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Numerical solution of fractional neutron point kinetics
model in nuclear reactor

TOMASZ KAROL NOWAK, KAZIMIERZ DUZINKIEWICZ and ROBERT PIOTROWSKI

This paper presents results concerning solutions of the fractional neutron point kinetics
model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordi-
nary differential equations. Three methods to solve the model are presented and compared. The
first one entails application of discrete Grünwald-Letnikov definition of the fractional deriva-
tive in the model. Second involves building an analog scheme in the FOMCON Toolbox in
MATLAB environment. Third is the method proposed by Edwards. The impact of selected pa-
rameters on the model’s response was examined. The results for typical input were discussed
and compared.

Key words: fractional differential equation, fractional derivatives and integrals, system of
equations, nuclear reactor, neutron point kinetics

1. Introduction

The main processes taking place in a nuclear reactor is neutron kinetics. With respect
to time of appearance, neutrons are divided into immediate and delayed neurons. The
immediate neutrons (more than 99% of all fission neutrons) are emitted directly in the
fission act, while the delayed neutrons (less than 1%) are produced during the radioactive
decay of certain fission products - delayed neutron precursors.

By taking into account averaged values of neutrons and fractional derivative a frac-
tional neutron point kinetics (FNPK) model can be built. This issue based on ordinary
derivative has been discussed for many years [1, 2, 5]. In [5] a FNPK model in a nu-
clear reactor was introduced. In its simplest form it consists of a single neutron density
equation, while in the full form this equation is complemented by six equations of de-
layed neutron precursor densities. An intermediate form of this model makes use of one
averaged group of delayed neutron precursors.
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In recent years, however, the FNPK model has become the subject of research [8, 11].
In [8] the fractional point kinetics model with one group of delayed neutron precursors
was proposed. In this paper, the authors extended the model for six groups.

Point models for nuclear reactors have been commonly used for many years [1, 2, 5,
6, 8, 15]. In order to improve control better methods of approximating processes taking
place in the nuclear reactor have been researched. The use of fractional point models
may prove to be such an improvement. Authors’ research concentrated on nuclear reactor
analysis. Their interests revolved around 1D [3] and recently 3D models.

The paper is organized as follows. First introduced in the paper was a form of the
fractional derivative. Then the FNPK model with six groups of delayed neutron precur-
sors was described and normalized, along with the assumed values of particular constant
parameters and the adopted initial conditions. After that methods to solve the FNPK
model were proposed and described. Finally, tests results, including comparison of meth-
ods used were presented and conclusions were drawn.

2. Definition of fractional derivative

There are several definitions and methods for calculating the fractional deriva-
tive. The most recognized definitions were given by: Caputo, Riemann-Liouville and
Grünwald-Letnikov [13]. In the paper the Grünwald-Letnikov and Caputo approaches
are used. Grünwald-Letnikov’s approach, which is used in the first and the second
method, has the following form [14]:

aDk
t f (t) = lim

h→0
h−k

[ t−a
h ]

∑
p=0

(−1)p
(

k
p

)
f (t − ph) (1)

where k is the order of fractional derivative, h is step-size, a and t are the limits relating
to the above operation.

Caputo’s approach, used in the third method, has the following form [14]:

aDk
t f (t) =

1
Γ(m− k)

t∫
a

f (m)(ξ)
(t −ξ)(k+1−m)

dξ (2)

for m+1 > k > m, where m is the ordinary derivative. Γ is the gamma function.
The interpretation of the operator aDk

t (hereinafter referred to as Dk) may be pre-
sented as:

Dk =


dk

dtk : k > 0
1 : k = 0∫ t

a(dτ)k : k < 0.

