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Dynamic systems with a finite degrees of freedom
number

RADOSŁAW ŁADZIŃSKI

Taking as a starting point the law of conservation of the total energy of the system, and
introducing two basic state functions - the Lagrangian and the Rayleigh function, the general
form of the equation of motion for any dynamic system with a finite number of degrees of
freedom is derived. The theory is illustrated by considering the rotating - type electromechanical
energy converter with six degrees of freedom being the model of all essentially important types
of DC and AC machines, including rotating power amplifiers, induction - and synchronous type
motors - all of them discussed from both, the steady-state and the transient point of view. In the
next part of the paper there is described a simple electric circuit with its model characterized
by the holonomic constraints of the velocity-type. Finally, there is presented the kinematics and
dynamics of the interesting mechanical system - the gyroscope placed on the rotating Earth.
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1. Principles

Let us start by recalling the law of conservation of energy

d
dt
(T +U) = P+

∂
∂t
(T +U) (1)

where:

T denotes the kinetic energy of the system,

U is the potential energy of the system and

P is the power developed by non-potential forces.

Eq. (1) states that if the system is free from non-potential forces and its kinetic and
potential energy do not depend explicitly on time, then during the motion the total
energy of the system will be conserved at a constant, initially gained level.

Introducing the following n-dimensional vectors:
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q – a vector of generalized coordinates,

q̇ – a vector of generalized velocities,

p – a vector of generalized momentums,

ṗ – a vector of generalized inertia forces,

f – a vector of generalized potential forces,

f̄ – a vector of generalized non-potential forces,

the quantities occurring in (1) take the form

T =

t∫
t0

q̇T ṗdt =

{ ∫ p
p0

q̇T (p,q, t)d p := T (p,q, t)
q̇T p−

∫ q̇
0 dq̇T p(q̇,q, t) := q̇T p−T ∗(q̇,q, t)

(2)

U =

t∫
τ0

q̇T f dt =

q∫
q0

dqT f (q, t) := U(q, t) (3)

P = q̇T f̄ = q̇T f̄ (q̇,q, t) (4)

where t0 (̸= τ0) is such that q̇(t0) = 0 and the Jacobian matrices of the vector functions
q̇(p) and f (q) satisfies the condition of symmetry

∂q̇
∂p

=

(
∂q̇
∂p

)T

,
∂ f
∂q

=

(
∂ f
∂q

)T

(5)

and q̇(p) is invertible, i.e. q̇ = q̇(p,q, t) ⇒ p = p(q̇,q, t). Thus, denoting

T (p,q, t)+U(q, t) := H(p,q, t) (6)

T ∗(q̇,q, t)−U(q, t) := L(q̇,q, t) (7)

we get
H(p,q, t) = q̇T p−L(q̇,q, t). (8)

Differentiating both sides of (8) successively with respect to p, q, t and q̇, we obtain in
addition the following formulae

∂H
∂p

= q̇T ,
∂H
∂q

=−∂L
∂q

,
∂H
∂t

=−∂L
∂t

, p =
∂L
∂q̇T . (9)

According to the law of conservation of energy, (1) can be written in the form

D
(

q̇T ∂L
∂q̇T −L

)
= q̇T f̄ (q̇,q, t)− ∂L

∂t
(10)
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where d
dt is replaced by the symbol D.

The function L(q̇,q, t) defined by (7) plays a most important role in dynamics and is
called the Lagrangian of the system. Its first term T ∗(q̇,q, t) defined by (2) is called the
kinetic coenergy of the system. The total energy, H = T +U , expressed as a function of
p, q and t is known as the Hamiltonian of the system.

Now, to derive the equation of motion, let us proceed as follows:

DL = q̈T ∂L
∂q̇T + q̇T ∂L

∂qT +
∂L
∂t

=

[
q̈T ∂L

∂q̇T + q̇T D
(

∂L
∂q̇T

)]
− q̇T D

(
∂L
∂q̇T

)
+ q̇T ∂L

∂qT +
∂L
∂t

(11)

= D
(

q̇T ∂L
∂q̇T

)
− q̇T

[
D
(

∂L
∂q̇T

)
− ∂L

∂qT

]
+

∂L
∂t

.

Writing the last equation in the equivalent form, we have

D
(

q̇T ∂L
∂q̇T −L

)
= q̇T

[
D
(

∂L
∂q̇T

)
− ∂L

∂qT

]
− ∂L

∂t
(12)

= q̇T
[

D
(

∂L
∂q̇T

)
− ∂L

∂qT − f̄ (q̇,q, t)
]
+ q̇T f̄ (q̇,q, t)− ∂L

∂t
.

Comparing (10) with (12) and taking into account that they must hold for any q̇ we draw
a conclusion that

D
(

∂L
∂q̇T

)
− ∂L

∂qT = f̄ (q̇,q, t). (13)

Since the terms occurring in the last equation represent the generalized forces, (13) de-
scribes a dynamic equilibrium of all of them, and as such, is the sought equation of
motion 1.

Further, it will be convenient to extract from the vector of generalized non-potential
forces f̄ (q̇,q, t) such a vector, denoted here by − f̂ (q̇,q, t), which, by the definition, sat-
isfies the following condition of symmetry

∂ f̂
∂q̇

=

(
∂ f̂
∂q̇

)T

. (14)

Denoting the remaining vector by f̃ (q̇,q, t), we have

f̄ (q̇,q, t) = f̃ (q̇,q, t)− f̂ (q̇,q, t). (15)

1Observe that by applying (9), (13) can be replaced by the equivalent system q̇ = ∂H
∂pT ,

ṗ =− ∂H
∂qT + f̄ [q̇(p,q, t),q, t] with the state described by the pair q, p.
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Now, on the basis of (14), we can define the function

R(q̇,q, t) =

q̇∫
0

dq̇T f̂ (q̇,q, t) (16)

and observe that
∂R
∂q̇T = f̂ (q̇,q, t). (17)

