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Improved direct torque control of induction motors
using adaptive observer and sliding mode control

DJILALI KOUCHIH, MOHAMED TADJINE and MOHAMED SEGHIR BOUCHERIT

This paper presents the synthesis of an adaptive observer which is used for the improvement
of the direct torque control of induction motor drives. The observer detects stator flux compo-
nents in two-phase stationary reference frame, rotor speed and stator resistance by measure
of the stator terminal voltages and currents. The observer is adapted using a simple algorithm
which does not imply a high computational load. Stability analysis based on Lyapunov theory
is performed in order to guarantee the closed loop stability. Simulation tests under load distur-
bance and stator resistance variation are provided to evaluate the consistency and performance
of the proposed control technique in the low and high speeds.

Key words: adaptive observer, direct torque control, induction motor, sensorless, sliding
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1. Introduction

Direct Torque Control (DTC) is currently known as the technique being mostly em-
ployed to control induction motors (IM). It requires accurate knowledge of the magni-
tude and the angular position of the controlled flux. The flux is conventionally obtained
from the stator voltage model, using the measured stator voltages and currents [1-2].
This method uses open loop pure integration and suffers from the well known problems,
especially at low speed operation mode [3].

Many researchers have been involved in designing of sensorless control of the IM.
Most methods are essentially based on the Model Reference Adaptive System (MRAS)
or on the reactive power based reference model [4-5]. The MRAS algorithm is very sim-
ple but its greatest drawback is the sensitivity to uncertainties in the motor parameters.
Others methods, based on Extended Kalman Filter (EKF) or on the intelligent techniques
(fuzzy logic and neural networks), have been used by many authors [6-11]. These meth-
ods imply a high computational load. In addition, the variable structure techniques are
also used by many researchers [12-16].
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Generally, the rotor speed estimation is affected by parameter variations, especially
the stator resistance due to temperature, particularly at low speeds [17-18]. Therefore, to
improve the estimation of the components of the stator flux, it’s necessary to compensate
this parameter variation in sensorless control by using an online adaptation of the stator
resistance.

On the other hand and for the speed control, the parametric variation modifies the
performances of the control system when we use regulator with fixed parameters. How-
ever, the performances will be degraded face to internal and external disturbances [19].
To offer control robustness, many strategies have been proposed in literature [20-24]. In
this work, we are interested to the Sliding Mode Control (SMC). The SMC can offer
many good properties [25]. The problem of undesirable chattering can be remedied by
replacing the switching function by a smooth continuous function [26].

2. DTC strategy

2.1. Principles

The basic idea of the DTC is to choose the optimal vector voltage which produces
the desired flux and torque. The stator flux is given by:

Φs = Φs0 +

t∫
0

(V s −RsIs)dt. (1)

If the stator resistance is ignored, the stator flux can be approximated:

Φs ≈ Φs0 +

t∫
0

V sdt. (2)

During one period of sampling Te, the vector voltage applied to the machine remains
constant, we can write:

Φs(k+1)≈ Φs(k)+V sTe, (3)

so the increment is
∆Φs ≈V sTe. (4)

Therefore, to increase the stator flux, we can apply a vector of voltage that is co-linear
in its direction and vice-versa.

The electromagnetic torque produced by the IM can be expressed:

Ce = kT ΦsΦr sinγ (5)

where kT is a constant [18]. The electromagnetic torque depends upon the effective value
of the stator flux and rotor flux and their relative position γ. Actual torque and flux are
compared with the reference values and control signals are produced.
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The stator voltage is being obtained using the following equation:

V s =
2Udc

3

[
Sa +Sbe j 2π

3 +Sce j 4π
3

]
(6)

where Udc, Si (i = a,b,c) are DC voltage and the signals of the gats of the inverter,
respectively. The choice of the stator vector voltage depends on the desired variation for
the module of stator flux, upon its rotation sense and the desired evolution for the torque.
Through the components of stator flux indicated by the reference point (α,β) bound to
the stator, we can decompose the space of stator flux into six sectors [12]. The block
diagram of an induction motor based DTC strategy is drawn in figure 1. The structure of
adaptive observer is presented in figure 2.

Figure 1. DTC bloc diagram.

Figure 2. Global adaptive observer.
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2.2. Correction of the stator flux

We use a two-level comparison of hysteresis in order to maintain the extremity of the
vector of stator flux in one circular crown. A Boolean variable indicates if the amplitude
of the flux must be increased (δ = 1) or (δ = 0) decreased in order to maintain:

|Φ∗
s −Φs|¬ ∆Φs (7)

where Φ∗
s is the reference stator flux and ∆Φs the stator flux hysteresis band.

2.3. Correction of the torque

We use a three-level comparison of hysteresis in order to control the motor in both
senses of rotation. Variable µ indicates if the torque must be increased (µ = 1), to main-
tain its constant (µ = 0) and (µ = −1) to reduce the torque. This correction assures to
operate in all four quadrants.