(3)

Notice that for k<0 the operation Dk takes the form of the integrator. For integer values
of k the operation takes the form of ordinary derivative or ordinary integrator.
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3. The fractional neutron point kinetics model

The FNPK model with six groups of delayed neutron precursors, which was initially
described for one group in [8] and extended to six groups in [11], may be given by
fractional differential equations:

τk dk+1

dtk+1 n(t)+
d
dt

n(t)+ τk
(

1
l
+

1−β
Λ

)
dk

dtk n(t)+
β−ρ(t)

Λ
n(t)

(4)

=
6

∑
j=1

τk dk

dtk C j(t)+
6

∑
j=1

λ jC j(t)

d
dt C j(t) =

β j
Λ n(t)−λ jC j(t) for j = 1, ...,6 (5)

where the initial conditions are: n0 = n(0) and C j0 =C j(0) for j = 1,2, ...,6, n(t) is the
density of neutrons, C j(t) is the concentration of delayed neutron precursor nuclei of the
j-th group, β j is the fraction of the delayed neutrons of the j-th group in the population
of neutrons, λ j is the decay constant of delayed-neutron precursors, l is the immediate
neutron lifetime, ρ(t) is the reactivity, τk is the relaxation time, and Λ is the effective
lifetime of the neutrons.

Neutron density was examined in the paper [3,6]. It is proportional to nuclear reac-
tor’s power. Therefore, the neutron density will be normalized further in the paper for
purposes of testing nuclear reactor’s power.

Reactivity is the relative deviation of the relation between the sizes of successive
generations of neutrons. It determines increase and decrease of nuclear reactor’s power.
If nuclear reactor’s power is greater than 0 and if reactivity is negative - the power de-
creases (and also neutron density), if positive - the power increases and if equal to 0 -
the power is at a constant level.

Relaxation time is the parameter specifying the rate of system return to the state of
equilibrium and is time-constant. Greater values of this parameter mean that the system
(in this case: the density of neutrons in the nuclear reactor core) returns to the state of
equilibrium slower. The impact of relaxation time on the neutron density of the FNPK
model was examined in [11].

Tab. 1 shows the assumed fractions of the delayed-neutron fractions of the population
of neutrons and decay constant of delayed-neutron precursors.

The following parameters were adopted in Eqs. (4)-(5): β = ∑6
j=1 β j = 0.007, Λ =

l = 0.00003 s. The effect of k and τk on the obtained numerical solutions for proposed
methods will be discussed further in the paper.

The analysis was performed using the normalized values of n(t) and C j(t). The nor-
malized values of neutron density were denoted by n, while the normalized concentration
of delayed neutron precursor nuclei of the j-th group by C j. In order to perform normal-
ization, the normalized quantities must be defined first:

n =
n(t)
nB

(6)
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Table 1. Delayed neutron fractions and precursor decay constants for U-235 [10].

j β j λ j

1/s

1 0.000231 0.0124
2 0.001533 0.0305
3 0.001327 0.1110
4 0.002765 0.3010
5 0.000805 1.1300
6 0.000294 3.0000

C j =
C j(t)
C j,B

for j = 1,2, ...,6 (7)

where nB and C j,B are base values of above quantities. The relation between these values
is defined by:

C j,B =
β j

Λλ j
nB for j = 1,2, ...,6. (8)

The FNPK model after normalization may be given by formula:

τk dk+1

dtk+1 n(t)++
d
dt

n(t)+ τk
(

1
l
+

1−β
Λ

)
dk

dtk n(t)+
β−ρ(t)

Λ
n(t)

(9)

=
6

∑
j=1

τk dk

dtk
β j

Λλ j
C j(t)+

6

∑
j=1

β j

Λ
C j(t)

d
dt C j(t) = λ jn(t)−λ jC j(t) for j = 1,2, ...,6. (10)

The critical state of equilibrium was adopted as the initial state. The analysis was
performed for the critical state of equilibrium which was different than the switch-off
state of the reactor, therefore the initial conditions of this state were: n0 =C j0 = 1.