In result, the equation of motion can be written finally in the form

D
(

∂L
∂q̇T

)
− ∂L

∂qT +
∂R
∂q̇T = f̃ (q̇,q, t). (18)

The function R(q̇,q, t) is a new state function called the Rayleigh function of the system.
Closing let us notice that, to the contrary of U , which is just a function of the vari-

ables q, t, the R-funcion, similarly to T ∗-function, is basically dependent on the velocity
vector q̇. In a simple but rather typical situation, f̂ is a linear function of q̇

f̂ = Bq̇−u(t) (19)

where its homogeneous part, Bq̇ with B = BT , represents the vector of dissipative forces
occurring in the system as a result of the viscous friction or some equivalent effect, and
u(t) represents a vector of the applied external forces. In such case R takes a form

R =
1
2

q̇T Bq̇− q̇T u(t) (20)

being the difference of a quadratic and a linear form in q̇; the first represents the half of
the power dissipated in the system, and the second – the power developed by all external
forces.

Finally, let us recall that the equation of motion (18) has been derived under the as-
sumption that a dimensionality of the vector q is equal to the number n of degrees of
freedom of the system. There are, however, some problems in dynamics, where it is ei-
ther necessary or at least useful to describe the system by the vector q of dimensionality
bigger than n, say (n+m). In such case the components of vector q are no longer inde-
pendent – they are tied up by m equations of constraints which generally are reducible
to the form

G(q, t)q̇+h(q, t) = 0

{
G ∈ ℜm×(n+m)

h ∈ ℜm (21)

linear in q̇. In particular, for the so-called holonomic systems the constraints formulated
originally as

e(q, t) = 0, e ∈ ℜm (22)
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after differentiation D[e(q, t)] = 0 are reduced to

∂e(q, t)
∂q

q̇+
∂e(q, t)

∂t
= 0 (23)

i.e. to a special case of (21).
The effective method of dealing with holonomic [1] and non-holonomic systems,

provided the last one is confined to the case [3]:

G(q, t)≡ G(q), h(q, t)≡ 0

is to modify the original Rayleigh function given by (16) to the form

R =

q̇∫
0

dq̇T f̂ (q̇,q, t)− [G(q, t)q̇+h(q, t)]T λ (24)

and, finally, by removing the term independent of q̇, to the following one

R =

q̇∫
0

dq̇T [ f̂ (q̇,q, t)−GT (q, t)λ] (25)

where λ ∈ ℜm is the Lagrange multipliers’ vector containing m undetermined functions
of time.

The above procedure enables us to regard all (n+m) components of the vector q
as entirely independent and, in consequence, to apply the equation of motion in its un-
changed form given by (18), which together with the equation of constraints in its orig-
inal form (21) or (22) make a complete system of (n + 2m) scalar equations for the
unknown functions of time: (n+m) components of q and m components of λ. So, for R
given by (25), the equation of motion (18) takes a form

D
(

∂L
∂q̇T

)
− ∂L

∂qT + f̂ (q̇,q, t)−GT (q, t)λ = f̃ (q̇,q, t)

and finally

D
(

∂L
∂q̇T

)
− ∂L

∂qT = f̄ (q̇,q, t)+GT (q, t)λ. (26)

Let us now return to the law of conservation of energy (10), and by applying (15)
and (17), let us rewrite it in the form

D
(

q̇T ∂L
∂q̇T −L

)
= q̇T

[
f̃ (q̇,q, t)− ∂R

∂q̇T

]
− ∂L

∂t
. (27)
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Assuming next that R is given by (25), the last equation, similarly to (18), holds for any
system with constraints of the type (21). In consequence, we get

D
(

q̇T ∂L
∂q̇T −L

)
= q̇T [ f̄ (q̇,q, t)+GT (q, t)λ

]
− ∂L

∂t

and

D
(

q̇T ∂L
∂q̇T −L

)
= q̇T f̄ (q̇,q, t)− ∂L

∂t
−hT (q, t)λ. (28)

Comparison of (13) with (26) and (10) with (28), shows how the constraints modify
the equation of motion of the system and the law of conservation of its energy.

2. Example 1: The rotating-type electromechanical energy converter

To illustrate the theory, let us consider the general model of the rotating-type elec-
tromechanical energy converter which is characterized by p pairs of salient poles having
for each pair two orthogonal stator windings with the number of turns equal to Na and
Nb, respectively, and three, symmetrically distributed rotor windings α, β and γ, each
with the same number of turns equal to N, as shown in Fig. 1. Here pφ denotes the
so-called electrical angle of the rotor’s position, where φ is the angle of its geometric
position. The current and the flux linkage of each coil is denoted by the q̇ and ψ, re-
spectively, with the subscript a or b indicating the stator’s coil, and the subscript α, β or
γ indicating the rotor’s coil. The remaining symbols are standard and their meaning is
clear from context.

The power of the magnetic field of three rotor’s coils is given by

p = q̇αψ̇α + q̇βψ̇β + q̇γψ̇γ (29)

or writing the last expression in the vector-matrix notation, we get

p =

 q̇α

q̇β

q̇γ


T  ψ̇α

ψ̇β

ψ̇γ

 . (30)

Introducing next the following two linear orthonormal transformations of the current and
voltage vectors [2] q̇α

q̇β

q̇γ

 ,
 uα

uβ

uγ

 ,
 ψ̇α

ψ̇β

ψ̇γ

= H


 q̇A

q̇B

q̇0

 ,
 uA

uB

u0

 ,
 ψ̇A

ψ̇B

ψ̇0


 , (31)
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Figure 1. Model of the rotating - type electromechanical energy converter.