The stator voltage applied to the motor depends upon the position of the stator flux
in the sectors. The optimal switching logic defines the best vector and flux references.
Table 1 shows the switching order.

Table 5. Switching table of the IM based DTC

Sectors 1 2 3 4 5 6

δ = 1
µ =+1 110 010 011 001 101 100
µ = 0 111 000 111 000 111 000

µ =−1 101 100 110 010 011 001

δ = 0
µ =+1 010 011 001 101 100 110
µ = 0 000 111 000 111 000 111

µ =−1 001 101 100 110 010 011

2.4. Correction of mechanical speed

To correct the mechanical speed, we use a sliding mode controller. The sliding mode
technique is developed from variable structure control to reject the disturbances, model-
ing uncertainties or parameter variation. It is a technique to adjust feedback by previously
defining surface [25]. The system which is controlled will be forced to that surface, then
the behavior of the system slides to the desired equilibrium point.

Design of the control system will be demonstrated for a nonlinear multi-input system
of the form [25]:

X (ni)
i (t) = fi(X)+

m

∑
j=1

bi j(X)U j, i = 1, ...,m, j = 1, ...,m (8)
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where the vector U of components U j is the control input vector, and the state X is
composed with Xi and their first (ni − 1) derivatives. Such systems are called square
systems, since they have as many control inputs U j as states to be controlled Xi. We are
interested in the problem of having the state X track a desired time-varying state Xd .

Let us define a vector s of components si by:

si =

(
d
dt

+λi

)ni−1

ei, (9)

ei = Xd
i −Xi. (10)

The purpose of the sliding mode control is to keep the system motion on the manifold
S, which is defined as:

S = {X : e = 0} (11)

where e is the tracking error vector

e = Xd −X . (12)

The sliding mode control should be chosen such that the candidate Lyapunov func-
tion Vi satisfies the Lyapunov stability criteria. If we let:

Vi =
1
2

s2
i (13)

then
V̇i = siṡi. (14)

The candidate Lyapunov function should satisfy the Lyapunov stability criteria. This can
be assured for:

1
2

d
dt

s2
i =−ηi |si| ηi > 0. (15)

Equation (13) states that the squared distance to the surface, measured by s2
i decreases

along all system trajectories. The control function can be expressed as follows [26]:

Ucom
i =Ueq

i +Un
i (16)

Where Ueq
i is the equivalent control function and Un

i is the correction factor which must
be calculated so that the Lyapunov stability condition is satisfied. The correction factor
can be expressed as [19]:

Un
i = Kisgn(si). (17)

Here sgn is the sign function and Ki is the controller gain designed from the Lyapunov
stability. It was well known that sliding mode technique generates undesirable chatter-
ing. This problem can be remedied by replacing the switching function by a smooth
continuous function. One possible approximation is the sigmoid-like function [26]

sat (si) =
si

|si|+ψi
(18)
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where ψi is a small positive scalar.
For the correction of the mechanical speed, the control function will satisfy reaching

conditions in the following form

T ∗
e = T eq

e +T n
e (19)

where T ∗
e is the reference torque, T eq

e is the equivalent control torque, T n
e is the correction

factor and must be calculated so that the stability condition for the selected control is
satisfied.

For n = 1, the sliding surface can be expressed by:

s(Ω) = Ω∗−Ω. (20)

During the sliding mode and in permanent regime, we have:

s(Ω) = 0, ṡ(Ω) = 0. (21)

We have
Ω̇ =

1
J
(Te−Tl − f vΩ) (22)

where J is the inertia of the rotor and the connected load, Te the electromagnetic torque,
Tl the load torque, Ω is the mechanical angular speed and fv is the viscose friction coef-
ficient. The equivalent control can be expressed as follows

T eq
e = J

(
Ω̇∗+Tl + fvΩ

)
. (23)

During the convergence mode, the condition s(Ω)ṡ(Ω)¬ 0 must be verified. We obtain:

ṡ(Ω) =−1
J

T n
e . (24)

Therefore the correction factor is given by:

T n
e = K · sat (s) . (25)

To verify the system stability condition, parameter K must be positive.