4. Numerical methods to solve the nonlinear fractional differential system of
equations

There are methods to solve system of fractional differential equations. One of them
is Adomian decomposition method [9]. The method turned out to be ineffective. That
is why other methods to solve the FNPK model were examined. The first entails substi-
tuting the discrete Grünwald-Letnikov definition of fractional derivative into the NFPK
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derivatives [12]. The second is to use the FOMCON Toolbox in MATLAB to build ana-
log scheme in Simulink, where the system of equations could be solved. The third is
method proposed by Edwards, which was used in previous paper [11].

The following symbols were introduced to simplify the notation: Dk instead of dk

dtk , D

instead of d
dt , Dk+1 instead of dk+1

dtk+1 . After applying the new nomenclature, Eqs. (9)-(10)
become as follows:

Dk+1n+a3Dn+a2Dkn+a1n =
6

∑
j=1

b2 jDkC j +
6

∑
j=1

b1 jC j (11)

DC j = a0 jn−a0 jC j for j = 1,2, ...,6. (12)

According to Eqs. (9)-(10) the coefficients take the following form: a0 j = λ j, a1 =
1
τk

β−ρ
Λ ,

a2 = 1
l +

1−β
Λ , a3 = 1

τk , b1 j =
β j

τkΛ , b2 j =
β j

Λλ j
. The above symbols will be used in all

proposed methods.

4.1. Application of discrete Grünwald-Letnikov definition of the fractional derivative
to the FNPK model

It is necessary to consider all values of the function from a to t and every step-size
h to solve fractional derivative. Solving fractional derivative is iterative. The value of
current (i-th) iteration depends on all previous iterations.

To numerically solve linear fractional derivative equation in i-th iteration one can
use the discrete expression of Eq. (1) [12]:

Dk f (t)≈ h−k
i

∑
p=0

(−1)p
(

k
p

)
f (ti−p) = h−k

i

∑
p=0

cp
(k) f (ti−p) (13)

where ti = ih and cp
(k)(p = 0,2, ..., i) - binomial coefficients that can be written as [12]:

c0
(k) = 1,cp

(k) =

(
1− 1+ k

p

)
cp−1

(k). (14)

By substituting the right hand side of the Eq. (13) into Dk+1n, Dn and Dkn in Eq. (11):

1
h1+k

i

∑
p=0

cp
(1+k)ni−p +

a3

h

i

∑
p=0

cp
(1)ni−p +

a2

hk

i

∑
p=0

cp
(k)ni−p +(a11 +a12ρi)ni =

=
6

∑
j=1

b2 j

hk

i

∑
p=0

cp
(k)C j,i−p +

6

∑
j=1

b1 j

C j,i
. (15)
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To get the neutron density in the i-th iteration one can write it on the left hand side of the
equation, while the remaining part of the equation on the right hand side. It results in:

ni =
∑6

j=1
b2 j

hk ∑i
p=0 cp

(k)C j,i−p +∑6
j=1 b1 jC j,i

1
h1+k +

a3
h + a2

hk +a12ρi +a11
+ (16)

−
1

h1+k ∑i
p=1 cp

(1+k)ni−p +
a3
h ∑i

p=1 cp
(1)ni−p

1
h1+k +

a3
h + a2

hk +a12ρi +a11
−

a2
hk ∑i

p=1 cp
(k)ni−p

1
h1+k +

a3
h + a2

hk +a12ρi +a11
.

Using the same transformation C j,i can be calculated from:

C j,i =
a0 jni− 1

h ∑i
p=1 cp

(1)C j,i−p
1
h+a0 j

for j = 1,2, ...,6. (17)

Note that both on the left and right hand side of the above equations are quantities
in i-th iteration. Because it is impossible to calculate the value of one quantity in i-th
iteration while not having the value of another quantity in this iteration, the mentioned
quantities on the right hand side of the equations in i-th iteration were replaced by i−1-th
iteration.

The application of discrete Grünwald-Letnikov definition of the fractional derivative
is hereinafter referred to as the first method. In figures it appears as GL.