 ψ̇A

ψ̇B

ψ̇0

 ,
 q̇A

q̇B

q̇0


 uA

uB

u0

= G(φ)


 ψ̇d

ψ̇q

ψ̇0

 ,
 q̇d

q̇q

q̇0


 ud

uq

u0


 (32)

where

H =

√
2
3

 1 0
√

2
2

−1
2

√
3

2

√
2

2

−1
2 −

√
3

2

√
2

2

 , H−1 = HT (33)

G(φ) =

 cos pφ sin pφ 0
−sin pφ cos pφ 0

0 0 1

 , G−1(φ) = GT (φ) (34)

expression (30) can be modified to

p =

 q̇A

q̇B

q̇0


T  ψ̇A

ψ̇B

ψ̇0

=

 q̇A

q̇B

q̇0


T

G(φ)

 ψ̇d

ψ̇q

ψ̇0

 . (35)
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So, the time integral

TROT =

t∫
t0

 q̇A

q̇B

q̇0


T  cos pφ sin pφ 0

−sin pφ cos pφ 0
0 0 1


 ψ̇d

ψ̇q

ψ̇0

dt (36)

=

ψd∫
ψd(t0)

(q̇A cos pφ− q̇B sin pφ)dψd +

ψq∫
ψq(t0)

(q̇A sin pφ+ q̇B cos pφ)dψq +

ψ0∫
ψ0(t0)

q̇0dψ0

represents the magnetic energy stored within the three rotor’s windings.
Let us observe that by treating the current q̇ as a generalized velocity and the flux

linkage ψ as a generalized momentum, expression (36) represents the kinetic energy of
the considered subsystem. Thus, according to (2), the corresponding coenergy takes a
form

T ∗
ROT =

q̇A cos pφ−q̇B sin pφ∫
0

ψdd (q̇A cos pφ− q̇B sin pφ)

(37)

+

q̇A sin pφ+q̇B cos pφ∫
0

ψqd (q̇A sin pφ+ q̇B cos pφ)+
q̇0∫

0

ψ0dq̇0.

Adding to it the kinetic coenergy (=energy) of the mechanical subsystem (1
2 Jφ̇2) as well

as two simple expressions describing the magnetic coenergy related with the stator coils,
and taking into account that the discussed model is free from any potential energy, the
sought Lagrangian takes a form

L(φ, φ̇, q̇a, q̇b, q̇A, q̇B, q̇0) =
1
2

Jφ̇2 +

q̇a∫
0

ψadq̇a +

q̇b∫
0

ψbdq̇b +

q̇0∫
0

ψ0dq̇0

+

q̇A cos pφ−q̇B sin pφ∫
0

ψdd(q̇A cos pφ− q̇B sin pφ) (38)

+

q̇A sin pφ+q̇B cos pφ∫
0

ψqd(q̇A sin pφ+ q̇B cos pφ)

where each flux linkage is a given function of the currents.
Assuming next that, besides J – the moment of inertia of the rotor, the remaining

mechanical part of the model is characterized by B – the parameter of its viscous friction
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and f (t) – the external torque applied to the rotor, and that its electrical part is character-
ized by the rotor’s variables transformed according to (31), the Rayleigh function takes
a form (cf. (20))

R (φ̇, q̇a, q̇b, q̇A, q̇B, q̇0, t) =
1
2
[
Bφ̇2 +Raq̇2

a +Rbq̇2
b +R

(
q̇2

A + q̇2
B + q̇2

0
)]

(39)
− [φ̇ f (t)+ q̇aua(t)+ q̇bub(t)+ q̇AuA(t)+ q̇BuB(t)+ q̇0u0(t)] .

So, introducing L and R given by (38) and (39) into the equation of motion (18), and
taking into account that f̃ q̇,q, t) ≡ 0 and there are no constraints imposed on the coor-
dinates and velocities, we get the model which represents the dynamic system with six
degrees of freedom described by the following set of equations

Dψa +Raq̇a = ua(t) (40)

Dψb +Rbq̇b = ub(t) (41)[
cos pφ sin pφ
−sin pφ cos pφ

][
Dψd

Dψq

]
− pφ̇

[
sin pφ −cos pφ
cos pφ sin pφ

][
ψd

ψq

]
+

+R

[
q̇A

q̇B

]
=

[
uA(t)
uB(t)

] (42)
(43)

Dψ0 +Rq̇0 = u0(t) (44)

Jφ̈+Bφ̇− p[ψq(q̇A cos pφ− q̇B sin pφ)−ψd(q̇A sin pφ+ q̇B cos pφ)] = f (t) (45)

and which after pre-multiplying both sides of its two equations (42) and (43) by the

orthonormal matrix

[
cos pφ −sin pφ
sin pφ cos pφ

]
and introducing the notation q̇ := i and φ̇ :=

Ω, we obtain in the light of (32), the following final result

Dψa +Raia = ua(t) (46)

Dψb +Rbib = ub(t) (47)

Dψd +Rid + pψqΩ = ud(t) (48)

Dψq +Riq − pψdΩ = uq(t) (49)

Dψ0 +Ri0 = u0(t) (50)

(JD+B)Ω− p(ψqid −ψd iq) = f (t) (51)

where the flux linkages are monotonically increasing functions of their arguments

ψa = m fad (mia + id)+ fa(ia)
ψd = fad (mia + id)+ fd(id)

}
∂ψa

∂id
=m

∂ fad

∂id
=

∂ψd

∂ia

(52)
(53)
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ψb = n fbq (nib + iq)+ fb(ib)
ψq = fbq (nib + iq)+ fq(iq)

}
∂ψb

∂iq
= n

∂ fbq

∂iq
=

∂ψq

∂ib

(54)
(55)

ψ0 = f0(i0) (56)

with
m :=

Na

N
, n :=

Nb

N
. (57)

The obtained system of (46)-(57) together with (31)-(34) forms a basis for studying the
static and dynamic properties of all, essentially important, types of electrical machines
with their magnetic characteristics both linear and nonlinear. For the linear case, i.e.
when (52)-(56) are reduced to

ψa

ψb

ψd

ψq

ψ0

=


La 0 Ma 0 0
0 Lb 0 Mb 0

Ma 0 Ld 0 0
0 Mb 0 Lq 0
0 0 0 0 L0




ia
ib
id
iq
i0

 . (58)

Equations (46)-(51) take a form
LaD+Ra 0 MaD 0 0

0 LbD+Rb 0 MbD 0
MaD pMbΩ LdD+R pLqΩ 0

−pMaΩ MbD −pLdΩ LqD+R 0
0 0 0 0 L0D+R




ia
ib
id
iq
i0

=


ua(t)
ub(t)
ud(t)
uq(t)
u0(t)

 (59)

(60)

(JD+B)Ω− p [(Mbib +Lqiq) id − (Maia +Ld id) iq] = f (t). (61)

This means that for the steady-state operation of the machine, i.e. for

Ω = const. (62)

the electrical part of the model is described by the system of four linear differential
equations with constant coefficients and with four unknown functions of time, two stator
currents ia and ib and two rotor currents: id colinear with ia and iq colinear with ib,
while the fifth equation with unknown i0 is completely independent from the remaining
equations, and where L0 denotes the leakage inductance of the rotor’s coil.

