
Archives of Control Sciences
Volume21(LVII), 2011
No.2, pages 189–205

Self-tuning run-time reconfigurable PID controller

MARIUSZ PELC

Digital PID control algorithm is one of the most commonly used algorithms in the control
systems area. This algorithm is very well known, it is simple, easily implementable in the com-
puter control systems and most of all its operation is very predictable. Thus PID control has got
well known impact on the control system behavior. However, in its simple form the controller
have no reconfiguration support. In a case of the controlled system substantial changes (or the
whole control environment, in the wider aspect, for exampleif the disturbances characteris-
tics would change) it is not possible to make the PID controller robust enough. In this paper a
new structure of digital PID controller is proposed, where the policy-based computing is used
to equip the controller with the ability to adjust it’s behavior according to the environmental
changes. Application to the electro-oil evaporator which is a part of distillation installation is
used to show the new controller structure in operation.

Key words: policy-based computing, reconfigurable systems, PID controller

1. Introduction

Digital PID controllers constitute an overwhelming group if typical industrial ap-
plications of the computer control systems of all kinds are considered. It is because of
inherent advantages of PID control algorithms which are mainly as follows:

• behavior of the control system with PID controller is easilypredictable,

• there exist number of convenient and simple tuning methods for PID controllers
which take into account various optimization criteria,

• software implementation of digital PID controller is simple and not resource–
consuming so the controller can be implemented even in a veryresource con-
strained embedded systems.

Most of the tuning methods, especially basing on Ziegler-Nichols approach, can be used
only in an off-line mode and cannot be easily adapted for an on-line (real-time) appli-
cation. As the consequence, self-tuning functions of PID controllers need separation of
the tuning cycles (typically iterative and thus time consuming) from the control cycles.

The Author is with Opole University of Technology, Faculty of Electrical Engineering, Automatic
Control and Informatics, ul. Mikolajczyka 5, 45-272 Opole,Poland. E-mail: m.pelc@po.opole.pl

Received 23.04.2011.

190 M. PELC

In many real-time system applications, this approach may cause serious deadline-related
problems and ultimately may lead to a system failure.

This situation makes a space for development of new tuning algorithms which would
provide some special features that follow requirements concerning real-time support of
the self-tuning. These requirements refer to a total transparency from the point of view of
the control algorithm and background operation as long as the tuning procedure are not
finished in order not to affect the controlled process. Besides, in the contrary to the typi-
cal self-tuning algorithms the ideal tuning algorithm is also expected to take into account
not only the parameters which are strictly related to the controlled system (related to its
mathematical model or its parameters), but also some other factors, which have direct
impact on the control process (such as system noise, disturbances, etc.). Furthermore, as
the choice of tuning method usually influences achievable type of optimality, it would
be highly desired that the core part of the tuning algorithm –the tuning logic – was re-
placeable so that the tuning process itself was flexible and able to satisfy different and
sometimes contradicting tuning goals (optimality in the meaning of integral-square-error
criteria, time optimality, etc.).

Typical solution of the self-tuning/reconfiguration problem uses artificial intelli-
gence methods, such as Artificial Neural Networks, Fuzzy Logic, Evolutionary Algo-
rithms, etc. In this paper alternative approach is proposednamely policy-based comput-
ing. It is used for the purpose of implementing self-tuning,reconfiguration and context-
awareness features into digital PID controller. This technology is accompanied with the
Open Decision Point component architecture [20]. The technology seems to have most
of the required features (if not all of them) of the ideal tuning technology. Moreover,
it is free from typical drawbacks of Artificial Neural Networks, Fuzzy Logic or Evolu-
tionary Algorithms. This technology offers simple reconfiguration (both, structural – by
enabling/disabling certain policy elements, and syntactical – by supporting range checks
and utility functions) and supports expert-knowledge-based decision making.