4.2. Application of FOMCON Toolbox

In order to make a clear presentation of an analog scheme, the auxiliary variables
were defined:

x1 = n (18)

x2 = Dkn = Dkx1 (19)

x3 = Dn = Dx1 (20)

x4 = Dk+1n = Dk+1x1 = Dkx3 (21)

y1 j =C j for j = 1,2, ...,6 (22)

y2 j = DkC j = Dky1 j for j = 1,2, ...,6 (23)

y3 j = DC j = Dy1 j for j = 1,2, ...,6. (24)

It results from the Eqs. (11)-(12) and Eqs. (18)-(24) that:

x4 =−
3

∑
i=2

aixi −a11x1 −a12z3x1 +
2

∑
i=1

6

∑
j=1

bi jyi j (25)

y3 j = a0 jx1 −b2 jy1 j for j = 1,2, ...,6. (26)

The Eqs. (18)-(26) were modeled as an analog scheme (see Fig. 1).
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Figure 1. Fractional neutron point kinetics model analog scheme.

The presented analog scheme was built using blocks from the FOMCON Toolbox.
Those blocks are fractional derivative sk and fractional integrator s−k. They consist of the
Oustaloup recursive filter that gives a very good approximation of fractional derivative
and integrator. For fractional derivative sk where 0<k<1 it is defined by [16]:

sk = G f (s) = K
N

∏
l=−N

s+ω′
k

s+ωk
(27)

where N is the approximation order and the ω′
k, ωk, K are obtained from:

ω′
k = ωb

(
ωh

ωb

) l+N+ 1
2 (1−k)

2N+1

(28)

ωk = ωb

(
ωh

ωb

) l+N+ 1
2 (1+k)

2N+1

(29)

K = ωk
h (30)

where (ωb,ωh) is specified frequency range.
The default frequency range used in toolbox blocks is (ωb,ωh) = (10−3,103), whilst

the default approximation order is N = 5. Default values returned results inconsistent
with basic laws of physics taking place in a nuclear reactor. For this reason the frequency
range was changed to (ωb,ωh) = (10−1,1).
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The transfer function for the Oustaloup recursive filter was calculated for different
values of k (0.25, 0.5, 0.75) for which the tests were performed. For all mentioned k:

K = 1. (31)

The other quantities are shown in Tab. 2.

Table 2. Quantities to calculate transfer function of Oustaloup recursive filter.

l
ω′

0.25 ω0.25 ω′
0.5 ω0.5 ω′

0.75 ω0.75

1/s 1/s 1/s 1/s 1/s 1/s

-5 0.1082 0.1140 0.1054 0.1170 0.1027 0.1201
-4 0.1334 0.1405 0.1299 0.1442 0.1266 0.1481
-3 0.1644 0.1732 0.1602 0.1778 0.1560 0.1825
-2 0.2027 0.2136 0.1974 0.2192 0.1923 0.2250
-1 0.2499 0.2633 0.2434 0.2703 0.2371 0.2774
0 0.3081 0.3246 0.3001 0.3332 0.2924 0.3421
1 0.3798 0.4002 0.3700 0.4108 0.3604 0.4217
2 0.4682 0.4934 0.4561 0.5065 0.4444 0.5199
3 0.5772 0.6083 0.5623 0.6244 0.5478 0.6409
4 0.7117 0.7499 0.6933 0.7698 0.6754 0.7902
5 0.8774 0.9245 0.8546 0.9490 0.8326 0.9742

From the values presented in Tab. 2 and Eq. (31) the transfer function of Oustaloup
recursive filter for sk where k = 0.25:

s0.25 =
(s+0.1082)(s+0.1334)...(s+0.8774)
(s+0.1140)(s+0.1405)...(s+0.9245)

(32)

where k = 0.5:

s0.5 =
(s+0.1054)(s+0.1299)...(s+0.8546)
(s+0.1170)(s+0.1442)...(s+0.9490)

(33)

where k = 0.75:

s0.75 =
(s+0.1027)(s+0.1266)...(s+0.8326)
(s+0.1201)(s+0.1481)...(s+0.9742)

. (34)

The Oustaloup recursive filter for s−k, which is the fractional integration of order k,
can be obtained from:

s−k =
1
sk =

1
G f (s)

. (35)
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It is suggested to use ode23tb solver [16] which is the implicit Runge-Kutta method.
It is a two-stage method. Its first stage is a trapezoidal rule. The second is a second-order
backward differentiation formula.