In (61), which evolves from (51) and which physically expresses the equilibrium
of all torques acting on the rotor, besides the standard terms, there is a term of special
importance denoted by the symbol

fe := p(ψqid −ψd iq) = p [(Mbib +Lqiq) id − (Maia +Ld id) iq] (63)
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which represents the mechanical torque produced by the interaction of the stator’s and
rotor’s currents.

Let us observe that if we are treating the voltages ud(t) and uq(t) not as a result of
the formal transformation defined by (31) and (32) but just as the DC voltages applied
directly to the pair of brushes, being in contact with the commutator, and located at the
rotor’s d and q axes colinear with the stator’s a and b axes, respectively (see Fig. 1), then
the system of (59), (61) describes directly the wide spectrum of the ideal DC machines –
both motors and generators. Let us also note that for DC machines the voltage u0(t)≡ 0
and, in consequence, the current i0 = 0, too.

At this point, the following remark is necessary. Comparison of the real DC machine
with its mathematical description represented by (59) and (61) indicates that the model
is in full agreement with the origin, provided the inductances pMa, pMb, pLd , pLq and
pMq1 (see Fig. 2) are replaced by the more precise and experimentally proved quantities
known as the speed coefficients Ka, Kb, Kd , Kq and K1. So, for the real DC machine (59)
and (61) should be modified to the form

LaD+Ra 0 MaD 0
0 LbD+Rb 0 MbD

MaD KbΩ LdD+R KqΩ
−KaΩ MbD −KdΩ LqD+R




ia
ib
id
iq

=


ua(t)
ub(t)
ud(t)
uq(t)

 (64)

(JD+B)Ω− [(Kbib +Kqiq) id − (Kaia +Kdid) iq] = f (t). (65)

As an example of this type of machines, let us consider at first the simplest situation
when the stator’s circuit "a" does not exist and the rotor’s circuit "q" is open, then the
model described by (64), (65) reduces to the form[

LbD+Rb 0
KbΩ(t) LdD+R

] [
ib
id

]
=

[
ub(t)
ud(t)

]
(66)

(JD+B)Ω(t)−Kbibid = f (t) (67)

which for Ω(t)=Ω= const., uin = ub(t), uout = ud(t) and iout =−id describes the single-
stage rotating power amplifier, and for ib = Ib = const., uin = ud(t), Ωout = Ω(t) and
f (t)< 0 – the armature controlled DC motor. Both of them connected by their armature
circuits form one of the most popular driving system with its input uin(t) = ub(t) being
the voltage applied to the stator’s coil of the generator and its output Ωout(t) – the angular
velocity of the motor.

To describe more advanced DC machines, for example the rotating power amplifier
known as the amplidyne with its diagram shown in Fig. 2, let us at first modify (58) to



218 R. ŁADZIŃSKI

Figure 2. Schematic diagram of the amplidyne.

the form
ψd

ψq

ψ1

ψb

=


Ld 0 0 0
0 Lq Mq1 Mqb

0 Mq1 L1 M1b

0 Mqb M1b Lb




id
iq =−i

i
ib

=


Ld 0 0
0 Mq1 −Lq Mqb

0 L1 −Mq1 M1b

0 M1b −Mqb Lb


 id

i
ib

 (68)

and taking Ω(t) =−Ω = const., let us observe (Fig. 2) that

ub (t) = uin, ud (t) = 0, uq (t) = uout + ψ̇1 +R1i. (69)

So, applying (47)-(49) and (69), we get

Dψb +Rbib = uin (70)

Dψd +Rid + pψqΩ = 0 (71)

Dψq −Ri− pψdΩ = uout +Dψ1 +R1i. (72)

Representing next the four flux linkages occurring in (70)-(72) by the right-hand side of
(68) and replacing the inductances (multiplied by p) by the corresponding speed coeffi-
cients and, finally, writing the result in specially convenient matrix form, we obtain1 KdΩ (M1b−Mqb)D
0 LdD+R kbΩ
0 0 LbD+Rb

=
uout

id
ib


0 (L1−2Mq1+Lq)D+(R1+R)

0 (K1 −Kq)Ω
1 (M1b −Mqb)D

[uin

−i

]
(73)

From the third equation of the system (73) it follows that to eliminate the reaction of the
output circuit on its input it is sufficient to connect in series with the output terminals
the additional coil denoted by the subscript "1" which is colinear with the b-axis of the
model and which satisfies the condition

M1b = Mqb. (74)
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In result, the transfer function of the amplidyne denoted by T (s) and its output
impedance denoted by Z(s) are, as follows from (73), (74), of the form

uout (s) =
KdKbΩ2

(Lds+R)(Lbs+Rb)
uin (s)+

(75)

−
[
(L1 −2Mq1 +Lq)s+(R1 +R)−

(K1 −Kq)KdΩ2

Lds+R

]
i(s) := T (s)uin (s)−Z (s) i(s).

Let us observe that the voltage gain is proportional to the square of the angular velocity
- the property being a result of placing two amplifying stages in one unit - first from b to
d, and the second from d to q.

