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LMI based fuzzy observer design for Takagi-Sugeno
models containing vestigial nonlinear terms

DUŠAN KROKAVEC and ANNA FILASOVÁ

The paper deals with the problem of full order fuzzy observer design for the class of
continuous-time nonlinear systems, represented by Takagi-Sugeno models containing vestigial
nonlinear terms. On the basis of the Lyapunov stability criterion and the incremental quadratic
inequalities, two design conditions for this kind of system model are outlined in the terms of lin-
ear matrix inequalities. A numerical example is given to illustrate the procedure and to validate
the performances of the proposed approach.
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1. Introduction

As is well known, observer design is a hot research field owing to its particular im-
portance in the state-space control. The nonlinear system theory principles, using Lips-
chitz conditions, has emerged as a method capable of use in state estimation for nonlin-
ear systems, although Lipschitz condition is a strong restrictive condition which many
classes of systems may not satisfy. Design method for asymptotic observer for nonlinear
systems with globally Lipschitz nonlinearities is presented, e.g., in [1], [4], [13], [22], the
problem of designing asymptotic observers for the system whose nonlinear time-varying
terms satisfy an incremental quadratic inequality, is given in [2], [3].

An alternative to design an observer for nonlinear systems is fuzzy modeling ap-
proach, which benefits from the advantages of the approximation techniques approxi-
mating nonlinear system model equations [20]. Stability conditions, relying on the fea-
sibility of an associated system of linear matrix inequalities (LMI) and Takagi-Sugeno
(TS) fuzzy model based nonlinear state observers, were educed, e.g., in [11], [17], [19].
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Controllers for TS nonlinear systems with time-varying terms, but with the structure
exploiting local nonlinear models, were considered, e.g., in [5], [6].

In the paper, TS fuzzy models with vestigial nonlinear terms (VNT) are considered
in a nonlinear state observer design task. The paper extends the method given in [15]
and using the properties of incremental quadratic constraints for TS models with VNT
as well as the Krasovskii theorem, it is demonstrated that an incremental quadratic in-
equality, parameterized by a multiplier matrix, can be reflected in an extended LMI form
of design conditions. Since fewer control rules can be exploited, the proposed method
mainly reduce computational burden which is often favorable for implementation.

The paper is sequenced in seven sections. Following the introduction in Section 1,
basic nature of the TS fuzzy models is presented in Section 2. The preliminary results,
focused on the definition of fuzzy state observers for TS models with VNT and on the
incremental quadratic constraint inequality formulation, are presented in Section 3. Sec-
tion 4 and Section 5 provide the stability analysis of the TS fuzzy state observer by use
of LMIs, and explain the observer design conditions. Section 6 illustrates the observer
design task by the numerical solution for both type of LMI forms and the last Section 7
draws some conclusion remarks.

Throughout the paper, the notations is narrowly standard in such way that xT , XT

denotes the transpose of the vector x and matrix X , respectively, X = XT > 0 means that
X is a symmetric positive definite matrix, rank( · ) remits the rank of a matrix, the symbol
In indicates the n-th order unit matrix, IR denotes the set of real numbers and IRn×r refers
to the set of all n× r real matrices.

2. Takagi-Sugeno fuzzy model

The systems under consideration devolve to the class of MIMO nonlinear dynamic
continuous-time systems, described, using TS approach, as follows

q̇(t) =
s

∑
i=1

hi(θ(t))(Aiq(t)+Biu(t)+Gip(t)) , (1)

y(t) =Cq(t) , (2)

where q(t)∈ IRn, u(t)∈ IRr, y(t)∈ IRm are vectors of the state, input, and output variables,
respectively, C ∈ IRm×n Ai ∈ IRn×n, Bi ∈ IRn×r, Gi ∈ IRn×rp , i = 1,2, . . . ,s, are constant
matrices, t ∈ IR is the time variable, hi(θ(t)) is the weight for i-th rule, satisfying, by
definition, the property