The application of FOMCON Toolbox was hereinafter referred to as the second
method. In figures it appears as FOMCON.

4.3. Method proposed by Edwards

The above methods are suitable for solving linear and nonlinear systems of frac-
tional differential equations. Method proposed by Edwards is suited for linear systems.
Because the reactivity step at the beginning of the simulation is constant, the bilinear
model (see Eq. (5)-(5)) becomes linear. That is why this method can be applied for the
considered model.

In order to calculate the current (i-th) values of quantities in Edward’s method, sys-
tem of linear equations has to be solved. From Eqs. (18)-(26) it can be presented as:

Dk 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0
0 0 Dk 0 0 0 0 0 0
0 0 0 Dk · · · 0 0 0 0

0 0 0
...

. . .
... 0 0 0

0 0 0 0 · · · Dk 0 0 0
0 0 0 0 · · · 0 D · · · 0

0 0 0
...

. . .
...

...
. . .

...
0 0 0 0 · · · 0 0 · · · D





x1

x2

x3

y11
...

y16

y21
...

y26



=



x2

x3

x4

y21
...

y26

y31
...

y36



(36)

The system of equation takes form:

DDD = uuuzzz (37)

where:

DDD =



Dk 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0
0 0 Dk 0 0 0 0 0 0
0 0 0 Dk · · · 0 0 0 0

0 0 0
...

. . .
... 0 0 0

0 0 0 0 · · · Dk 0 0 0
0 0 0 0 · · · 0 D · · · 0

0 0 0
...

. . .
...

...
. . .

...
0 0 0 0 · · · 0 0 · · · D



(38)
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uuu = [x1, x2, x3, y11, . . . , y16, y21, . . . , y26]
T (39)

zzz = [x2, x3, x4, y21, . . . , y26, y31, . . . , y36]
T . (40)

To solve system of differential equations (see Eq. (36)) using numerical method
proposed by Edwards, it is necessary to discretize the model. A discrete approximation
of the fractional derivative of the k-th row in the i-th step can be written as:

Dkxi =
1
γi

(
i

∑
p=0

ωp,ixi−p +
x0

k

)
(41)

where particular components have the following form [4, 10]:

γi = (ih)kΓ(−k) (42)

ωp,ik(1− k)i−k =


−1 : p = 0
2p1−k − (p−1)1−k − (p+1)1−k : p = 1, ..., i−1
(k−1)pk − (p−1)1−k + p1+k : p = i.

(43)

The above relations show that due to the presence of the Γ function (see Eq. (42)), which
is discontinuous for negative integer arguments, the discrete model can be built only for
0 < k < 1.

Using Eqs. (18)-(26) and Eqs. (41)-(43) the discrete model can be derived. Calculat-
ing the value of the variable x2, which is the first variable in the z vector in the i-th step,
we obtain:

x2,i = Dkx1,i =
1
γi

(
i

∑
p=0

ωp.ix1,i−p +
x1,0

k

)
. (44)

Then introducing discrete variable S1,i [7]:

S1,i =
i

∑
p=1

ωp,ix1,i−p +
x1,0

k
(45)

and putting Eq. (45) into Eq. (44), obtaining:

x2,i =
1
γi
(ω0,ix1,i +S1,i) . (46)

Eq. (44) can be written as:

−ω0,ix1,i + γix2,i =
i

∑
p=1

ωp,ix1,i−p +
x1,0

k
. (47)

In a similar way as for x2, the relation between the variables y1 j and y2 j where j is the
precursor group number can be derived. The way of deriving the relations between the
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variables x1 and x3, as well as between x3 and x4, will be described further in the paper.
Like in Eq. (47), for the variables y1 j and y2 j, we obtain:

