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Lagrange and practical stability criteria for dynamical
systems with nonlinear perturbations

ASSEN V. KRUMOV

In the paper two classes of nonlinear dynamical system with perturbations are considered.
The sufficient conditions for robust Lagrange and practical stability are proven with theorems,
applying the theory of nonlinear operators of the functional analysis. The presented criteria give
also the bounds of the analyzed dynamical processes. Three examples comparing the numerical
computer solutions and the analytical investigation of the stability of the systems are given. The
method can be applied to analytical and computer modeling of nonlinear dynamical systems,
synthesis of computer control and optimization.
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1. Introduction

In the known scientific literature on the perturbation methods [3], [9], [4], [13] usu-
ally the problem of stability, especially of systems with nonlinear perturbations is rarely
considered. In [8] stability bounds are defined in the case of linear perturbation; in [11]
conditions, which ensure closed loop asymptotic stability are given; in [2] exponential
stability of nonlinear system with delayed perturbation is investigated; in [16] expo-
nential stability of singularly perturbed nonlinear system is considered. The sufficient
conditions for robust application of the perturbation method are investigated in [7], but
the bounds of the nonlinear dynamic process are not explicitly given.

In none of the above mentioned paper the problems of Lagrange and practical sta-
bility are solved. Yet another shortcoming of these papers is that their results are not
applicable in the case of perturbations containing derivatives of the variables, describing
the dynamical system.

In the present paper, method and criteria for determining the sufficient conditions for
robust Lagrange and practical stability of a class of dynamical systems with nonlinear
perturbations are suggested. They are proven with theorems, applying the theory of non-
linear operators of the functional analysis. The presented criteria give also the bounds
of the analyzed dynamical processes. The robustness of the suggested criteria can be
achieved by taking into account the worst case values of the parameters and functions,
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when estimating the norms of the operators. The perturbations in this method can contain
derivatives of the variables.

The mathematical methods of the functional analysis and especially the methods of
nonlinear functional analysis are applied in this paper. The are outlined in [14], [15], [1],
[6], [10].

2. Lagrange stability criterion for dynamical systems with nonlinear
perturbations

General case of dynamical systems with nonlinear perturbations can be described by
the following equation

dXXX
dt

+AAA(P)XXX +FFF(t,P)−φ[XXX ,
dXXX
dt

,P] = 0, (1)

where AAA, XXX , FFF(t) are matrices, P is a set of parameters, and φ is a nonlinear function of
its arguments. In the sequel P will be taken into account only when it is necessary and
usually to estimate of the norms. The linear part of (1), namely

L =
dXXX
dt

+AAAXXX +FFF(t) (1a)

can be considered as first approximation of (1) and φ as residual or perturbation.
In the general case FFF(t) contains the input signals, including control signals UUU(t):

FFF(t) = BBB(t)UUU(t) (1b)

For the purpose of the proposed method a "big’ parameter µ is introduced [7]:

L−µφ = 0. (2)

Obviously if µ = 1 then the system (2) is identical to (1) and this is the case when the
suggested method can be applied.

The operator equations, corresponding to (2) are

Q(XXX ,µ) = 0, (3)

Q(XXX0,µ0) = 0. (4)

Further will be considered that :

µ0 = 0, XXX(µ0) = XXX0. (5)

The element XXX0 can be found for µ = µ0 = 0 using the Green matrix GGG(t −τ) [5] for
the linear part L:
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XXX0(t) = GGG(t)XXX(0)−
t∫

0

GGG(t − τ)FFF(τ)τ, (6)

where the initial conditions are:

XXX(0) = XXX0(0). (7)

For the nonlinear operator Q(XXX ,µ) the homogeneous forms Cpq of the polylinear
operator C̃pq can be found as Gateaux or Frechet derivatives [1], [6]:

Cpq =
1

p!q!
Q(p+q)

µpxq (XXX0,µ0). (8)

The inverse operator C−1
01 is:

Γ01 =C−1
01 =

[
∂

∂XXX
Q(XXX0,µ0)

]−1

=

[
∂
∂c

Q(XXX0 + cHHH,µ0)c=0

]−1

. (9)

