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Robust linear predictor as EEG fluctuation analyzer
in diagnosis of Alzheimer’s disease

DAGMAR ZACHOVÁ, JAROMIR KUKAL and OLDŘICH VYŠATA

The paper is oriented to EEG signal analysis, which is focused to quasi-stationarity hypoth-
esis that the statistical properties of the channel signal fluctuate in time. Robust linear predictor
is used for short segments of EEG as low-pass filter and the difference between the raw EEG
and filter output was subject of statistical testing. Novelty is in the fluctuation measurement
which enables to classify the Alzheimer’s disease patientsagainst controls.

Key words: Alzheimers disease, EEG, quasi-stationarity, linear predictor, robust identifi-
cation

1. Introduction

Quasi-stationarity of EEG signal can cause difficulties in any signal processing of
long sequences. If we divide the original series to short segments of constant length,
we can use traditional methods of statistical analysis within any individual segment.
Thus, the statistical properties of individual segments can be estimated correctly when
the segment length is less then two seconds (in the case of EEG). But the statistical
properties of segments vary in time due to the quasi-stationarity of EEG signal. The
paper is oriented to statistical analysis of these fluctuations and their robust ranges.

2. EEG in diagnosis of Alzheimer’s disease

The EEG is usually used in the diagnosis and evaluation of many cortical and sub-
cortical dementias. Often it can help to differentiate between a degenerative disorder
such as Alzheimer’s disease (AD) and pseudodementia due to psychiatric illness. In AD
the temporooccipital alpha rhythm slows down. Power spectra of delta and theta waves
increases while beta activity may decreases. Coherence usually decreases mainly in beta
and alpha bands.
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3. Signal description

The multichannel EEG is a traditional tool for the investigation of human brain ac-
tivity. The electrode signal was recorded with constant frequency fs = 200 Hz and then
digitalized to the raw EEG time seriesXk for k= 1, 2, ..., L.

The signal was partitioned to nonoverlapping segments of constant lengthN ≪ L.
Ideal signal should have stationarity property in the meaning that the statistical prop-
erties [6] of short segments don’t vary in time. From the statistical point of view, the
stationarity of EEG is observable only for short sequences up to 2 seconds, thus for
N≪ L< 2 fs. When the EEG scan is too long then the stationarity hypothesis falls. In this
case, the EEG quasi-stationarity was subject of investigation. We usedN ≪ 2 fs to guar-
antee interval stationarity of individual segments. Then the robust predictive filter was
applied to every segment. The difference between the original data and the prediction
was subject of statistical analysis. Various statistics ofsegment error sample were used
and their values changed from segment to segment. Thus, the new time series of length
M = ⌊L/N⌋ of segment characteristics arisen and its members areRk for k= 1, 2, ..., M.
Statistical analysis of fluctuations is based on various statistical characteristics ofRk

series. The process of EEG signal analysis consists of four steps:

• segmentation withXk as result;

• within segment prediction withek as result;

• within segment error analysis withRk as result;

• fluctuation analysis withQk as result.

4. Robust predictive model

We consider a basic linear model [4] in the form

Yk+S=
H

∑
j=1

β jϕ j(Yk, . . . ,Yk−H+1)+ εk+S (1)

where

• N is the length of the time series segment (the number of observations);

• H is the history length of time series;

• S is the prediction step length;

• Y1, Y2, . . . ,YN are observations within given segment;

• β1, β2, . . . , βH are unknown coefficients (parameters) of the model;
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• ϕ1(Yk, . . . , Yk−H+1), ϕ2(Yk, . . . , Yk−H+1), . . . , ϕH(Yk, . . . , Yk−H+1) are polynomial
functions;

• εk+S is the random noise.

When we transcribe (1), we obtain an equation system that could be described in matrix
form as




YH+S

YH+1+S
...

YN



=




ϕ1,2,...,H (YH , . . . ,Y1)

ϕ1,2,...,H (YH+1, . . . ,Y2)
...

ϕ1,2,...,H (YN−S, . . . ,YN−S−H+1)







β1

β2
...

βH



+




εH+S

εH+1+S
...