−ω0,iy1 j,i + γiy2 j,i =
i

∑
p=1

ωp,iy1 j,i−p +
y1 j,0

k
. (48)

The variable x3 is the first-order derivative of the variable x1 (see Eq. (20)). It can be
calculated using the trapezoidal method:

x1,i = x1,i−1 +
h
2
(x3,i + x3,i−1). (49)

By putting the values of variables obtained in the same step on one hand side of the
equation we have:

x1,i −
h
2

x3,i = x1,i−1 +
h
2

x3,i−1 (50)

and introducing the new variable S2,i [7]:

x1,i −
h
2

x3,i = S2,i (51)

we have:
S2,i = x1,i−1 +

h
2

x3,i−1. (52)

For y1 j, introducing a new variable, we obtain:

R1 j,i =
i

∑
p=1

ωp,iy1 j,i−p +
y1 j,0

k
. (53)

A discrete equation of the third variable in vector z is the following:

x4,i = Dkx3,i =
1
γi

(
i

∑
p=0

ωp,ix3,i−p +
x3,0

k

)
. (54)

By putting Eq. (25) into Eq. (54) we have:

−a1x1,i −a2x2,i −a3x3,i +
6

∑
j=1

b1 jy1 j,i +
6

∑
j=1

=
1
γi

(
i

∑
p=0

ωp,ix3,i−p +
x3,0

k

)
. (55)

After transformation and putting the i-th step variables to the left hand side of the equa-
tion, we obtain:
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−a1x1,i −a2x2,i − (a3γi +ω0,i)x3,i +
6

∑
j=1

b1 jy1 j,i +
6

∑
j=1

b2 jy2 j,i

=
1
γi

(
i

∑
p=1

ωp,ix3,i−p +
x3,0

k

)
. (56)

Like in case of Eq. (50), the last equation can be derived using the trapezoidal method:

y1 j,i = y1 j,i−1 +
h
2(y3 j,i + y3 j,i−1) for j = 1,2, ...,6. (57)

Putting Eq. (26) into Eq. (57) gives:

y1 j,i = y1 j,i−1 +
h
2(a0 jx1,i −b2 jy2 j,i +a0 jx1,i−1 −b2 jy2 j,i−1) for j = 1, ...,6. (58)

Eq. (58) can be written as:

−a0 j
h
2 x1,i +(1+b2 j

h
2)y1 j,i = a0 j

h
2 x1,i−1 +(1−b2 j

h
2)y1 j,i−1 for j = 1, ...,6. (59)

Finally, the discrete model gets the following form:

−ω0,i γi 0 0 · · · 0 0 · · · 0
1 0 −h

2 0 · · · 0 0 · · · 0
−γia1 −γia2 −(γia3 +ω0,i) γib11 · · · γib16 γib21 · · · γib26

0 0 0 −ω0,i · · · 0 γi · · · 0
...

...
...

...
. . .

...
...

. . .
...

0 0 0 0 · · · −ω0,i 0 · · · γi

−a01
h
2 0 0 1+b21

h
2 · · · 0 0 · · · 0

...
...

...
...

. . .
...

... · · · 0
−a06

h
2 0 0 0 · · · 1+b26

h
2 0 · · · 0





x1

x2

x3

y11
...

y16

y21
...

y26


= [S1,i, S2,i, S3,i, R11,i, . . . , R16,i, R21,i, . . . ,R26,i]

T (60)

where S1,i, S2,i and R1 j,i are given, respectively, by Eqs. (45) and (52)-(53). Based on
Eqs. (55) and (59) the variables S3,i and R2 j,i can be written as:

S3,i =
i

∑
p=1

ωp,ix3,i−p +
x3,0

k
(61)

R2 j,i = a0 j
h
2 x1,i−1 +(1−b2 j

h
2)y1 j,i−1 for j = 1, ...,6. (62)

In order to determine the density of neutrons, represented by the variable x1, it is neces-
sary to inverse the square matrix (Eq. (60)) and multiply it by R and S. The result in the
first row is the normalized neutron density in the i-th step.

