)[x0−g(t0, x0)]

− g(T, x(T )) −
T∫

t0

A(s)Φ(T, s)g(s, x(s))ds

−
T∫

t0

Φ(t, s)f(s, x(s))ds −
T∫

t0

Φ(T, s)σ(s, x(s))dW (s)

−
ρ∑

k=1

Φ(T, tk)Ik(tk, x(t
−
k ))
)
|Ft

}
.

Now, we formulate theorem on complete controllability of
the Itô nonlinear stochastic impulsive system (19).

Theorem 9 [64]. Suppose that the Hypotheses 28 hold, T and
t0 are sufficiently close and operator ΓT

t0 is invertible. Then
the system (20) is completely controllable if the following
inequality:
[
9L2+9l1(1+Ml1l3)(1+l2)

(
L1+L2+ρ

ρ∑

k=1

αk

)]

· (1 + T − t0)(T − t0) < 1,

(22)

where
M = max{‖ΓT

s ‖2 : s ∈ [t0, T ]},

l1 = max{‖Φ(t, s)‖2 : t0 ≤ s < t ≤ T },

l2 = max{‖A(s)‖2 : s ∈ [t0, T ],

l3 =
1

γ
≥
∥∥∥
(
ΓT

t0

)−1
∥∥∥ for some γ > 0

is valid.
Using the Banach fixed-point theorem it can be proved

that the nonlinear operator P has a fixed point in B2 and then
the dynamical system (20) is completely controllable.

5. Examples

In this we present two examples concerning the complete con-
trollability of the dynamical systems for the wave equation and
nonlinear stochastic impulsive system.

Example 1 [78]. Let us focus on the controlled wave equa-
tion with a distributed control u(t, ·) ∈ L2(0, 1) given by the
following equation:

d

(
∂z(t, θ)

∂t

)

=

[
∂2z(t, θ)

∂2
+ u(t, θ) + f(t, z(t, θ))

]
dt+ dW (t),

z(t, 0) = z(t, 1) = 0,

z(0, θ) = f(θ),
∂

∂t
z(0, θ) = g(θ),

(23)

where W (·) is one dimensional Wiener process. According to

[47], we introduce the Hilbert space H = D(A
1/2
0 )⊕L2(0, 1)

with the inner product:

〈w, v〉 =

〈[
w1

w2

]
,

[
v1

v2

]〉

=

∞∑

n=1

{n2π2〈w1, en〉〈en, v1〉 + 〈w2, en〉〈en, vs〉},

where en(θ) =
√

2 sin(nπθ).

Fixing

x =




z
∂z

∂t



, x(0) =

[
f

g

]
,

B =

[
0

I

]
, D =

[
0

I

]
,

the posed problem can be rewritten as follows:

dx(t) = (Ax(t) +Bu(t) + f(t, x(t)) dt+DdW,

x(0) =

[
f

g

]
,

where

A =

[
0 I

−A0 0

]
, A0h = −

(
d2

dθ2

)
h

with domain given by a formula:

D(A0) = {h ∈ L2(0, 1) | h,
(
d

dθ

)
h are absolutely

continuous

(
d2

dθ2

)
h ∈ L2(0, 1) and h(0) = 0 = h(1)}.

Moreover, A is the infinitesimal generator of a contraction
semigroup S(t) on X expressed by:

S(t)

[
x1

x2

]

=

∞∑

n=1

[
cos(nπt) (nπ)−1 sin(nπt)

−nπ sin(nπt) cos(nπt)

][
xn

1

xn
2

]
en.

It should be pointed out, if Hypothesis 14 holds and the linear
system associated with (23) is completely controllable on all
[0, t], t > 0 then the system (23) is completely controllable
on [0, T ] provided that f satisfies Hypotheses 11 and 12.

Example 2 [64]. Let us consider the nonlinear stochastic im-
pulsive system described by the following equations:
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d
[
x1 −

1

2
x2

]

= [x1 + 1.4u1 + 0.8u2 + x1 cos(x2) − 2x2]dt

+2t2x1e
−tdW1(t),

d
[
x2 − cos(x1)

]

= [x2 − 0.6u1 + u2 + x2 sin(x1) + 3x1]dt

+x2e
−tdW2(t),[

∆x1(tk)

∆x2(tk)

]
= e−0.5k

[
0.12 0.5

−0.6 0.15

][
x1(t

−
k )

x2(t
−
k )

]
,

t = tk, k = 1, 2, . . . , ρ, x(0) = x0,

(24)

where tk = tk−1 + 0.2.
The above-mentioned dynamical system can be expressed in
the following form:

A(t) =

[
1 0

0 1

]
, B(t) =

[
1.4 0.8

−0.6 1

]
,

Φ(t, 0) =

[
et 0

0 et

]
, g(t, x(t)) =

[
1
2x2(t)

cos(x1(t))

]
,

f(t, x(t)) =

[
x1(t) cos(x2(t)) − 2x2(t)

x2(t) sin(x1(t)) + 3x1(t)

]
,

σ(t, x(t)) =

[
2t2x1(t)e

−t 0

0 x2(t)e
−t

]

with assumption that x(t) = (x1(t), x2(t)) ∈ R
2, t0 = 0.

Furthermore, the controllability matrix given by the form:

ΓT
0 =

T∫

0

Φ(T, s)B(s)B∗(s)Φ∗(T, s)ds

=

T∫

0

[[
e(T−s) 0

0 e(T−s)

]
·
[

1.4 0.8

−0.6 1

]

·
[

1.4 −0.6

0.8 1

]
·
[
e(T−s) 0

0 e(T−s)

] ]
ds

=

[
1.3e2T − 1.3 0.02 − 0.02e2T

0.02 − 0.02e2T 0.68e2T − 0.68

]

is invertible if T > 0.
Moreover, it should be noted that all hypotheses are satisfied,
which implies that the system given by Eq. (24) is completely
controllable on [0, T ].

6. Conclusions

The article has described the complete controllability of dif-
ferent types of dynamical systems in an infinite-dimensional
space. In addition, the paper presents the results of the se-
lected works (and the best works by authors’ opinion) from

the scope of the study complete controllability of nonlinear
dynamical systems.

The sufficient conditions of complete controllability were
derived using the Banach fixed-point theorem. In each consid-
ered kind of a dynamical system the appropriate hypotheses
were used, necessary to prove the complete controllability us-
ing a nonlinear operator which has a fixed point.

Moreover, controllability problems for different types of
dynamical systems require the application of various mathe-
matical concepts and methods taken directly from differential
geometry, functional analysis, topology, matrix analysis and
theory of ordinary and partial differential equations, and theo-
ry of difference equations. It is worth to notice, that there are
many open problems for controllability concepts for special
types of dynamical systems. For example, to this day (accord-
ing to the best authors’ knowledge), the most researches on
controllability problems have been mainly concerned with un-
constrained controls and without delays in the state variables
or in the controls.
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