Now, let us turn our attention to AC machines. To be in agreement with practice,
let us interchange the role of the stator and the rotor, i.e. the three-phase winding let us
identify with the stator and the two-phase winding with the rotor. It means that in all
equations applied up to (61) the angle φ must be replaced by −φ and, in consequence,
φ̇ = Ω by φ̇ = −Ω. Let us further remind that any asymmetrical three-phase system of
voltages and currents is equivalent to the superposition of the following three:

• The symmetrical three-phase positive system, i.e. producing torque in the expected
direction,

• the symmetrical three-phase negative system, i.e. producing torque in opposite
direction,

• the one-phase system producing no torque.

Since the action of the first and the second is similar, but just opposite, let us confine to
the first and the third. So, if the vector of input voltages applied to the three stator’s coils
is of the form uα

uβ

uγ

=

√
2
3
|U |

 cosωt
cos
(
ωt − 2π

3

)
cos
(
ωt + 2π

3

)
+ 1√

3
U0 sin(ωt + ε)

 1
1
1

 (76)

then, according to formula (31), the vector [uA,uB,u0]
T is given by uA

uB

u0

= |U |

 cosωt
sinωt

0

+U0 sin(ωt + ε)

 0
0
1

 (77)

and, finally, by applying the transformation (32) with φ replaced by −φ, we get ud

uq

u0

= |U |

 cos(ωt − pφ)
sin(ωt − pφ)

0

+U0 sin(ωt + ε)

 0
0
1

 . (78)
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At first, let us observe that the unbalanced three-phase system produces the voltage of
the form u0 =U0 sin(ωt+ε) which has no effect on the rotor’s torque but, due to a rather
small value of the leakage inductance L0 results in a relatively big value of the current i0
(cf. (60)) and, in consequence, in dangerous heating of the stator’s windings.

Now, let us concentrate on the steady-state operation of the discussed model, i.e.
when φ̇ = Ω = const., so that

pφ = pΩt −δ
(79)

ωt − pφ =

(
1− pΩ

ω

)
ωt +δ := sωt +δ

s = 1− pΩ
ω

. (80)

Parameters δ and s are so-called torque angle and the slip, respectively. In connection
with the last notion, we must distinguish between two types of AC machines or, more
precisely, two types of AC motors:

1. induction type motors with both rotor coils short-circuited leading to s ∈ (0,1),

2. synchronous type motors with one rotor coil short-circuited and the other supplied
from the DC voltage source forcing s = 0.

For the first type, the following constraints are typical:

Ra = Rb La = Lq ua(t) = 0
La = Lb Ma = Mb ub(t) = 0

(81)

and the voltages ud(t) and uq(t) given by (78) will be presented in their exponential form[
ud(t)
uq(t)

]
= Re

{[
1
− j

]
Ue jsωt

}
with U := |U |e jδ (82)

so that the steady-state currents will be sought in the exponential form too
ia(t)
ib(t)
id(t)
iq(t)

= Re




Ia

Ib

Id

Iq

e jsωt

 (83)

where their complex amplitudes are unknown.
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Introducing this trial vector (83) into (59) with Ω replaced by −Ω and representing
in its right-hand side ua(t) and ub(t) by zeroes, and ud(t), uq(t) by expression (82), we
get

Ra + jsXa 0 jsXad 0
0 Ra + jsXa 0 jsXad

jsXad −(1− s)Xad R+ jsXd −(1− s)Xd

(1− s)Xad jsXad (1− s)Xd R+ jsXd




Ia

Ib

Id

Iq

=


0
0
1
− j

U (84)

where
Xa = Xb = ωLa, Xd = Xq = ωLd , Xad = Xbq = ωMa. (85)

Then, after pre-multiplying the current and the voltage vector of the last equation by the
unitary 4×4 matrix

T := blockdiag

{
1√
2

[
1 − j
1 j

]}
(86)

and at the same time performing the unitary transformation on the coefficient matrix,
i.e. pre-multiplying it by T and post-multiplying by T−1 = T̄ T := T ∗ we obtain the
equivalent system of equations in the form

Ra + jsXa 0 jsXad 0
0 Ra + jsXa 0 jsXad

j(2s−1)Xad 0 R+ j(2s−1)Xd 0
0 jXad 0 R+ jXd




1√
2


Ia − jIb

Ia + jIb

Id − jIq

Id + jIq




=
√

2U


0
0
0
1

 . (87)

Looking at it, we see at once that [
Ia − jIb

Id − jIq

]
= 0 (88)

and from the remaining two equations we get the following result[
Ia + jIb

Id + jIq

]
=

2U
∆

[
− jXads

Ra + jXas

]
(89)
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where ∆ = RaR−
(
XaXd −X2

ad

)
s+ j(RaXd +RXas). So, we have

Ia

Ib

Id

Iq

=
U
∆


− jXads
−Xads

Ra + jXas
− j(Ra + jXas)

 (90)

Next, let us find the torque produced by the discussed model, or strictly speaking, its
average value denoted by Fe. On the basis of (63), (81) and (85), we can write

Fe = (pXad/2ω)Re(ĪbId − ĪaIq) (91)

and, finally, by replacing the currents by the right-hand side of (90), we get

Fe =
−
(p/ω)RaX2

ad |U |2s[
RaR−

(
XaXd −X2

ad

)
s
]2
+(RaXd +RXas)2

(92)

i.e the expression describing the torque v. the slip (or Ω) – the fundamental characteristic
of the induction type motor.

Let us now return to the torque equation in its general form (51). As is well known
from practice, the transient processes for which the responsibility is taken by the me-
chanical part of the motor are much slower than those caused by its electrical part. In
result, in (51) we can replace the instantaneous torque fe, cf. (63), by its average value
Fe. So, it means that for the induction type motors (51) with Ω replaced by (−Ω) can be
simplified to the form

(JD+B)(−Ω)−Fe (Ω) = FL (93)

where Fe(Ω) is given by (92) with s replaced by the right-hand side of (80) and, for
uniqueness, it is assumed that the external torque f (t) = FL = const..