The application of method proposed by Edwards was hereinafter referred to as the
third method. In figures it appears as Edwards.
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5. Results

The following results were obtained for positive input reactivity ρ = 0.0005. Input
step was set at the beginning of simulation. For this reason the bilinear model can be
treated as linear model. Neutron density is the quantity shown in the figures. The differ-
ence between results obtained using the first, second and the third method was presented
and discussed. The impact of relaxation time τk, fractional order of derivative k and step-
size h on results was examined. τk was at the level of 10−4sk and 10−5sk, k was equal to
0.25, 0.5 and 0.75, whilst h was equal to 0.1 s nad 0.05 s. Step-size was changed only in
the first and the third method due to the fact these are a fixed-step methods. The second
method is variable-step method.

The tests were performed for each τk, k and h. The initial state of the reactor was
assumed by the critical state. This means that the reactor operated at a constant power
output and with fixed physical quantities before testings.

The simulation time was equal to 150 s, but the results were shown also for 5 s. to
show the biggest changes taking place in the first seconds after reactivity step.

Normalized neutron density for τk = 10−4sk is shown in Figs 2-7.
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Figure 2. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.25.
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Figure 3. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.25.
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Figure 4. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.50.
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Figure 5. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.50.
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Figure 6. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.75.
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Figure 7. Normalized neutron density for ρ = 0.0005, τk = 10−4sk and k = 0.75.

For positive step reactivity the neutron density increases. The neutron density is sup-
posed to be greater than its initial value (before tests) for the whole simulation. This
was not satisfied only for the second method where k = 0.75. In this case neutron den-
sity firstly decreases and is lower than its initial value. The neutron density for the first
method after 3 s. of simulation is the highest for the third method and the lowest for the
first method.

The neutron density progress was different for tested values of fractional derivative.
The higher value of k the maximum neutron density is higher. This relationship was seen
for three methods. For higher k the difference between methods for neutron density is
lower.

In Figs 8-13 neutron density for τk = 10−5sk is presented.
There is a difference between results obtained for τk = 10−5sk and τk = 10−4sk. The

smaller τk, the smaller the difference between the methods. It can be explained by the
fact that τk → 0 causes change in Eq. (5). The parts of equation containing fractional
derivative are becoming no longer relevant. The difference between used methods is in
calculating the values of fractional derivative. Due to this fact, the difference between
results for tested value of fractional derivative is smaller for τk = 10−5sk than for τk =
10−4sk.

Based on the results three methods methods may be used to approximate neutron
kinetics in a nuclear reactor. The obtained results were different for different values of
relaxation time, order of fractional derivative and step size - the model was characterized
by different dynamics. It can be noticed that for the second method order of fractional
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derivative, relaxation time and frequency range have to be chosen wisely because the
model’s response may contradict the law of physics.
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Figure 8. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.25.
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Figure 9. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.25.
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Figure 10. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.50.
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Figure 11. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.50.
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Figure 12. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.75.
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Figure 13. Normalized neutron density for ρ = 0.0005, τk = 10−5sk and k = 0.75.
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6. Comparison of the methods

In order to decide which one of three methods is more accurate for FNPK model,
a comparison to a special case was drawn. The special case is critical state of nuclear
reactor where ρ = 0. For the zero value of the reactivity the nuclear power output and so
neutron density is constant n(t)=1. The difference between this value and obtained for
the three methods will be compared.

The results are shown in Figs 14-19.
The third method seems to be the most appropriate for the FNPK model. It can be

seen that lower value of τk the lower difference between n(t) = 1 and results obtained
by application of methods.

In order to eliminate any doubts the comparison consisted of 2 indicators. They were:
the maximum value of the difference between n(t) = 1 and the first, second or third
method (MAX) and integral of the absolute value of this difference (IAD). The results
are shown in Tabs 3-8.