2. Related works

The idea of embedding of self-tuning capabilities into PID controller is not entirely
new and has been exploited over the last two decades. Modern computer control sys-
tems, however, are much more complex in comparison to those used few years before.
This follows mainly from the new technologies and application domains. In such appli-
cations, the self-tuning capability and context-awareness became crucial from the point
of view of satisfying of some run-time changing control goals. These domains cover
industrial processes control, autonomic systems and robotics. There is a strong demand
for self-tuning algorithms to be able to self-tune the controller at the pre-deployment
stage but also in the run-time. A technology that would add tothis also a possibility of
post-deployment reconfiguration of the self-tuning procedure itself is even more advan-
tageous.

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 191

In the case of Fuzzy Logic, reasoning is applied to the process of self-tuning PID
controllers, and the solution, in general, goes in the following two directions:

• Fuzzy Logic system is used for tuning the PID controller gains,

• Fuzzy Logic system performs the PID controller function.

In [16] the self-tuning algorithm for PID controllers basedon the theory of adaptive
interaction is presented. The advantage of this algorithm is mostly its high robustness
resulting from the fact, that no prior knowledge about the controlled system is required.
This makes the control algorithm robust to the changes of thesystem and enables its
application to linear and non-linear systems. The algorithm incorporates a mathematical
tools to calculate the adequate values of PID controller gains based on the solution of
the task of control error minimization.

The idea of Fuzzy PID controller (FPID) is presented in [13].A typical Mamdani
Model with triangle-shaped membership functions for linguistic variables and center of
gravity defuzzification method is used. The outputs of FuzzyParameter Regulator are
used for direct scaling of the PID controller’s gains. The base for the Fuzzy Parameter
Regulator consists of 25 rules. Adjustments/tuning of the control algorithm uses infor-
mation provided by relative rate observer.

Similar approach based on Fuzzy Mamdani Model with modified membership func-
tions for linguistic variables is presented in [21] in the application to the induction motor
control system and in [19] where the fuzzy system is responsible for run-time adjust-
ments of PID gains (pre-calculated using Ziegler-Nichols method) in the task of temper-
ature control in metal chamber.

In [12] another application of fuzzy PID controller is described. The application con-
cerns the unmanned aircraft control. In this application, the self-tuning feature is the only
way to guarantee the best dynamic performance for a wide variation of system parame-
ters changes in run-time (during flight). This constitutes the main advantage of the ap-
plication over the typical control systems designed in a traditional way (pre-deployment,
based on assumed fixed parameters). Again, Fuzzy Mamdani Model is used for calcula-
tion of the optimal PID gains (from the point of view of the control goal).

As mentioned above, the self-tuning PID algorithms can alsobe implemented as
Fuzzy System of an adequate structure and logic. In this kindof self-tuning algorithm
the Fuzzy System is not used to tune the PID controller butis a PID controller itself. This
solution is described in [14] where the Fuzzy PID controlleris used in the active control
of magnetic bearing. The control task is to regulate the disturbances and suppress the un-
balancing vibration of the rotor. Fuzzy-Neuro solutions inherit actually both mentioned
problems. Very similar solution with the application to thepower system stabilization is
presented in [10].

Alternatively to Fuzzy Systems, Artificial Neural Networks(ANNs) can be used to
implement the self-tuning features of the PID controller, as well as hybrid Neuro-Fuzzy
or Neuro-Genetic algorithms or even evolutionary algorithms (for example genetic algo-

192 M. PELC

rithms). Similarly to the Fuzzy Systems, there are various approaches to solve the task
of tuning the PID controller gains.

An example application of Neuro-PID controller is described in [11]. This controller
is used in the typical task of double inverted pendulum stabilization. The gains of the
PID controller are tuned using a Neural Network in this case.Another application uses
Neuro-PID controller to the task of tracking control of a discharge air temperature system
([23]). Neuro-PID controller is used also to control a PowerPlant [22] as an example
MIMO (Multi Input Multi Output) system.