Writing the last equation as

JΩ =− [Fe (Ω)+BΩ]−FL (94)

and taking the typical graph of the function Fe(Ω), the dynamics of the motor is demon-
strated by the so-called phase trajectory shown in Fig. 3, where Ω̄ is for the given load
FL the asymptotically stable (indicated by arrows) angular velocity of the motor.

Finally, let us turn our attention to the synchronous type motors characterized by
the slip s = 0 and, additionally, by the negligibly small resistance of their stator’s coils
(R≈ 0) and by the saliency of the rotor’s poles, so that their parameters do not satisfy the
constraints formulated earlier in (81). Moreover, one of the two rotor’s coils is supplied
from the DC voltage source, say ub(t) = E, while the other remains short-circuited. The
formulae (82) and (83) are still valid under the condition that s is equated to zero. In
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Figure 3. Induction type motor – the phase trajectory.

consequence, (59) with Ω replaced by (−Ω) takes a form
Ra 0 0 0
0 Rb 0 0
0 −Xbq 0 −Xq

Xad 0 Xd 0




Ia

Ib

Id

Iq




0
E

|U |cosδ
|U |sinδ

 (95)

from which we get at once[
Ia

Ib

]
=

[
0

E/Rb

]
,

[
Id

Iq

]
=

[
(1/Xd) |U |sinδ

−(1/Xq) |U |cosδ−
(
Xbq/Xq

)
(E/Rb)

]
(96)

and introducing this result to the modified form of (63)

Fe =
(p/ω)[(XbqIb +XqIq

)
Id − (XadIa +XdId) Iq

]
(97)

we obtain finally

Fe =−
(p/ω)[Xbq

Xq

E|U |
Rb

sinδ+
1
2

Xd −Xq

XdXq
|U |2 sin2δ

]
:=−(Asinδ+A0 sin2δ) (98)

i.e. the fundamental characteristic linking the torque with its angle.
Next, let us concentrate on dynamic properties of the synchronous type motor assum-

ing that its slip s is equal to zero not only in the steady-state but as well in its transient
operation. In consequence, the torque angle δ introduced in (79) as a fixed parameter
should be treated now as a time-dependent variable. So, we have

ωt − pφ = δ(t) (99)
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and
φ =

(
ω
p

)
t −
(

1
p

)
δ(t)

φ̇ = ω
p −
(

1
p

)
δ̇(t)

φ̈ =−
(

1
p

)
δ̈(t)

 (100)

It means that for the synchronous type motor (51) with Ω replaced by (−φ̇), i.e.

J (−φ̈)+B(−φ̇)−Fe = f (t) (101)

is, in the light of (98) and (100), of the form(
1
p

)(
Jδ̈+Bδ̇

)
+Asinδ+A0 sin2δ = B

(
ω
p

)
+ f (t) (102)

representing mathematically the nonlinear differential equation of the second order
with δ(t) being its unknown function of time. Assuming next that the external torque
f (t) = FL = const. and the frictional torque Bδ̇ is negligibly small in comparison with
the remaining components of (102), we get(

J
pA

)
δ̈+ sinδ+

(
A0

A

)
sin2δ =

Bω
pA

+
FL

A
(103)

and finally, after introducing the new scale for the time, and defining the two new pa-
rameters A and F :

t :=

√
J

pA
τ,

A0

A
:= A ,

Bω
pA

+
FL

A
:= F (104)

we obtain the equation of the form

d2δ
dτ2 + sinδ+A sin2δ = F . (105)

Integrating all terms of the last equation with respect to δ, we get2

1
2

δ̇2 −
(

cosδ+
1
2

A cos2δ+F δ
)
= E , where now δ̇ :=

dδ
dτ

. (106)

Identifying next 1
2 δ̇2 := T as the kinetic energy of the system and the term

−
(

cosδ+
1
2

A cos2δ+F δ
)

:= U (107)

2 ∫ d2δ
dτ2 dδ = ∫

[
d
dτ

(
dδ
dτ

)](
dδ
dτ

)
dτ = ∫

(
dδ
dτ

)
d
(

dδ
dτ

)
= 1

2

(
dδ
dτ

)2
:= 1

2 δ̇2
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as its potential energy, (106) expresses in mathematical language the law of conservation
of energy. The graph δ̇ as a function of δ drawn for various values of the total energy
E shown in Fig. 4 is known as the phase portrait of the system. Here, it is necessary to
point out that the equilibria indicated in Fig. 4 as the centers around which there exist un-
damped oscillations are, in fact, asymptotically stable focuses – the result of unavoidable
viscous friction represented by the small but, in any case, positive parameter B.

Figure 4. Synchronous type motor: a) the potential energy as a function of the torque angle, b) the phase
portrait.
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3. Example 2: – The electric circuit

Let us concentrate now on the simple electric circuit whose diagram is shown in Fig.
5. Here S = 1/C and j(t) is representing the inverse of the capacitance and the current
source, respectively. The remaining symbols are standard.

Figure 5. Illustrative electric circuit.

At first, let us observe that the system of Fig. 5 as consisting of four independent
loops and the current source, is the system with three degrees of freedom. For the clarity
of exposition, it will be, however, useful to describe it by the four branch currents, viz.
q̇1, q̇0,q̇2 and q̇3, which as follows from the diagram of Fig. 5 are connected by the
equation of constraints

q̇1 + q̇0 + q̇2 + q̇3 − j(t) = 0 (108)

being directly in the form (23) characteristic for holonomic systems.
Identifying next magnetic energy (=coenergy) stored in inductances and electric en-

ergy stored in capacitances as the kinetic and potential energy, respectively, we get, ac-
cording to (7), the following expression for the Lagrangian

L (q̇1, q̇0,q1,q2) =
1
2

[
q̇1

q̇0

]T [
L1 M
M LO

][
q̇1

q̇0

]
− 1

2
S1q2

1 −
1
2

S2q2
2. (109)

Similarly, applying (20), (24) and (108), we get the Rayleigh function in the form