3. Adaptive observer

The objective is to determine the adaptation mechanism of the speed and the stator
resistance. The structure of the observer is based on the induction motor model in stator
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reference frame. The state equations of the induction motor can be expressed as follows
[27]:

diαs

dt
=− 1

σLs

(
Rs +Rr

L2
m

L2
r

)
iαs +

1
σLs

Rr
Lm

L2
r

Φαr +
1

σLs
ω

Lm

Lr
Φβr +

1
σLs

vαs

diβs

dt
=− 1

σLs

(
Rs +Rr

L2
m

L2
r

)
iβs −

1
σLs

ω
Lm

Lr
Φαr +

1
σLs

Rr
Lm

L2
r

Φβr +
1

σLs
vβs

dΦαr

dt
=

RrLm

Lr
iαs −

Rr

Lr
Φαr −ωΦβr

dΦβr

dt
=

RrLm

Lr
iβs −

Rr

Lr
Φβr +ωΦαr

(26)

where vαs, vβs are the components of stator voltage vector, ids, iqs are the components
of stator current vector, Φαr, Φβr are the components of rotor flux vector, σ is the leak-
age factor, Rs and Rr are stator and rotor resistance, Ls and Lr represent the stator and
rotor cyclic inductances and Lm is the stator-rotor cyclic mutual inductance. ω is the
mechanical pulsation.

The previous state system can be expressed in the form:
dX
dt

= AX +BU

Y =CX
(27)

where

XT =
(
iαs iβs Φαr Φβr

)
, Y =

(
iαs

iβs

)
, U =

(
vαs

vβs

)
.

The matrices are defined by:

A =



−a 0
RrLm

Lrb
ω

Lm

b

0 −a −ω
Lm

b
RrLm

Lrb
RrLm

Lr
0 −Rr

Lr
−ω

0
RrLm

Lr
+ω −Rr

Lr



B =



1
σLs

0

0
1

σLs
0 0
0 0

 , C =

(
1 0 0 0
0 1 0 0

)
,
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a =
1

σLs

(
Rs +Rr

L2
m

L2
r

)
, b = σLsLr, σ = 1− L2

m

LsLr

A linear state observer can be then derived by considering the mechanical speed
as a constant parameter since its variation is very slow in comparison to the electrical
variables. The model of the observer is defined as follows [28]:

dX̂
dt

= ÂX̂ +BU +G
(
Ŷ −Y

)
Ŷ =CX̂ .

(28)

The machine parameters are assumed to be perfectly known, the mechanical pulsation
and the stator resistance are unknown. Let define:

δω = ω̂−ω
δRs = R̂s −Rs.

(29)

The symbol „^” denotes estimated values and G is the observer gain matrix.
We will determine the differential system describing the evolution of the error:

e = X − X̂ . (30)

The state matrix of the observer can be written as:

Â = A+δA (31)

where

δA =



− 1
σLs

δRs 0 0
Lm

b
δω

0 − 1
σLs

δRs −Lm

b
δω 0

0 0 0 −δω
0 0 +δω 0


. (32)

Then, we can write:
dX̂
dt

= ÂX̂ +BU +G
(
Ŷ −Y

)
(33)

or
dX̂
dt

= ÂX̂ +BU +GCe. (34)

From (27), (28) and (30), we get:

de
dt

= AX − ÂX̂ +GCe, (35)
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thus
de
dt

= (A+GC)e−δAX̂ . (36)

Let define the Lyapunov function as:

V = eT e+
(δω)2

λ1
+

(δRs)
2

λ2
(37)

where λ1 and λ2 are positive scalars. This function should contain terms of the differ-
ences δω and δRs to obtain mechanism adaptation.

The stability of the observer is guaranteed for the condition [25]:

dV
dt

< 0. (38)

The derivative of the Lyapunov function is as follows

dV
dt

= 2eT de
dt

+2
δω
λ1

dδω
dt

+2
δRs

λ2

dδRs

dt
. (39)

First element of (39) can easily calculated

2eT de
dt

= 2eT (A+GC)e−2eT δAX̂ . (40)

The rotor flux components can not be measured. The flux dynamic is faster than the
machine parameters dynamic. Therefore, to simplify (40), we can accept that

Φ̂αr = Φαr

Φ̂βr = Φβr.
(41)

Thus
eT δAX̂ =

Lm

b
δω
(
Φ̂βreiαs − Φ̂αreiβs

)
− 1

σLs
δRs
(
îαseiαs + îβseiβs

)
. (42)

For the second and third terms of (39), we can write

2
δω
λ

dδω
dt

= 2
δω
λ1

d
dt

ω̂−2
δω
λ1

d
dt

ω

2
δRs

λ2

dδRs

dt
= 2

δRs

λ2

d
dt

R̂s −2
δRs

λ2

d
dt

Rs.

(43)

We consider the hypothesis of a slowly varying regime for the machine parameters, thus:

dω
dt

≈ 0

dRs

dt
≈ 0,

(44)
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thus
dω̂
dt

=
dδω
dt

dR̂s

dt
=

dδRs

dt
.

(45)

Finally, we obtain:

dV
dt

= 2eT (A+GC)e− 2Lm

b
δω
(
Φ̂βreiαs − Φ̂αreiβs

)
(46)

+
2

σLs
δRs
(
îαseiαs + îβseiβs

)
+2

δω
λ1

d
dt

ω̂+2
δRs

λ2

d
dt

R̂s.