A hybrid Neuro-Genetic approach to the problem of self-tuning of the PID controller
is presented in [15]. In this solution the controlled systems are identified by the Neural
Auto-tuner returning appropriately scaled PID controllergains. The genetic algorithm is
responsible for optimization of a weighted cost function (this function optimizes the PID
gains returned by neuro auto-tuner). In [9] a genetic algorithm (GA) is used for PID pa-
rameters tuning whereas the Neural Network is used as the plant model. In this solution
the PID gains are calculated off-line and then used on-line for the control purposes.

The above summary proves that there are number of solutions which are used to
obtain a self-tuning PID controller. However, the alternative solution proposed in this
work based on policy-based computing has some important advantages which make
it much more flexible than the other approaches. This most important advantages are:
support for utility functions, run-time self-reconfiguration of policies, post-deployment
re-configuration, and context-awareness.

3. AGILE policy definition language

As the solution which can be the alternative for the typical approaches exploring
Fuzzy Logic, Artificial Neural Networks and Genetic Algorithms for the purpose of
widely understood diagnosis, in this paper the AGILE PolicyDefinition Language (PDL)
is used to define various control/supervision policies. This language specification was
precisely described in number of works (e.g. [2], [4], [3]).However, for the purpose of
this paper, the most important elements of the AGILE need to be recalled, to make it
entirely clear how the AGILE PDL may fit to the typical problems related to control
systems. This language is based on XML structure and defines the following policy
objects:

• PolicySuitecontains all policy objects.

• Policy defines decision making policy (one source policy file may contain zero or
more policies). Policies can loadTemplatesor executeActions. Example ofPolicy
is shown below.

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 193

<Policy Name="Policy1"
PolicyType="NormalPolicy">
<Load Template="Template1"/>
<Execute Action="Action1"/>

</Policy>

• Templatecan be used to configure policies (for example, to assign somevalues to
InternalVariabies). In this way it provides customization of policies as different
users can have different preferences to be loaded into current policy. Example of
Templateis shown below.

<Template Name="Template1">
<Assign Variable="InternalVariable1"
Value="7"/>

</Template>

• Action is the execution element of a policy and it gathers policy decision-making
logic (it evaluatesRules, TRCs, UFs, it can also set local variables or yieldPoli-
cies) and finally returns a policy decision. Example ofAction is shown below.

<Action Name="Action1">
<Assign LHS="InternalVariable1"
RHS="true"/>

<EvaluateRule Rule="Rule1"/>
<Yield Policy="Policy2"/>

</Action>

• Rule is used to compare variables (ExternalVariablesor LocalVariables), values,
etc. Depending on the comparison result an appropriateAction can be executed.
Example ofRulestructure is presented below.

<Rule Name="Rule1"
LHS="EnvironmentVariable1" Op="EQ"
RHS="true" ActionIfTrue="Allow"
ElseAction="Block"/>

• ToleranceRangeCheck(TRC) is an implementation of dead-zone which is espe-
cially useful in case of tracking of a dynamic goal (or to check how an interesting
parameter behaves); the dead-zone is specified byToleranceTRC parameter. De-
pending on the value of the tracked parameter an appropriateaction is executed.
Example ofTRCstructure is presented below.

<TRC Name="TRC1"
Check="SampleEnvironmentVariable1"
Compare="SampleInternalVariable1"
Tolerance="5" ActionInZone="null"
ActLower="Action1" ActHigher="Action2"/>

194 M. PELC

• UtilityFunction (UF) is a very sophisticated policy object mostly used to indicate
goal-attainment or want-satisfaction. Depending on the utility level an appropriate
Action is taken. Example ofUtilityFunction is shown below.