0¬ hi(θ(t))¬ 1,
s

∑
i=1

hi(θ(t)) = 1 for all i ∈ ⟨1, . . . ,s⟩ (3)

and
θ(t) =

[
θ1(t) θ2(t) · · · θv(t)

]
(4)
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is the vector of the premise variables, where s, v are the numbers of fuzzy rules and
premise variables, respectively. The nonlinear function p(t) ∈ IRrp is continuous and
implicitly given by [2]

p(t) = φ
(
V q(t)+Wp(t)

)
(5)

and V ∈ IRmp×n, W ∈ IRmp×rp are constant matrices.
It is supposed in the next that all premise variables are measurable and independent

on u(t) (more details can be found, e.g., in [14], [21]).

3. Preliminary results

Definition 3 Considering (1), (2), and using the same set of membership function, the
nonlinear state estimator is defined as

q̇e(t) =
s

∑
i=1

hi(θ(t))(Aiqe(t)+Biu(t)+Gipe(t))+ Ji(y(t)− ye(t))) , (6)

ye(t) =Cqe(t) , (7)

pe(t) = φ
(
V qe(t)+Wpe(t)+L(y(t)− ye(t))

)
, (8)

where qe(t)∈ IRn is the estimation of the system state vector, pe(t)∈ IRrp is the estimation
of the nonlinear function p(t) and Ji ∈ IRn×m, i = 1,2, . . . ,s, and L ∈ IRmp×m is the set of
the observer gain matrices, which has to be so designed that the observer is stable.

Proposition 1 (incremental quadratic constraint) If a matrix M ∈M , where M is the
set of real incremental multiplier matrices of dimension (mp + rp)× (mp + rp), then for
given matrices V ∈ IRmp×n, W ∈ IRmp×rp , L ∈ IRmp×m and C ∈ IRm×n the incremental
quadratic constraint is

[
eT (t) δpT (t)

]
N

[
e(t)

δp(t)

]
 0 , (9)

where

N =

[
(V −LC)T 0

0 Irp

]
QT MQ

[
V −LC 0

0 Irp

]
, (10)

Q =

[
Imp W

0 Irp

]
(11)

and Imp ∈ IRmp×mp , Irp ∈ IRrp×rp are the identity matrices.
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Proof (compare, e.g., [3]) Defining the state estimate error

e(t) = q(t)−qe(t) , (12)

(8) can be written as

pe(t) = φ(V (q(t)− e(t))+Wpe(t)+L(Cq(t)−C(q(t)− e(t))) =

= φ
(
V q(t)+Wpe(t)− (V −LC)e(t)

)
.

(13)

Introducing the variables
z1(t) =V q(t)+Wp(t) , (14)

z2(t) =V q(t)+Wpe(t)− (V −LC)e(t) , (15)

it yields
δz(t) = z1(t)− z2(t) = (V −LC)e(t)+Wδp(t) , (16)

where
δp(t) = p(t)−pe(t) . (17)

Since now (5), (13) implies

δp(t) = p(t)−pe(t) = φ(z1(t))−φ(z2(t)) = δφ(t) , (18)

writing (16), (18) compactly as[
δz(t)
δφ(t)

]
=

[
V −LC W

0 Irp

][
e(t)

δp(t)

]
, (19)

[
δz(t)
δφ(t)

]
=

[
Imp W
0 Irp

][
V −LC 0

0 Irp

][
e(t)

δp(t)

]
, (20)

respectively, then (20) for a symmetric M ∈M gives

[
δzT (t) δφT (t)

]
M

[
δz(t)
δφ(t)

]
=
[

eT (t) δpT (t)
]

N

[
δe(t)
δp(t)

]
 0 , (21)

where, evidently, N takes the structure (10). This concludes the proof.
Note, if the nonlinear term p(t) does not depends on the derivative of a state variable,

W is the zero matrix.
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4. Fuzzy observer design

To provide an asymptotic estimate of the system state, the design objective is to
give conditions on the observer gain matrices Ji, i = 1,2, . . . ,s, and L, which result in
asymptotic decaying the estimate error (12).