The third method returned the lowest absolute value of three indicators. The lower
step-size the better results for the first method. The third method turned out to be the best
from all used methods in the paper. This was confirmed by the indicators’ values used
for comparison. The lower value of τk the lower the difference for three methods. The
same conclusion can be made for k.
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Figure 14. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−4sk,
k = 0.25.
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Figure 15. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−4sk,
k = 0.50.
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Figure 16. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−4sk,
k = 0.75.
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Figure 17. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−5sk,
k = 0.25.
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Figure 18. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−5sk,
k = 0.50.
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Figure 19. Difference between n(t) = 1 and results obtained by considered methods for ρ = 0, τk = 10−5sk,
k = 0.75.

Table 3. Indicators to compare the methods for k = 0.25 and τk = 10−4sk.

Indicator GLa
h=0.1 GLa

h=0.05 FOMCONb Edwardsc
h=0.1 Edwardsc

h=0.05

MAX 0.11257 0.11033 0.11168 7.3275e-11 1.2812e-13
IAD 11.422 11.213 11.367 7.303e-12 1.2633e-11

a The difference between results obtained from n(t) = 1 and the first method
b The difference between results obtained from n(t) = 1 and the second method
c The difference between results obtained from n(t) = 1 and the third method

Table 4. Indicators to compare the methods for k = 0.50 and τk = 10−4sk.

Indicator GLa
h=0.1 GLa

h=0.05 FOMCONb Edwardsc
h=0.1 Edwardsc

h=0.05

MAX 0.2104 0.040079 0.052878 7.3275e-14 1.2879e-13
IAD 4.0588 4.1118 4.3349 7.3e-12 1.2629e-11
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Table 5. Indicators to compare the methods for k = 0.75 and τk = 10−4sk.

Indicator GLa
h=0.1 GLa

h=0.05 FOMCONb Edwardsc
h=0.1 Edwardsc

h=0.05

MAX 0.54392 0.033726 0.050363 7.3608e-14 1.2812e-12
IAD 1.3651 1.7183 2.2261 7.302e-12 1.2627e-11

Table 6. Indicators to compare the methods for k = 0.25 and τk = 10−5sk.

MAX 0.012241 0.011981 0.01214 3.7748e-11 3.7381e-13
IAD 1.2199 1.1964 1.2137 3.2732e-13 2.7976e-11

Table 7. Indicators to compare the methods for k = 0.50 and τk = 10−5sk.

Indicator GLa
h=0.1 GLa

h=0.05 FOMCONb Edwardsc
h=0.1 Edwardsc

h=0.05

MAX 0.02512 0.0043232 0.00058491 3.7748e-15 3.7381e-13
IAD 0.41761 0.42327 0.44636 3.2941e-13 2.7975e-11

Table 8. Indicators to compare the methods for k = 0.75 and τk = 10−5sk.

Indicator GLa
h=0.1 GLa

h=0.05 FOMCONb Edwardsc
h=0.1 Edwardsc

h=0.05

MAX 0.088156 0.0038377 0.0061347 3.8858e-15 3.7381e-13
IAD 0.13953 0.17559 0.22743 3.3014e-13 2.7974e-11

7. Conclusions

Properties of the numerical solution of fractional neutron point kinetics model were
analyzed in this paper. Results were obtained by using three methods. The first was appli-
cation of discrete Grünwald-Letnikov definition of the fractional derivative, the second
was application of the FOMCON Toolbox, whose blocks use the Oustaloup recursive fil-
ter and the third was the method proposed by Edwards. Quantitative differences between
the methods were observed. The effect of relaxation time, order of fractional derivative
and step-size on the obtained results were examined. It was proven that three methods
can be used to approximate neutron kinetics. A comparison between the three meth-
ods was drawn. Method proposed by Edwards turned out to be the best from proposed
method for considered model.
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The task for researchers is to check what values should be assumed by τk, k (and h
for first method) in order to obtain a satisfactory approximation for the nuclear reactor’s
1D [3] and 3D model.
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