<UF Name="SampleUF" Terms="2">
<Option Action="Action1"
T1="SampleInternalVariable1"
W1="1" T2="3" W2="4"/>

<Option Action="Action2"
T1="SampleEnvironmentVariable1"
W1="5" T2="10" W2="2"/>

</UF>

4. Digital PID controller

A model of an ideal continuous PID controller can be expressed as:

u(t) = K


e(t)+

1
Ti

t∫

0

e(t)dτ+Td
de(t)

dt


 (1)

The controller described by (1) cannot be implemented in thecomputer control system
due to the integration window whilet → ∞. So in practice an approximation of the inte-
gration part (e.g. rectangular one). The result of the control signal in thek-th sampling
period is of form:

u(kT0) = Ke(kT0)+K
T0

Ti

k−1

∑
i=0

e(iT0)++K
Td

T0
(e(kT0)−e((k−1)T0)) (2)

PID controler described by (2) is sometimes called aposition PID algorithmand the
control signal is calculated in each control cycle. After subtraction from the equation (2)
the equation:

u((k−1)T0) =Ke((k−1)T0)+K
T0

Ti

k−2

∑
i=0

e(iT0)+K
Td

T0
(e((k−1)T0)−e((k−2)T0)) (3)

one can get the final form of digital PID controller given by:

u(kT0) = u((k−1)T0)+q0e(kT0)+q1e((k−1)T0)+q2e((k−2)T0) (4)

where:

q0 = K

[
1+

Td

T0

]
,q1 =−K

[
1+2

Td

T0
−

T0

Ti

]
,q2 = K

Td

T0

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 195

Figure 1. Structure of self-tuning digital PID controller.

The PID controller described by (4) is also calledincremental PID algorithmbecause
in each control cycle a change of control signal

∆u= u(kT0)−u((k−1)T0)

is calculated instead of the actual control signal.

5. Self-tuning and reconfiguration of digital PID controller

The architecture of Self-tuning Context-aware Digital PIDcontroller is shown in
Fig.1. It comprises of two main components:

• A Policy-supervised Context-aware Tuner (PCT) which is tuning the PID con-
troller based on the currently available contextual information,

• A Digital PID controller with variable gains tuned by the PCT.

The PCT is policy-configurable because it implements the Open Decision Point ar-
chitecture described in details in [20] and in [4]. Policiesuse current context information
(reflecting the whole control system environment) to calculate the most appropriate scal-
ing coefficientsα, β andγ or to perform some structural changes within the policy, in
order to make it better suit to the formulated control goals.The Open Decision Point ar-
chitecture supports run-time policy replacement without the need to re-deploy the whole
control component. Thus the new architecture of digital PIDcontroller has self-tuning,
context-awareness and run-time reconfiguration features.

196 M. PELC

6. Policy-supervised tuning

The self-tuning capability of the PID controller is achieved purely based on policies
flexibility. In every control/calculation cycle the PCT is updated with the information
about the exact system/environment state. The informationabout the system state can
be provided by a set of sensors (directly) or alternatively,part of the information can
be obtained for example from Exact State Observers (ESOs) described in details in [6],
[5], [7] or [8]. Once the PCT has all the information needed for making decision, it
evaluates the currently loaded control policy in order to decide what values of gains
scaling coefficients are the most appropriate in the given environmental circumstances.
The gains values are the outcome of the control policy.

Depending on the used Policy Definition/Description Language (PDL), the task of
tuning of the PID controller can be achieved in different ways. In the case of AGILE
policies ([2], [1], [17]) which are used in this work, the simplest way to achieving the
self-tuning capability by PID controller is to design a policy which operates as a very
sophisticated gain scheduler and selects the most appropriate scaling coefficients for the
PID gains from an expertly defined set.

Alternatively, policy can return directly the most suitable gains of the PID controller
(obtained for example by the use of Ziegler-Nichols method). These solutions would
also be the least time consuming because the decision makinglogic would be consti-
tuted as a set of rules (similarly to Fuzzy Logic Systems). These rules define ranges of
context parameters which gains (or scaling coefficients) should be selected. In this way
the equations (1)-(4) will remain the same, butK̄, T̄d andT̄i gains would be used instead
of K, Td andTi gains, where:

K̄ = Kα,
T̄d = Tdβ,
T̄i = Tiγ.

and coefficientsα, β, γ constitute the tuning policy outcome which is used to scale the
PID controller gains.