R (q̇1, q̇0, q̇2, q̇3,λ, t) =
1
2

R1q̇2
1 +

1
2

R0q̇2
0 +

1
2

R2q̇2
3 − q̇1u(t)− [q̇1 + q̇0 + q̇2 + q̇3 − j (t)]λ

(110)
Introducing L and R given by (109) and (110) into the equation of motion (18) and
noting that f̃ ≡ 0, we get the following result

L1q̈1 +Mq̈0 +S1q1 +R1q̇1 −u(t)−λ = 0 (111)

Mq̈1 +L0q̈0 +R0q̇0 −λ = 0 (112)
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S2q2 −λ = 0 (113)

R2q̇3 −λ = 0 (114)

which together with (108) represents a complete mathematical model of the system of
Fig. 5. To simplify it, let us proceed as follows. At first, observe that

λ = S2q2 (115)

q̇3 = (1/R2)S2q2 := G2S2q2 (116)

and denote
q̇1 := i1 (117)

q̇0 := i0. (118)

Then, the system of (117), (108), (111) and (112) written in this sequence has in matrix
notation the following form

D 0 −1 0
0 D+G2S2 1 1
S1 −S2 L1D+R1 MD
0 −S2 MD L0D+R0




q1

q2

i1
i0

=


0 0
0 1
1 0
0 0


[

u(t)
j(t)

]
(119)

which by replacing the capacitors’ charges by the corresponding voltages, i.e. by putting

q1 =C1u1

q2 =C2u2
(120)

gives, finally, the following simple and clear result
C1D 0 −1 0

0 C2D+G2 1 1
1 −1 L1D+R1 MD
0 −1 MD L0D+R0




u1

u2

i1
i0

=


0 0
0 1
1 0
0 0


[

u(t)
j(t)

]
. (121)

Let us observe that as long as the inductances satisfy the condition

L1L0 −M2 > 0 (122)

the system is of order four with its column of unknown functions being the state vector
of the system.

Now, let us assume that the inductances, instead of inequality (122) satisfy the equa-
tion

L1L0 −M2 = 0 (123)
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which physically means that both coils are coupled with the same magnetic flux. So, we
can write

L1 = N2
1 Λ

L0 = N2
0 Λ (124)

M = N1N0Λ

where Λ is the common magnetic conductance, and N1 and N0 are the number of turns
of the respective coils. Thus, denoting

N0/N1 := ϑ (125)

the inductances L0 and M can be expressed as

L0 = ϑ2L1
(126)

M = ϑL1.

Introducing them into (121) and pre-multiplying its both sides by the matrix

T = T−1 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ϑ −1

 (127)

we get finally the following result
C1D 0 −1 0

0 C2D+G2 1 1
1 −1 L1D+R1 ϑL1D
ϑ 1−ϑ ϑR1 −R0




u1

u2

i1
i0

=


0 0
0 1
1 0
ϑ 0


[

u(t)
j(t)

]
(128)

characterized by no operator D in the last row of the coefficient matrix and of its presence
outside the main diagonal just at the position (3,4). It means that for the case defined by
(123) the considered system is reduced to order three but its complete solution requires
the knowledge of four initial conditions - two for the voltages and two for the currents.

To explain this difference, let us post-multiply the coefficient matrix of (128) by T T

and, pre-multiply by it the vector of its unknown functions. In result, we get
C1D 0 −1 −ϑ

0 C2D+G2 1 −(1−ϑ)
1 −1 L1D+R1 ϑR1

ϑ 1−ϑ ϑR1 ϑ2R1 +R0




u1

u2

i1 +ϑi0
−i0

=


0 0
0 1
1 0
ϑ 0


[

u(t)
j(t)

]

(129)
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i.e. the system of equations characterized by the coefficient matrix free from the operator
D not only in the last row but as well in the last column. It means that its solution requires
just three initial conditions, two imposed on voltages u1 and u2 and one – on the linear
combination, i1 +ϑi0, of the currents. So, the first three components of the column of
unknown functions, viz. u1, u2 and i1 +ϑi0, are defining the state vector of the system.

4. Example 3: – The gyroscope placed on the Earth

The schematic diagram of the gyroscope with two degrees of freedom is shown in
Fig. 6. Principally, it consists of two gimbals (shown as frames), inner and outer, with
their axes mutually perpendicular, and the solid disc forced to rotate with the constant
angular velocity ψ̇ = Ω around its axis x1 perpendicular to the axis of the inner frame.
The centre of mass of each of its three components is located at point 0 identified with
the origin of any of the applied coordinate systems.

Figure 6. Schematic diagram of the gyroscope.

When the gyroscope is placed on the northern hemi-sphere of the Earth, the axis r3
of the outer frame is perpendicular to the idealized spherical surface of the Earth and
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directed out of its interior, see Fig. 7. The remaining two axes r1 and r2 of the orthogonal
system of coordinates are directed as follows: r1 – to the north and r2 – to the west,
forming in result the right-hand side system of coordinates. Assuming next that the an-
gular velocity vector Ω0 representing the rotation of the Earth around its kinematic axis
is directed as shown in Fig. 7, then its components in r-coordinates take the following
form: r1 = Ω0 cosβ, r2 = 0, r3 = Ω0 sinβ, where β is the corresponding Latitude.

Figure 7. Placing the gyroscope on the rotating Earth.