The operators ∏̃pq

∏̃pq =−Γ01[C̃pq] (10)

and C̃pq are polylinear symmetrical operators [1], [6], whose homogeneous forms are
∏pq and Cpq . The norms of C̃pq and Cpq are:

||C̃pq||= sup
||H1||...||Hq||¬1

||C̃pq(H1,H2, . . .Hq)|| (11)

||Cpq||= sup
||H||=1

||C̃pq(H)|| (12)

These two norms are connected with the inequality:

||Cpq||¬ ||C̃pq||¬
qq

q!
||Cpq|| (13)

For the further consideration the majorant estimations vpq of the norms of operators will
be introduced:

vpq = Π01 = 0 (14)

||Π̃pq||¬ ||Γ01|| · ||C̃pq||¬ vpq. (15)

They can always be used for a construction of equation, called majorant:
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η =
∞

∑
p+q­1

vpqξpηq. (16)

If the right part of (16) is convergent with a sum ρ(η,ξ) then:

η = ρ(η,ξ) (17)

There can exist solution η∗(ξ) of (17) satisfying the equation:

η∗(0) = 0. (18)

The above definitions and formulas will be used in the following theorem, giving the
sufficient conditions for Lagrange stability of the nonlinear system (1). The most useful
norms of the Banach spaces can be found in [12].

Theorem 1 The sufficient conditions for Lagrange stability of the nonlinear system (1)
are:

a) The solution XXX0 of the linear system (1a): L = 0 is bounded for t ∈ [0,T ], p ∈ P.

b) The operator Q(XXX ,µ) is analytical, there exist bounded inverse operator C−1
01 and

the Gateaux derivative of Q(XXX0,µ0) is continuous for:

||XXX −XXX0||¬ a, |µ−µ0|¬ 1. (19)

c) There is solution η∗(ξ) of the majorant equation (16) for the operator Q(XXX ,µ)
which satisfies the conditions:

0 < η∗(1)¬ a, η∗(0) = 0 (20)

and there is no singular point of η∗(ξ) for ξ¬ 1.

Then the solution XXX of the nonlinear system (1) is bounded and stable for t ∈ [0,T ],
p ∈ P:

||XXX ||¬ ||XXX0||+η∗(ξ = 1). (21)

Proof The analytical operator Q(XXX ,µ) can be developed in convergent Taylor series [1],
[6]:

Q(XXX ,µ) = Q(XXX0,µ0)+
∞

∑
p+q­1

(µ−µ0)
pCpq(XXX −XXX0). (22)
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If the operator C−1
01 is bounded and the Gateaux derivative is continuous in the intervals

(19), then there exist only one analytical solution XXX(µ) of Q(XXX ,µ) = 0:

XXX(µ)−XXX0 = (µ−µ0)XXX1 +(µ−µ0)
2XXX2 + . . . (23)

Taking into account (10) and (14) the equation (22) can be transformed:

XXX −XXX0 =
∞

∑
p+q­1

(µ−µ0)
pΠpq(XXX −XXX0). (24)

After replacement of XXX −XXX0 in (24) with (23) the result is:

||XXXm+1||= ∑ (α1+α2+...αm)!
α1 !α2 !...αm !

Π̃pq(XXX1)
α1 . . .(XXXm)

αm (25)

where p+α1 + · · ·+mαm = m+ 1, α1 + · · ·+αm = q and for the norms the following
inequality is valid:

||XXXm+1||¬∑ (α1+α2+...αm)!
α1 !α2 !...αm !

||Π̃pq|| · ||XXX1||α1 . . . ||XXXm||αm . (26)

The majorant equation (16) has only one solution if the operator:

g(ξ,η) = η−
∞

∑
p+q­1

vpqξpηq (27)

has a continuous reverse operator g(ξ,η) found as Gateaux derivative

g′η(0,0) = HHH − v01HHH = HHH. (28)

g′η(0,0) satisfies this condition and hence there is only one solution:

η =
∞

∑
p=1

βpξp, η(0) = 0. (29)