If the term dV
dt = 2eT (A+GC)e is negative, the condition dV

dt < 0 is verified for:

2
σLs

δRs
(
îαseiαs + îβseiβs

)
− 2Lm

b
δω
(
Φ̂βreiαs − Φ̂αreiβs

)
(47)

+2
δω
λ1

d
dt

ω̂+2
δRs

λ2

d
dt

R̂s = 0.

This condition can be verified if:
2

δω
λ1

d
dt

ω̂ =
2Lm

b
δω
(
Φ̂βreiαs − Φ̂αreiβs

)
2

δRs

λ2

d
dt

R̂s =− 2
σLs

δRs
(
îαseiαs + îβseiβs

)
.

(48)

We obtain the adaptation mechanism in the form:
ω̂ =

∫
λ1

Lm

b

(
Φ̂βreiαs − Φ̂αreiβs

)
dt

R̂s =
∫

−λ2
1

σLs

(
îαseiαs + îβseiβs

)
dt.

(49)

The matrix of gain G is selected such as the eigenvalues of the matrix A+GC are in
the left plane half of the complex plan and that the real part of the eigenvalues is larger
in absolute value than the real part of the eigenvalues of the state matrix A [28].

The estimated electromagnetic torque is expressed as: We obtain the adaptation
mechanism in the form:

Ĉe =
3
2

p
Lm

Lr

(
Φ̂αr îβs − Φ̂βr îαs

)
. (50)

The reference of the stator flux Φsn is deduced using the equation of the induction motor
steady-state model.

Vsn = Φsn
Rs

Ls

√√√√√√
(

1−σ LsLr
RsRr

ωslωs

)2
+
(

Lr
Rr

ωsl +
Ls
Rs

ωs

)2

1+
(

σωslLr
Rr

)2 (51)
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where ωsl is the rotor variables pulsation in nominal mode and Vsn is the nominal value
of the stator phase voltage.

4. Simulation results

The technique presented in the previous sections, has been implemented in the MAT-
LAB environment. The IM parameters has been as follows: 3 [kW], 220/380 [V], 50
[Hz], Rs = Rr = 1.84[Ω], Ls = Lr = 0.17 [H], Lm = 0.16 [H], J = 0.0145 [kgm2],
fv = 0.0038 [Nms/rd].

4.1. Low speeds

To illustrate performances of the proposed control, we simulated a load-less starting
up mode and nominal torque applied at time t = 0.3 [sec]. The synthesized observer
allows us to reconstruct all the state variables. For the DTC simulation, torque and flux
hysteresis bands are 0.2 [Nm] and 0.01 [Wb] respectively. The load torque is fixed to 20
[Nm]. The speed of reference equals to ±50 [rpm]. Figures 3-8 summarizes the control
system performance.

Figure 3. Observed and reference rotor speed. Figure 4. Observed electromagnetic torque.

4.2. High speed mode

The high speed mode depends on the machine and load mechanical possibilities.
The load torque is an important factor for the choice of the acceptable high speed. The
high speed mode is important, particularly in the case of electrical vehicles, wherein, we
adopt the weakening of stator flux – see figure 9.

We simulated a load-less starting up mode with a speed of reference equals to 1415
[rpm]. Then at t = 0.5 [sec], we imposed a high speed of 2000 [rpm]. The simulation
results are shown in figures 10-12.
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Figure 5. Effective value of the stator flux. Figure 6. The hodograph of the stator flux vector.

Figure 7. Direct and quadrature stator currents errors.

Figure 8. Observed stator resistance.

From the simulation results, we can estimate the machine variables in the different
working from low to high speeds. It appears that the load torque and stator resistance
variations do not allocate the performances of the proposed control. The flux tracks the
reference value and it is insensitive to parameters variation. The speed response also

10.2478/acsc-2013-0022
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Figure 9. Reference stator flux.

Figure 10. Observed and referenced rotor speed.

Figure 11. Effective value of the stator. Figure 12. The hodograph of the stator flux vector.

stays insensitive to parameters variation. The global control scheme introduces high per-
formances of robustness, stability and precision, particularly, under uncertainties caused
by parameter variation.
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5. Conclusion

In this paper a new adaptive observer design method has been presented. The global
control scheme introduces high performances of robustness. Stability and precision, par-
ticularly, under uncertainties caused by load and stator resistance variation is also pre-
served. Furthermore, this observation method presents a simple algorithm that has the
advantage to be easily implementable.

The adaptive observer uses an adaptive mechanism for the speed and the stator re-
sistance estimation. This approach relies on the improvement of an estimation of the
components of the stator flux.

We can note that the estimation of the stator flux by the adaptive observer makes the
IM based on DTC more robust if stability is concerned.
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