Theorem 9 The observer (6)-(8) is asymptotically stable if there exist symmetric pos-
itive definite matrices P ∈ IRn×n, X ∈ IRmp×mp , Y ∈ IRrp×rp and matrices Z ∈ IRmp×m,
Z j ∈ IRn×m such that

P = PT > 0, X = XT > 0, Y = Y T > 0 , (22)
PAi−ZiC+AT

i P−CT ZT
i ∗ ∗

GT
i P −Y ∗

XV −ZC XW −X

< 0 , (23)

for all i ∈ ⟨1,2, . . .s⟩.
If the above conditions hold, the observer gain matrices can be found as

L = X−1Z, Ji = P−1Zi, i = 1,2, . . . ,s . (24)

Here, and hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof If the Lyapunov function is defined as

v(e(t)) = eT (t)Pe(t)> 0 , (25)

where P = PT > 0, P ∈ IRn×n, then evaluation of the time derivative of v(e(t)) along a
observer trajectory leads to the result

v̇(e(t)) = ėT (t)Pe(t)+ eT (t)Pė(t)< 0 (26)

and using (1), (2) and (6), (7) it yields

ė(t) =
s
∑

i=1
hi(θ(t))(Aiq(t)+Biu(t)+Gip(t))−

−
s
∑

i=1
hi(θ(t))(Aiqe(t)+Biu(t)+Gipe(t))+ Ji(y(t)− ye(t)) ,

(27)

ė(t) =
s

∑
i=1

hi(θ(t))
(
(Ai− JiC)e(t)+Giδp(t)

)
, (28)

respectively. Substituting (28) in (26) results in

v̇(e(t)) =
s
∑

i=1
hi(θ(t))

(
(Ai− JiC)e(t)+Giδp(t)

)T Pe(t)+

+
s
∑

i=1
hi(θ(t))eT (t)P

(
(Ai− JiC)e(t)+Giδp(t)

) (29)
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and with the notation
e◦T (t) =

[
eT (t) δpT (t)

]
(30)

the time derivative of v(e(t)) can be written as

v̇(e(t)) =
s

∑
i=1

hie◦T (t)T ◦i e◦(t) , (31)

where

T ◦i =

[
P(Ai− JiC)+(Ai− JiC)T P PGi

GT
i P 0

]
. (32)

Since (32) is not of full structure, writing (9) and (30) as

e◦T (t)Ne◦(t) 0 (33)

and using the Krasovskii theorem (see, e.g., [8], [12]), then (31) can be defined as

v̇(e(t)) =
s

∑
i=1

hi(θ(t))e◦T (t)T ◦i e◦(t)¬−e◦T (t)Ne◦(t)< 0 , (34)

which implies

v(e(t))¬
s

∑
i=1

hi(θ(t))e◦T (t)(T ◦i +N)e◦(t)< 0 , (35)

T ◦i +N < 0 for all i , (36)

respectively.
Defining the incremental multiplier matrix as

M = diag
[

X −Y
]
, (37)

where X =XT > 0, X ∈ IRmp×mp , Y =Y T > 0, Y ∈ IRrp×rp , are symmetric positive definite
matrices, then (10) implies

N =

[
(V −LC)T 0

W T Irp

][
X 0
0 −Y

][
V −LC W

0 Irp

]
=

=

[
(V −LC)T X(V −LC) (V −LC)T XW

W T X(V −LC) W T XW −Y

]
,

(38)

N =

[
(V −LC)T

W T

]
X
[

V −LC W
]
−

[
0

Irp

]
Y
[

0 Irp

]
, (39)
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respectively. Introducing the matrix variables

Z = XL, Zi = PJi , (40)

(36) can be written as

T i +N =

[
(XV −ZC)T

W T X

]
X−1

[
XV −ZC XW

]
+

+

[
PAi−ZiC+AT

i P−CT ZT
i PGi

GT
i P −Y

]
< 0

(41)

and applying Schur complement property, (41) implies (23). This concludes the proof.