For small enough ξ the solution 29) is convergent and r0 is its radius of convergence.
To determine βk, the series (29) is substituted in (16). The quantities containing ξ

with the same power form the following equations for different m:

βm+1 = ∑ (α1+α2+...αm)!
α1 !α2 !...αm !

vpqβα1
1 . . .βαm

m ξp (30)

where p+α1 + · · ·+mαm = m+1, α1 + · · ·+αm = q.
Applying the method of mathematical induction it can be proven that:

||XXXk||¬ βk (31)

for each k. Indeed,
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β1 = v10, ||XXX1||¬ v10. (32)

Hence

||XXX1||¬ β1. (33)

Equations (30) and (26) can be compared to find out that if inequality (31) is satisfied
for k = m, then it will be satisfied also for k = m+ 1, which means that (31) is true for
arbitrary k.

Inequality (31) shows that the series (29) is majorant in relation to (23) and, (23) is
convergent for |µ−µ0|¬ r0:

||XXX −XXX0||¬ ||XXX1|| · |µ−µ0|+ ||XXX2|| · |µ−µ0|2 + · · ·¬
∞

∑
p=1

βk|µ−µ0|p. (34)

If the right partof the majorant equation (16) is convergent with a sum ρ(η,ξ), then the
solution of (16) will not be the series (29) but a function η∗(ξ), satisfying the condition
(18). If this function has no singular point for ξ ¬ 1, then it can be developed in series
(29) with a sum equal to η∗(ξ) and hence for µ = 1, µ0 = 0:

||XXX −XXX0||¬ η∗ (|µ−µ0|) = η∗(1)¬ a (35)

or
||XXX ||− ||XXX0||¬ ||XXX −XXX0||¬ η∗(1)¬ a

||XXX ||¬ ||XXX0||+η∗(ξ = 1) (36a)

||XXX ||¬ ||XXX0||+a. (36b)

So the solution XXX is bounded and has Lagrange stability.

3. Definition and analysis of the practical stability

The method described in the previous section can be used to analyze practical stabil-
ity of the dynamical system with nonlinear perturbation (1). The following definition of
practical stability can be accepted. For a given sets Q and Q0:

Q{XXX : ||XXX ||¬ RQ}, Q0 ⊆ Q, (37)

where Q is the set containing XXX and Q0 is a subset containing the initial values of XXX :
XXX(0) ∈ Q0, the dynamical system is practically stable if XXX ∈ Q for t ∈ [0,T ], where T
can be finite or T → ∞. The definition of practical stability is illustrated graphically in
Fig. 1.
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Figure 1. Graphical illustration of the practical stability.

The investigation of Lagrange and practical stability is much easier in the case of
zero initial conditions; especially the calculation of the norm of the inverse operator Γ01.
For this purpose the following substitution can be done:

XXX = YYY +XXX(0). (38)

After replacement in (1) one obtains:

dYYY
dt

+AAA(P)YYY +FFF(t,P)+AAA(P)XXX(0)−φ
[
YYY ,

YYY
dt
,XXX(0),P

]
= 0, (39)

where the initial conditions for YYY are zero and AAA(P)XXX(0) is constant and can be
considered as an input signal. The element of the solution XXX0 is defined in this case by
the input signals FFF(t,P) and AAA(P)X(0).

Example 1

The equation:

1
3

d2x
dt2 +

5
3

dx
dt

+2.2sin(250 + x) = M, M ∈ [1.1, 2.4] (40)

can be represented in the following way, which reduces the norms of the perturbation:

1
3

d2x
dt2 +

5
3

dx
dt

+2x+µ{2.2sin(250 + x)−2x−0.931}= M−0.931. (41)

The described method will be applied directly to (41) without transforming it into a
system of two equations of first order.
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The operators Cpq and their norms for M = 1.1 are:

C10 = 2.2sin(250 + x0)−2x0 −0.931,
C11 = 2.2cos(250)+ x0)H −2H, (42)

C1q = 2.2sin
(

250 + x0 +q
π
2

)
Hq

C01(H) =
1
3

d2H
dt2 +

5
3

dH
dt

+2H (43)

g(t − τ) = 3{exp[−2(t − τ)]− exp[−3(t − τ)]} (44)