Let us now consider the case when the inner frame is fixed at the right angle to
the outer frame, so that ϑ = 0 (see Fig. 6), and the gyroscope reduces to the system
with one degree of freedom described by the angle φ as the only generalized coordinate.
The corresponding kinematics is illustrated in Fig. 8, where Ω0, φ̇ and ψ̇ understood as
angular velocity vectors are projected, at first, on the auxiliary system of axes xI

1, xI
2, xI

3
rigidly connected with the inner frame, and then on the system x1, x2, x3 fixed in the
rotating disc. In result, its angular velocity vector denoted by ωR takes a form

ωR =

 ψ̇+(cosβcosφ)Ω0

(sinψ) φ̇+(sinβsinψ− cosβsinφcosψ)Ω0

(cosψ) φ̇+(sinβcosψ+ cosβsinφsinψ)Ω0

 (130)

Introducing it into the expression

T R =
1
2

[
JR

1
(
ωR

1
)2

+ JR
2
(
ωR

2
)2

+ JR
3
(
ωR

3
)2
]

(131)

which represents the kinetic energy of the rotating disc, where JR
1 > JR

2 = JR
3 are its

principal moments of inertia, and then removing from the result all terms proportional
to Ω2

0 as being negligibly small, and replacing ψ̇ by Ω we get, finally, T R in the form

T R =
1
2
{

JR
1
[
Ω2 +2(cosβcosφ)Ω0Ω

]
+ JR

3
[
φ̇2 +2(sinβ)Ω0φ̇

]}
(132)
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Figure 8. The kinematics of gyroscope applied to indicate the Meridian.

Putting next in the right-hand side of expression (130) ψ = ψ̇ = 0, we obtain the angular
velocity vector

ωI = ω0 =

 (cosβcosφ)Ω0

−(cosβsinφ)Ω0

φ̇+(sinβ)Ω0

 (133)

common for the two rigidly connected frames. So, neglecting, as before, the terms pro-
portional to Ω2

0, the kinetic energy of each frame takes a form

T I = 1
2 JI

3

T 0 = 1
2 J0

3

}[
φ̇2 +2(sinβ)Ω0φ̇

]
(134)

where JI
3 and J0

3 are the principal moments of inertia of the inner and outer frame evalu-
ated with respect to xI

3(= x0
3) – axis (see Fig. 6).

Adding then the right-hand sides of (132) and (134), and neglecting in the sum any
term free from φ or proportional to φ̇, as being immaterial for the result, and observing
that the potential energy of the considered system is equal to zero, the sought Lagrangian
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takes finally the following form

L (φ̇,φ) = T R +T I +T 0 =
1
2
[(

JR
3 + JI

3 + J0
3
)

φ̇2 +2JR
1 Ω0Ωcosβcosφ

]
. (135)

To complete the model, let us formulate as well the Rayleigh function which in the
considered case is just of the form

R (φ̇) =
1
2

B0φ̇2 (136)

where B0 is the coefficient of the viscous friction in the bearings of the outer frame.
So, introducing the two state functions L(φ̇,φ) and R (φ̇) into the equation of motion

in its general form (18) with f̃ ≡ 0, we obtain finally the following result(
JR

3 + JI
3 + J0

3
)

φ̈+B0φ̇+
(
JR

1 Ω0Ωcosβ
)

sinφ = 0. (137)

Thus, the system is characterized by two states of equilibrium – the stable one cor-
responding to φ = 0 i.e. indicating the Meridian, and the unstable related with φ = π.
Depending on the value of B0, the point of stable equilibrium is either a focus or a node.

Figure 9. The kinematics of gyroscope indicating the Latitude.
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Now, let us concentrate on the second special case, when φ = 0 and the gyroscope
reduces once more to the system with one degree of freedom described, to the contrary
of the previous case, by the angle ϑ as the only generalized coordinate, see Fig. 6. The
corresponding kinematics is illustrated in Fig. 9, where the modified set of three angular
velocity vectors, viz. Ω0, ϑ̇ and ψ̇ = Ω is projected similarly as before, at first on the
auxiliary system of axes xI

1, xI
2, xI

3 rigidly connected with the inner frame, and then on
the system x1, x2, x3 fixed in the rotating disc. In result, the angular velocity vector of
the rotating disc takes a form

ωR =

 Ω+Ω0 cos(ϑ+β)
(cosψ) ϑ̇+Ω0 sinψsin(ϑ+β)
−(sinψ) ϑ̇+Ω0 cosψsin(ϑ+β)

 (138)

from which by putting ψ = 0, we obtain at once the angular velocity vector ΩI of the
inner frame

ωI =

 Ω0 cos(ϑ+β)
ϑ̇

Ω0 sin(ϑ+β)

 . (139)

The remaining vector ω0, due to the fixed position of the outer frame, viz. φ = 0, is equal
to zero, too.

Applying the same procedure and the same approximations as before, let us find the
corresponding Lagrangian and the Rayleigh function and, finally, the sought equation of
motion. In result, we obtain

L
(
ϑ̇,ϑ

)
= T R +T I =

1
2
[(

JR
2 + JI

2
)

ϑ̇2 +2JR
1 Ω0Ωcos(ϑ+β)

]
(140)

R
(
ϑ̇
)
=

1
2

BIϑ̇2 (141)(
JR

2 + JI
2
)

ϑ̈+BIϑ̇+ JR
1 Ω0Ωsin(ϑ+β) = 0 (142)

where BI is the coefficient of the viscous friction in the bearings of the inner frame.
Let us observe that now, similarly to the previously considered case, the system is

characterized by two states of equilibrium – the stable one corresponding to ϑ =−β i.e.
indicating the Latitude and the unstable related to ϑ = π−β. For the stable case, the axis
x1 of the rotating disc is parallel to the axis of the rotating Earth and both have the same
direction, see Fig. 9.

At the end of this section it is necessary to add that in practice the role of the solid
disc is played by the rotor of the high-speed induction type motor, while the role of the
inner frame is played by its stator.

By positioning the stator horizontally with possibility of its free rotation around the
vertical axis, we obtain the instrument for pointing out the Meridian. By positioning the
axis of the rotor in the plane of the Meridian with the possibility of free rotation of the
stator around the horizontal axis, we get the instrument for pointing out the Latitude.
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References

[1] S. BANACH: Mechanics. Warszawa – Wroclaw Monografie Matematyczne, XXIV
1951.

[2] D.C. WHITE and H.H. WOODSON: Electromechanical Energy Conversion. J. Wi-
ley & Sons, New York, 1959.

[3] L.D. LANDAU, E.M. LIFSHITZ: Mechanics. London, Pergamon Press, 1960.


	Tekst6: 10.2478/acsc-2014-0013