5. Enhanced design condition

In the previous section, was detailed how to find the fuzzy observer design condition
ensuring its asymptotic stability. To extend the affine TS fuzzy model principle by intro-
ducing the slack matrix variables into LMIs, so the system matrices are decoupled from
the Lyapunov matrix [10].

Theorem 10 The observer (6)-(8) is asymptotically stable if there exist symmetric pos-
itive definite matrices P,S ∈ IRn×n, X ∈ IRmp×mp , Y ∈ IRrp×rp , matrices Z ∈ IRmp×m,
Z j ∈ IRn×m and a positive scalar γ > 0, γ ∈ IR, such that

P = PT > 0, S = ST > 0, γ > 0 , (42)

X = XT > 0, Y = Y T > 0 , (43)
SAi−ZiC+AT

i S−CT ZT
i ∗ ∗ ∗

P−S+ γSAi− γZiC −2γS ∗ ∗
GT

i S γGT
i S −Y ∗

XV −ZC 0 XW −X

< 0 , (44)

for all i ∈ ⟨1,2, . . .s⟩.
If the above conditions hold, the observer gain matrices can be found as

L = X−1Z, Ji = S−1Zi, i = 1,2, . . . s . (45)

Proof Since (28) implies

s

∑
i=1

hi(θ(t))
(
(Ai− JiC)e(t)+Giδp(t)− ė(t)

)
= 0 , (46)
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then, with arbitrary symmetric positive definite matrices S1,S2 ∈ IRn×n, it yields[
eT (t)S1 ėT (t)S2

] s

∑
i=1

hi(θ(t))((Ai− JiC)e(t)+Giδp(t)− ė(t)) = 0 . (47)

Adding (47) as well as its transposition to (26) gives

v̇(e(t)) = ėT (t)Pe(t)+ eT (t)Pė(t)+

+
[

eT (t)S1 ėT (t)S2

] s
∑

i=1
hi(θ(t))((Ai− JiC)e(t)+Giδp(t)− ė(t))+

+
s
∑

i=1
hi(θ(t))((Ai− JiC)e(t)+Giδp(t)− ė(t))T

[
S1e(t) S2ė(t)

]
< 0

(48)

and with the notation

e•T (t) =
[

eT (t) ėT (t) δpT (t)
]

(49)

the time derivative of v(e(t)) can be written as

v̇(e(t)) =
s

∑
i=1

hi(θ(t))e•T (t)T •i e•(t) , (50)

where

T •i =

 S1(Ai− JiC)+(Ai− JiC)T S1 ∗ ∗
P−S1 +S2(Ai− JiC) −2S2 ∗

GT
i S1 GT

i S2 0

 . (51)

Using the incremental multiplier matrix (37), then (9) with respect to (49) implies

e•T (t)N •e•(t) 0 , (52)

where

N• =

 (V −LC)T

0
W T

X
[

V −LC 0 W
]
−

 0
0

Irp

Y
[

0 0 Irp

]
(53)

and, analogously to (35), it has to be

v(e(t))¬
s

∑
i=1

hie•T (t)(T •i +N •)e•(t)< 0 , (54)

T •i +N • < 0 , (55)
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S1(Ai− JiC)+(Ai− JiC)T S1 ∗ ∗ ∗
P−S1 +S2(Ai− JiC) −2S2 ∗ ∗

GT
i S1 GT

i S2 −Y ∗
XV −XLC 0 XW −X

< 0 , (56)

respectively. Nominating the matrix variables

S1 = S, S2 = γS, Z = XL, Zi = SJi (57)

where γ > 0, γ ∈ IR, (56) implies (44). This concludes the proof.
The importance of Theorem 10 is that it separates the matrix P from the system ma-

trices Ai, Bi, i.e. there are no terms containing product of P and any of them. This enables
to derive less conservative design conditions with respect to natural affine properties of
TS models.