For µ = 0 and x = x0:

x0(t) =
t∫

0

g(t − τ)Mdτ =
1
2
(M−0.931)[1+2exp(−3t)−3exp(−2t)],

(45)
||x0(t)||= sup

0¬t¬∞,M=1.1
|x0(t)|= 0.0845

||C10||= sup
0¬t¬∞,M=1.1

∣∣2.2sin(250 + x0)−2x0 −0.931
∣∣= 0.079 (46)

||C11||= sup
0¬t¬∞,M=1.1

||C11(H)||¬ sup
0¬t¬∞,M=1.1

∣∣2.2sin(250 + x0)−2
∣∣ ||H||,

(47)
||C11||= 0.0915

||C1q||= sup
0¬t¬∞,M=1.1

∣∣∣2.2cos
(

250 + x0 +q
π
2

)∣∣∣= 1.906 (48)

||Γ−1y||= sup
0¬t¬∞

∣∣∣∣∣∣
t∫

0

g(t − τ)y(τ)dτ

∣∣∣∣∣∣¬ sup
0¬t¬∞

|y(t)| sup
0¬t¬∞

t∫
0

|g(t − τ)|dτ =

(49)
||y|| sup

0¬t¬∞
{0.5(1+2exp(−3t)−3exp(−2t))}

In this case:

||Γ−1||= sup
||y||=1

||Γ−1y||= 0.5 (50)
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According to (16) the following mojorant equation is constructed:

η = v10ξ+ v11ξη+
∞

∑
q=2

v1qξηq (51)

and after applying the formula of geometric progression:

η = v10ξ+ v11ξη+
v1qη2ξ
1−η

(52)

where

v10 = 0.0395, v11 = 0.0458, v1q = 0.953 (53)

are calculated according to (15).
Equation (52) is quadratic with two roots for ξ = 1:

η1(ξ = 1) = 0.478 and η2(ξ = 1) = 0.043. (54)

However, only η2 satisfies the condition (20):

η2(ξ = 0) = 0

Hence according to (21), (45), (54):

||x||¬ ||x0||+η∗(ξ = 1) = 0.0845+0.043 = 0.1275 rad.= 7.30.

Obviously the stationary solution of (40) is 50 (2.2sin300 = 1.1). The present crite-
rion, however, gives the sufficient conditions applying majorant estimation of the norms
and as the result, obtained bound of the solution is higher than the real one.

The criterion can be applied also in the case when M = 2.4. Then v10 = 0.1806,
v11 = 0.572, v1q = 1 and in this case the majorant equation has no real solution for
ξ = 1, which means that ||x|| is not bounded and the equation is not stable.

The above cases are calculated numerically and the results are presented in Table 1.
It can be seen, that the process is not stable for M = 2.4 and that for M = 1.1 the
maximal difference between x and x0 is 0.027 for finite t and for t = ∞ (calculated for
the stationary regimes), which is less than η∗(ξ = 1) = 0.043.

Example 2

Let consider one dimensional nonlinear system of second order:

d2x
dt2 +3

dx
dt

+2x−µφ
(

x,
dx
dt

)
= 0.76, µ = 1,µ0 = 0. (55)

For the linear part of (55) one can write:
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Table 1. Numerical solution of (40) for M = 1.1 and M = 2.4
.

t, s 0.5 1 2 5 8 10 t = ∞

x0, M = 1.1 0.0137 0.0268 0.0463 0.0733 0.0812 0.0830 0.0845

x, M = 1.1 0.0138 0.0271 0.0469 0.0750 0.0836 0.0857 0.0872

x, M = 2.4 0.119 0.235 0.414 0.733 0.917 1.01 ∞

g(t − τ) = e−(t−τ)− e−2(t−τ), (56)

x0(t) = 0.38
(
e−2t −2e−t +1

)
, (57)

dx0(t)
dt

= 0.38
(
−2e−2t +2e−t) , (58)

C01(H) =
d2H
dt2 +3

dH
dt

+2H. (59)