In the case of more sophisticated way of choosing the best PIDgains, it would be
simply required to provide a more complex AGILE policy and replace the above one.
This includes support forUtility Functionsor ToleranceRahge checksand additionally
the ability of the policy to change its own structure in run-time.

As mentioned above, theUtility Functions allow to specify (via selection of the
utility function form or by changing some weight coefficients) which utility function is
the best to satisfy the set of control goals in the given environmental circumstances.

AGILE policies allow also the policy designer to develop a policy of the structure
change during evaluation in response to the environment changes. This is possible be-
cause all policy objects that are responsible for decision making areguarded. Thus these
policy objects are accessible (active) only if guards permit to do so. Otherwise the policy
objects are inactive, changing in this way the policy structure in run-time.

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 197

Figure 2. Electric-oil evaporator

7. Simplified model of electric-oil evaporator

The example of a system used for the numerical tests is an electric-oil evaporator
shown in Fig.2. The electric-oil evaporator is a part of a chemical system used for dis-
tillation of a binary mixture (details can be found in [18]).For the control purpose,
a mathematical model describing the controlled system was identified. As the original
(real) mathematical model characteristic was not very suitable for simulations (due to
very long time constants which would imply very long simulation times), its normalized
form was used for tests in this work. The transfer function (in Laplace form) describing
the electric-oil evaporator in the normalized form is givenby:

T(s)
EP(s)

=
0.9

s3+3.8157s2+3.9311s+1
(5)

where:
T - is the binary mixture temperature,
EP - electric power used to heat the mixture.

The main control task is optimization of the distillation process efficiency by controlling
the binary mixture temperature with respect to the power usage.

8. Simulations

For the simulation purposes the Ziegler-Nichols method wasused to determine the
critical gain and oscillation period for the considered evaporator model. The following
values were obtained:

Kcr = 15.6

Tcr = 3.2

198 M. PELC

Hence the PID controller gains were initially set as :

Kp = 0.6Kcr = 9.4 (6)

Ti = 2Kp/Tcr = 5.8 (7)

Td = KpTcr/8= 3.7 (8)

In order to show that the digital PID controller may be controlled by a policy (and thus
can have ability of self-tuning, reconfiguration and context-awareness), a very simple
case was designed showing temperature control applicationusing a simple control pol-
icy. This policy uses a TRC (Tolerance Range Check) in order to make decisions regard-
ing the controller tuning. The policy can be found in Appendix. The decision making
part of the policy using aToleranceRangeCheckis shown in Fig.3. The policy (see Ap-

<ToleranceRangeChecks>
<TRC Name="ErrorCheck"
Check="ReferenceError"
Compare="ActualError" Tolerance="2"
ActionInZone="Mode2"
ActionHigher="Mode1"
ActionLower="Mode3"/>

<ToleranceRangeChecks/>

Figure 3. Decision-makingToleranceRangeCheck

pendix) defines three output variables/coefficients:α, β andγ. These variables are used
for scaling the initial PID controller gains:Kp, Ti andTd, respectively . The policy com-
pares the current control error denoted in policy byControlError (difference between
reference value and the controlled variable) with a reference value of error denoted by
ReferenceError. Depending on what is the current difference between the value of the
control error and the reference value (expressed in %), the policy switches the PID con-
troller into one of three available modes:Mode1, Mode2and Mode3. In each of the
modes the values ofα, β and γ variables are different. To be exact, in this example,
the extent of changes was limited with respect toβ coefficient only for clarity sake (to
simplify the policy analysis). However, by changing the other coefficient accordingly, a
policy designer could achieve even better results.