6. Illustrative example

As an illustrative system model, the nonlinear dynamics of the ball-and-beam sys-
tem, represented by the nonlinear fourth order state-space model, was adopted from [7]
in the form

q̇1(t) = q2(t) , z(t) = q1(t) ,
q̇2(t) = a

(
q1(t)q2

4(t)−gsin(q3(t))
)
, y1(t) = q1(t) ,

q̇3(t) = q4(t) , y2(t) = q4(t) ,
q̇4(t) = u(t) , y3(t) = q3(t) ,

where the input variable u(t) is the angular acceleration of the beam [rad/s2], the output
variable y(t) is equal q1(t) and the measured variables are q1(t), q4(t) and q3(t), while
q1(t) is the position of the ball [m], q2(t) is the velocity of the ball [m/s], q3(t) is the
angle of the beam [rad] and q4(t) is the velocity of the beam [rad/s].

The nonlinear model parameters are

a =
m

m+ J
r2

= 0.7143 , g = 9.81 ,

where
m - the mass of the ball 0.11 kg ,
J - the inertia mom. of the ball 1.76∗10−5 kgm2,

r - the radius of the ball 0.02 m ,

g - the gravitational constant 9.81 m/s2.
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Introducing the premise variable

θ(t) = q1(t)q4(t)

which is bounded in the prescribed sector q1(t)q4(t) ∈ ⟨−d,d⟩ = ⟨−5,5⟩, the associated
sector functions, as well as the normalized membership functions, are

w2(q1(t)q4(t)) = h2(θ(t)) =


1, θ(t) d ,

1
d θ(t), 0 < θ(t)< d ,

0, θ(t)¬ 0 ,

w3(q1(t)q4(t)) = h3(θ(t)) =


0, θ(t) d ,

− 1
d θ(t), −d < θ(t)< 0 ,
1, θ(t)¬−d ,

w1(q1(t)q4(t)) = h1(θ(t)) = 1−h2(θ(t))−h3(θ(t))

and the nonlinear function p(t) is given as

p(t) = sin(q3(t)) = sin
([

0 0 1 0
]

q(t)
)
= sin(V q(t)+Wp(t)) ,

where

qT (t) =
[

q1(t) q2(t) q3(t) q4(t)
]
, V =

[
0 0 1 0

]
, W = 0 .

Evidently, since both q1(t), q4(t) are measured, the premise variable θ(t) = q1(t)q4(t)
can be computed.

Consequently, the representation of the nonlinear differential equations of the system
in a TS fuzzy system model gives

q̇(t) =
3

∑
i=1

hi(θ(t))(Aiq(t)+bu(t)+gp(t)) ,

y(t) =Cq(t) , z(t) = cT
z q(t) ,

A1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , A2 =


0 1 0 0
0 0 0 ad
0 0 0 1
0 0 0 0

 , A3 =


0 1 0 0
0 0 0 −ad
0 0 0 1
0 0 0 0

 ,

C =

 1 0 0 0
0 0 0 1
0 0 1 0

 ,
cT

z =
[

1 0 0 0
]
,

gT =
[

0 1 0 0
]
,

bT =
[

0 0 0 1
]
.
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Note, the pairs (Ai,C), i = 1,2,3, are observable.
Now, the obtained observer design conditions of Theorem 9 and Theorem 10 are

applied.
Using SeDuMi package for Matlab [9], [18] and solving (22), (23) for the matrix

variables P, X , Y , Z, Zi, i = 1,2,3, the task was feasible and the parameters were fol-
lowing

P =


0.7503 −0.2604 0.0000 0.0000
−0.2604 0.2523 0.0000 0.0000

0.0000 0.0000 0.6280 −0.0848
0.0000 0.0000 −0.0848 0.7598

 ,
X = 0.8258, Y = 0.8258, L =

[
0.0000 0.0046 0.9457

]
,

J1 =


2.3545 0.0000 0.0000
4.9549 0.0000 0.0000
0.0000 0.5301 0.7720
0.0000 0.5471 0.4632