For the nonlinear part of (55) the following variant will be considered:

φ = P
{

dx
dt

}2

. (60)

The Lagrange stability of this variant will be analyzed by construction of majorant
equation and numerically verified. The corresponding operators are as follows:

C10 = P
{

dx
dt

}2

, (61)

C11(H) =−2P
dx0

dt
dH
dt

, x = x0 + cH, (62)

C12(H) =−1
2

P
{

∂2x0

∂c2

}
c=0

=−P
{

dH
dt

}2

, (63)

Cpq = 0 for p > 1 or q > 2, C02 = 0. (64)

To calculate norms, Banach spaces are used with norms [12]:

||y||= sup
0¬t¬∞

|y(t)|, ||y||=
N

∑
k=0

sup
0¬t¬∞

|yk(t)|. (65)
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Table 2. Numerical solution of (55).

t, s 1 2 3 10

x0 0.1510 0.2840 0.3430 0.3799

x (Runge-Kutta) 0.1569 0.2936 0.3493 0.3799

The majorant assessment of the operators’ norms can be made in the following way:

||C10||= sup
0¬t¬∞

∣∣∣P{0.38
(
−2e−2t +2e−t)}2

∣∣∣= P0.192, (66)

||C11(H)||= sup
0¬t¬∞

∣∣∣∣−2P
dx0

dt
dH
dt

∣∣∣∣= 0.38P||H||, ||C11(H)||= 0.38P, (67)

||C12(H)||= sup
0¬t¬∞, ||H||=1

∣∣∣∣∣P
{

dH
dt

}2
∣∣∣∣∣= P, (68)

||C−1
01 ||¬

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

|g(t − τ)|dτ

∣∣∣∣∣∣
∣∣∣∣∣∣< 1, (69)

||x0(t)||= 0.38, (70)

v10 = 0.036P, v11 = 0.38P, v12 = P. (71)

The majorant equation is:

η = 0.036Pξ+0.38Pξη+Pξη2. (72)

This quadratic equation has for ξ = 1 and P = 1 two real solutions. The second solution
for ξ = 1 is: η2(ξ = 1) = 0.0655 and according to (21), (70):

||x||¬ ||x0||+η∗(ξ = 1) = 0.38+0.0655 = 0.4455.

In Table 2 the numerical solution of (55) for P = 1 is given. It confirms the result
achieved from the majorant equation (72), that the norm of the solution of x is bounded
by the value 0.4455, i.e. it is Lagrange stable. Of course, this value is greater than the
real values of the process, because of the majorant estimation of the norms.
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4. Determination and verification of the stability bounds for a class of nonlinear
perturbations

For some classes of nonlinear perturbations the stability bounds, calculated during
the stability analysis or obtained on the basis of physical laws can be verified. Let us
consider the following class of dynamical systems:

Lx = X(x, t)+P(x, t) (73)

where L is linear differential operator of n-th order:

L = an(t)
dn

dtn +an−1(t)
dn−1

dtn−1 + · · ·+a0(t). (74)

X(x, t) and P(x, t) are nonlinear continuous functions and P(x, t) should be considered
as perturbation. If xxx, XXX(xxx, t) and PPP(xxx, t) are vectors, the same problem can be described
with a set of differential equation of the first order with linear left part:

ẋxx−AAAxxx = XXX(xxx, t)+PPP(xxx, t) (75)

where AAA is the matrix:

AAA = [aik(t)], i,k = 1,2, . . .n.

Further the scalar variant will be considered. If the initial conditions of the deriva-
tives of x are zero, then equation (3) can be used with substitution (38), if necessary. If the
initial conditions of the derivatives of x are not zero, then equation (75) and substitution
(38) have to be applied.

To determine and verify the stability bounds, the following theorem for practical
stability can be used.

Theorem 2 : Let us consider L, X(x, t), P(x, t) defined in the Banach space E1, of which
x is element and that the values of L, X(x, t), P(x, t) are elements of the Banach space
E2. The sufficient condition for practical stability of (3) for t ∈ [0,T ] when x(0) ∈ Q0

(Fig.1) and ||P(x, t)||¬ δ is:

||L−1||{||X(x, t)||x∈Q +δ}+ ||x(0)||¬ RQ (76)

where L−1 is operator inverse to L for zero initial conditions.