The described policy was used for simulations presented in this section. The simu-
lation scenario was very simple as its main purpose was to show applicability of policy-
based computing to the task of PID tuning rather than to focuson achieving some spec-
tacular tuning results. The simulations covered the following three areas:

• simulation of a system with PID controller tuned only with Ziegler-Nichols
method and calculation the integral square error value,

• simulation of a system with PID controller with policy tuning the Ziegler-Nichols
gains appropriately and calculation the integral square error value,

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 199

• comparison of the integral square error values for both systems showing the dif-
ferences in control quality.

The simulation results are shown in Fig.4 and in Fig.5 The simulation time was 50s and

0 10 20 30 40 50
0

2

4

6

8

10

12

14

T
em

pe
ra

tu
re

Time [s]

Temperature Control

Policy Supervision
Ziegler−Nichols Method

Figure 4. Temperature Control

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

C
on

tr
ol

 E
rr

or

Time [s]

Temperature Control − Control Error

Ziegler−Nichols Method
Policy Supervision

Figure 5. Control Error

200 M. PELC

the simulation step was 0.01s. The values of integral squareerror in the system with and
without policy supervision were the following:




T∫

0

e2(t)dt




Z−N

= 25.83261,




T∫

0

e2(t)dt




POL

= 25.47897.

Based on the simulation results shown in Fig.4 and in Fig.5 and after comparison of the
two integral square error values one can see that there is a slight difference between the
way the PID controllers work with/without policy supervision (policy-supervised sys-
tem proved to guarantee a bit better control quality). Although this difference is small
(as mentioned before, it was not the main goal of the simulations), it clearly shows that
policies can be successfully used for tuning PID controllers. Besides, the policy used
for simulations was very simple and actually limited the extent of PID gains change
to change ofKp only. In case of more sophisticated policy (with more TRCs orwith
UFs applied), the results would be even more convincing. What is the most worth to
emphasize is that in the case of the control system with PID controller is tuned using
fixed Ziegler-Nichols gains, the controller does not have any capability to adjust its own
behavior in response to the environment changes. In the contrary, the policy supervised
system offers high flexibility because, first of all, the policy can be tuned (to serve at
best its purpose) and secondly, policies can be replaced in run-time (at any time) with a
newer version changing/improving/adjusting the control strategies depending on appli-
cations/circumstances etc.

A part of the real-time simulation trace is shown in Fig.6. Asone can see in Fig.6,
the policy decision was to increase the value ofTi gain fromTi = 1.95 toTi = 5.85. This
resulted in relative increase of the control signal value (in comparison to the reference
value of the control signal calculated in the system withoutpolicies) as its integral com-
ponent increases. In this way the PID controller may react ina more effective way as
the convergence of the controlled variable (temperature) to the reference value will be
faster.

9. Conclusions

In this paper a new application of AGILE policies to the task of PID digital controller
tuning was presented. An architecture of the hierarchical system with Policy Context-
aware Tuner was presented and verified in the simulation way.Though a very simple
reference criterion was used to compare traditional control algorithm with PID controller
working with fixed settings (Ziegler-Nichols) and the new type of controller, the results

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 201

Figure 6. Simulation Trace

show that the architecture makes possible to achieve bettercontrol quality even if it is
working based on a very simple supervision/tuning policy.

The Open Decision Point architecture supports on-line policy change without the
need of re-deployment of the whole control component. This means that any supervi-
sion/tuning policy can be replaced at any time with a better,more sophisticated version
or a version which was designed for a completely different optimization criteria or con-
trol goals.

All the presented mechanisms are optimized for resource-constraint systems. As a
result they guarantee a very efficient decision-making process whilst the need for pro-
cessing power (and system memory) remains reasonably small. In this way presented
technology can be implemented using cheap embedded systems.

202 M. PELC

10. Future Work

The important aspect which needs to be addressed is the problem of entire system
stability which in the context of the higher layer supervision adding. In practice it may
be very difficult to simulate the whole range of possible values that the environment vari-
ables can take. Much better way of proving that the complex (policy-supervised) system
does not deteriorate stability margins and remains not lesspredictable than its simpler
(fixed) version would be a formal method. However, there is noexisting methodology
dedicated for formal verification of AGILE policies. A natural solution in this situation
is, either:

• Design a formal tools for AGILE policies verification.