 ,

J2 =


2.3551 0.9264 0.0010
4.9342 4.2713 0.0136
−0.0798 0.5314 0.7719
−0.5577 0.5601 0.4628

 , J3 =


2.3551 −0.9264 −0.0010
4.9342 −4.2713 −0.0136
0.0798 0.5314 0.7719
0.5577 0.5601 0.4628

 ,
by which the stable global observer was obtained with the sets of stable eigenvalue spec-
trum of subsystems

ρ(Ae1) = {−0.6595±0.4528i −1.1773±1.8892i} ,

ρ(Ae2) = ρ(Ae3) = {−0.6771±0.4268i −1.1665±2.0191i} ,

where Aei = Ai− JiC, i = 1,2,3.
The comparison among both design conditions is necessary. By the enhanced design

conditions, i.e., by solving (42)–(44) for LMI variables P, S, X , Y , Z, Zi, i = 1,2,3 and
given δ = 2, the following results were obtained

P =


0.6236 −0.2111 0.0000 0.0000
−0.2111 0.2747 0.0000 0.0000

0.0000 0.0000 0.3570 −0.0317
0.0000 0.0000 −0.0317 0.5061

 ,
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S =


0.1050 −0.0649 0.0000 0.0000
−0.0649 0.1531 0.0000 0.0000

0.0000 0.0000 0.1610 0.0021
0.0000 0.0000 0.0021 0.1441

 ,
X = 0.3715 , Y = 0.3715 , L =

[
0.0000 0.0000 1.0000

]
,

J1 =


3.0108 0.0000 0.0000
1.3983 0.0000 0.0000
0.0000 0.8134 0.2251
0.0000 1.1038 −0.1398

 , J2 = J3 =


3.0117 0.0000 0.0000
1.3987 0.0000 0.0000
0.0000 0.8134 0.2254
0.0000 1.1032 −0.1398

 ,
ρ(Ae1) = {−0.1964 −0.5737 −1.1326 −2.4371} ,

ρ(Ae2) = ρ(Ae3) = {−0.1966 −0.5737 −1.1319 −2.4380} .

Comparing with the first approach, the enhanced method tends to produce the same
subsystem observer gain matrices, which can radically reduce the fuzzy observer struc-
tures, since the result tends to be a linear observer for the nonlinear system. Moreover,
the solution from Theorem 10 is less conservative than an equivalent solution from The-
orem 9 and gives a strictly aperiodically observer state variables response.

It should be pointed out that the proposed technique, using TS models with VNT,
might give more conservative results than the existing ones in some cases, but the ad-
vantage of them consists of designing a fuzzy observer with fewer rules and less com-
putational burden. Compared with the standard algorithms [11], the number of premise
variables in this example is one smaller and the number of rules was reduced from six to
three.

7. Concluding remarks

Newly extended nonlinear fuzzy observer design principle, based on the TS state-
space models with VNT, is presented in the paper. This is achieved by application of
an enhanced Lyapunov inequality, reflecting the incremental quadratic constraint pa-
rameterized by a symmetric multiplier matrix, the Krasovskii theorem, as well as the
Lyapunov matrix decoupling principle realized by using symmetric slack matrices and a
tuning parameter. Since the stability conditions based on the standard form of the Lya-
punov inequality are very conservative as a common symmetric positive definite matrix
verifying all Lyapunov inequalities is required, the presented principle, naturally exploit-
ing the affine properties of TS fuzzy models, strictly decouples Lyapunov matrix and the
system parameter matrices in the resulting LMIs, and significantly reduces the conserva-
tiveness in the fuzzy observer design, comparing with the standard Lyapunov inequality
approach.
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In the presented version, the observer stability problem is solved considering premise
variables determined from the set of measurable state variables and the main aim was to
reduce the number of premise variables, such as fuzzy rules.
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