Proof To make the initial conditions zero let us use the substitution:

x = z+ x(0),
(77)

Lx = Lz+Lx(0) = Lz.
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The initial conditions for z are zero. Then equation (3) takes the form:

Lz = X(x, t)+P(x, t) (78)

and
z = L−1{X(x, t)+P(x, t)} (79)

||z||¬ ||L−1||{||X(x, t)||+ ||P(x, t)||}. (80)

The norm of z can be obtained from the equation (77):

x− x0 = z, ||x||− ||x(0)||¬ ||z||. (81)

It follows from (80) and (81):

||x||¬ ||L−1||{||X(x, t)||x∈Q +δ}+ ||x(0)||. (82)

According to the definition of practical stability, x ∈ Q if the process is stable, i.e.

||x||¬ RQ. (83)

Inequality (83) can be used to calculate the norm || X(x,t) || for a given time interval
t ∈ [0,T ], because if it is not true, then the calculated from the left part of the inequality
(76) RQ will be greater than the value used for calculating the norms. Hence from (82)
and (83) the criterion (76) is obtained. Thus the theorem giving sufficient conditions for
practical stability is proven.

The criterion (76) can be used in two ways:

1. Considering (76) as equation RQ can be calculated as a function of δ, ||x(0)||, time
interval t ∈ [0,T ] and other parameters.

2. The left part of (76) can be calculated using a required or expected value of RQ,
and if the inequality (76) in this case is true, this means that the suggested value
of RQ is the bound of ||x||. Of course it is not the lowest bound of ||x||, because
the majorant estimation of the norms.

Example 3

Illustration of the last criterion can be shown with equation (41):

1
3

d2x
dt2 +

5
3

dx
dt

+2x+{2.2sin(200 + x)−2x}= 0.931+Mk(t). (84)

In this case:

X(x, t) =−2.2sin(200 + x)+2x+0.931,
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||P(x, t)||= ||Mk(t)||= 0.169, x(0) = 50 = 0.087 rad.
The norms of the operators can be estimated as follows:

||X(x, t)||= sup
x∈Q

|−2.2sin(200 + x)+2x+0.931|=

= |−2.2sin(200 +RQ)+2RQ +0.931|=−2.2sin(200 +RQ)+2RQ +0.931.
It follows from (50)

||Γ−1||= ||L−1||= 0.5.
Then the criterion (76) will be:

0.5{−2.2sin(200 +RQ)+2RQ +0.931+δ}+50 ¬ RQ. (85)
This inequality gives the sufficient conditions for practical stability which depend on

the values of RQ, δ, and x(0). One of these three values can be found if the other two
are given or the condition (76) for stability can be checked if all three of them are given.
When δ = 0.169, x(0) = 50 one can be calculated that RQ = 140 50min:

1.1−2.2sin(200 +RQ)+2x(0)¬ 0,

1.27¬ 2.2sin(200 +RQ),

0.57¬ sin(200 +RQ),

RQ ­ 140 50min.
For given x(0) and δ the value of RQ determined from (76) is greater than the real value
of RQ because it includes majorant norms. It is easy to find that the stationary value of
RQ is 100. On the other hand we can verify a suggestion that RQ = 50, when x(0) = 0.
For this purpose the left part of inequality (76) is calculated applying x(0) = 0:

0.5{−2.2sin(200+50)+2.50+0.931+0.169}= 0.5{−2.2(0.4226)+2 ·0.087+1.1}=
= 0.17215 rad.= 9.860 > 50.

Obviously the suggestion RQ = 50 is not true.

5. Conclusions

1. Criteria suggested in this paper give robust Lagrange and practical stability bounds
for dynamical systems with nonlinear perturbations.

2. Nonlinear perturbations can include derivatives of the variables.

3. Analytical results obtained from the criteria are compared with numerical calcu-
lations, applying computer modeling.
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