• Adapt an existing method of formal verification of dynamic systems. The most
promising way seems to be the Petri nets.

Actually, the possibility of using Petri nets formalism forvalidation of AGILE policies
and thus validating the whole policy-supervised system arein progress and will be sub-
ject of the ongoing publications.

References

[1] R. ANTHONY: (n.d.) http://www.policyautonomics.net.

[2] R.J. ANTHONY: A policy-definition language and prototype implementation li-
brary for policy-based autonomic systems.Proc. of 3rd Int. Conf. on Autonomic
Computing (ICAC2006), (2006), 265-276.

[3] R.J. ANTHONY, M. PELC and W. BYRSKI: Context-aware reconfiguration of au-
tonomic managers in real-time control applicaitons.Proc. of 7th IEEE Conf. on
Autonomic Computing, (2010), 73-74.

[4] R.J. ANTHONY, M. PELC, P. WARD and J. HAWTHORNE: Flexible and robust
run-time configuration for self-managing systems.SASO ’08: Proc. of the 2008
Second IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems, (2008), 491-
492.

[5] W. BYRSKI: Observers and their applications in adaptive control systems.Scien-
tific Bulletins of The University of Mining and Metallurgy, 1551(65), (1993).

[6] W. BYRSKI and S. FUKSA: Optimal finite parameter observer. An application
to synthesis of stabilizing feedback for a linear system.Control and Cybernetics
13(1), (1984).

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 203

[7] W. BYRSKI and M. PELC: Modelling and simulation of state observers in the
computer control systems.Proc. of 39th Int. Conf. on Modelling and Simulation
of Systems, (2005).

[8] W. BYRSKI and M. PELC: Continuous and discrete integral state observers in on-
line control systems.Proc. of 39th Int. Conf. on Modelling and Simulation of Sys-
tems, (2006).

[9] W. CHIA -JU: Genetic tuning of PID controllers using a neural network model: A
seesaw example.J. Intell. Robotics Syst., 25 (1999), 43-59.

[10] J.I. CORCAU and E. STOENESCU: An adaptive pid fuzzy controller for syn-
chronous generator. World Scientific and Engineering Academy and Society
(WSEAS), (2008).

[11] T. FUJINAKA , Y. K ISHIDA , M. YOSHIOKA and S. OMATU : Stabilization of
double inverted pendulum with self-tuning neuro-PID.IEEE Computer Society,
(2000).

[12] G. JIE and T. SHENGJING: Application of parameter self-tuning fuzzy PID con-
troller in guidance loop of unmanned aircraft.IEEE Computer Society, (2009).

[13] O. KARAKASAL , E. YESIL, M. GÜZELKAYA and I. EKSIN: Implementation of a
new self-tuning fuzzy pid controller on PLC.Turkish J. of Electrical Engineering,
13(2), (2005), 277-286.

[14] C. KUAN-YU, T. PI-CHENG, T. MONG-TAO ÅND F. YI-HUA: A self-tuning
fuzzy PID-type controller design for unbalance compensation in an active mag-
netic bearing.Expert Syst. Appl., 36 (2009), 8560-8570.

[15] J.A.M. LIMA and A.E. RUANO: Neuro-genetic pid autotuning: time invariant
case.Math. Comput. Simul., 51 (2000), 287-300.

[16] F. LIN , R.D. BRANDT, and G. SAIKALIS : Self-tuning of PID controllers by adap-
tive interaction.Proc. of American Control Conf., 2000, 3676-1681.

[17] M. PELC, R. ANTHONY and W. BYRSKI: Policy supervised exact state reconstruc-
tion in real-time embedded control systems.Proc. of 7th Workshop on Advanced
Control and Diagnostics ACD2009, (2009).

[18] M. PELC, R. ANTHONY and W. BYRSKI: Context-aware real-time systems with
autonomic controllers,Proc. of 5th Int. Conf. on Pervasive Computing and Appli-
cations, (2010).

[19] H. SHIUH-JER and L. YI-HO: Metal chamber temperature control by using fuzzy
pid gain auto-tuning strategy,WSEAS Trans. Sys. Ctrl., 4 (2009), 1-10.

204 M. PELC

[20] P. WARD, M. PELC, J. HAWTHORNE and R.J. ANTHONY: Embedding dynamic
behavior into a self-configuring software system.Proc. of 5th Int. Conf. on Auto-
nomic and Trusted Computing (Springer LNCS), (2008), 373-387.

[21] J. YAU-TARNG, C. YUN-TIEN and H. CHIH-PENG: Design of fuzzy PID con-
trollers using modified triangular membership functions.Inf. Sci., 178 (2008),
1325-1333.

[22] A. YAZDIZADEH , A. MEHRAFROOZ, J. JOUZDANI and R. BARZAMINI : Adap-
tive neuro-PID controller design with application to nonlinear water level in NEKA
power plant.J. of Applied Sciences, (2009).

[23] M. ZAHEER-UDDIN and N. TUDOROIU: Neuro-PID tracking control of a dis-
charge air temperature system.Energy Conversion and Management, (2004).

Appendix

<!-- Policy Definition XML file:
Policy Language version 1.2 -->

<!-- Application: Temperature Control -->
<PolicySuite PolicyType="PID Controller Tuning">

<EnvironmentVariables>
<EVariable Name="ActualError" Type="real"/>

</EnvironmentVariables>
<InternalVariables>
<IVariable Name="ReferenceError" Type="real"/>

</InternalVariables>
<OutputVariables>
<OVariable Name="alpha" Type="real"/>
<OVariable Name="beta" Type="real"/>
<OVariable Name="gamma" Type="real"/>

</OutputVariales>
<Templates>
<Template Name="SetParamaters">

<Assign Variable="ReferenceError"
Value="5"/>

</Template>
</Templates>
<ReturnValues>
<ReturnValue Name="IsDecision" Value="0"/>
<ReturnValue Name="NoDecision" Value="1"/>

</ReturnValues>
<Actions>
<Action Name="Start">

<EvaluateTRC TRC="ErrorCheck"/>
<Return ReturnValue="NoDecision"/>

</Acton>
<Action Name="Mode1">

<Assign LHS="alpha" RHS="3.0"/>
<Assign LHS="beta" RHS="1.0"/>
<Assign LHS="gamma" RHS="1.125"/>
<Return ReturnValue="IsDecision"/>

</Action>
<Action Name="Mode2">

SELF-TUNING RUN-TIME RECONFIGURABLE PID CONTROLLER 205

<Assign LHS="alpha" RHS="3.0"/>
<Assign LHS="beta" RHS="2.0"/>
<Assign LHS="gamma" RHS="1.125"/>
<Return ReturnValue="IsDecision"/>

</Action>
<Action Name="Mode3">

<Assign LHS="alpha" RHS="3.0"/>
<Assign LHS="beta" RHS="3.0"/>
<Assign LHS="gamma" RHS="1.125"/>
<Return ReturnValue="IsDecision"/>

</Action>
</Actions>
<ToleranceRangeChecks>
<TRC Name="ErrorCheck" Check="ReferenceError"
Compare="ActualError" Tolerance="2"
ActionInZone="Mode2" ActionHigher="Mode1"
ActionLower="Mode3"/>

<ToleranceRangeChecks/>
<Policies>
<Policy Name="TemperatureControl"
PolicyType="NormalPolicy">
<Load Template="SetParamaters"/>
<Execute Action="Start"/>

</Policy>
</Policies>

</PolicySuite>

	Tekst5: 10.2478/v10170-010-0039-y