εN



, (2)

in other words
yyy= ΦΦΦβββ+ εεε. (3)

It is significant that the number of equations (degrees of freedom) must be higher than
the number of estimated coefficients, i.e.N−H −S+ 1 > H. Further, supposed that
E(εεε) = 0̄, where symbol E indicates the expected value. Providing thiswe can express
estimated valuesYk+S (for k= H, H +1, . . . , N−S) through the following formula

E(Yk+S) =
H

∑
j=1

β jϕ j(Yk, . . . ,Yk−H+1). (4)

These estimated values are equal to functional values of selective regression function

Ŷk+S=
H

∑
j=1

b jϕ j(Yk, . . . ,Yk−H+1) (5)

where

• b j is the scatter estimate of unknown parameterβ j (for j = 1,2, ...,H);

• Ŷk+S is the predicted valueYk+S (for k= H, H +1, . . . , N−S).

Equation system (5) can be described in matrix form as




ŶH+S

ŶH+1+S
...

ŶN



=




ϕ1,2,...,H (YH , . . . ,Y1)

ϕ1,2,...,H (YH+1, . . . ,Y2)
...

ϕ1,2,...,H (YN−S, . . . ,YN−S−H+1)







b1

b2
...

bH



, (6)

in other words
ŷyy= ΦΦΦbbb. (7)
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We can use robust methods for the coefficient estimating of model (3), i.e. for vector
bbb specification (see 4.1).

The difference between observed and predicted value is called residue and denoted
as vectoreee. The residue in given point is equal toei = Ŷi −Yi , therefore for the model (1)
the residual vector has the form of

eee=




eH+S

eH+1+S
...

eN



. (8)

4.1. Robust identification techniques

Robust techniques of parameter estimating represent the alternative to classical
statistic methods that are very sensitive to outliers in input data. We know several types
of robust estimates, namely: L-estimates, R-estimates andM-estimates. It is most suit-
able to apply M-estimates, the pioneer of which was Huber [2]. M-estimate of model
coefficientsβββ is defined via function minimization (with respect tobbb)

ψ(bbb) =
N−S

∑
i=H

ρ
(ei+S

σ

)
=

N−S

∑
i=H

ρ

(
Yi+S−ΦΦΦT

i−H+1bbb

σ

)
(9)

where

• T is transposition symbol;

• ρ is a penalty function (see Tab. 1);

• σ is standard deviation;

• ΦΦΦi is i-th row of the matrixΦΦΦ.

When implementing the weight function defined as w(ξ)= dρ(ξ)
dξ

1
ξ (see Tab. 1), satisfying

w(0) = 1 and substituting to the Taylor series of (9) we obtain a method of weighted least
squares (WLS) [4]

N−S

∑
i=H

w

(
ei+S

SN

)
Yi+SΦ(i−H+1) j =

N−S

∑
i=H

H

∑
k=1

w

(
ei+S

SN

)
Φ(i−H+1) jΦ(i−H+1)kbk

where j = 1, . . . ,H. The method of WLS consists in implementation of the following
operations:

1. initial estimate ofbbb by means of method of least squares, iteration counter set to
l = 1.
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2. residue specificationeee in l th iteration;

3. calculation of weights and thenl = l +1;

4. specification of parametersbbb(l) (estimate of vectorbbb in l th iteration) and residue
specification.

If the estimatesbbb(l) a bbb(l−1) are not close enough, we repeat the steps 3 and 4. It is
important when calculating the balance in step 3 that the robust estimate of standard
deviationσ is not recalculated, i.e. it’s specified on the basis of errorresidueeee after the
least squares method application. Such abbb, by which the penalty function reached the
lowest value, is considered as the best estimate of parameter βββ.

The question is how to get the robust estimate of standard deviation σ. There is
statisticsσ∗ = MADE/0.6745 most frequently used in practice, whereMADE stands for

median ofE1, E2, ..., EN andEi =
∣∣∣ei − Ẽ

∣∣∣, Ẽ is median ofe1, e2, ..., eN.

Table 1. Robust approaches

method ρ(ξ) w(ξ) range constant

Tukey B2
(

1−
(

1− (ξ/B)2
)3
)
/6

(
1− (ξ/B)2

)2
|ξ|¬ B B=4.865

B2/6 0 |ξ|> B

Huber ξ2/2 1 |ξ|¬ k k=1.345

k|ξ|−k2/2 k/ |ξ| |ξ|> k

Andrews A2 (1−cos(ξ/A)) (A/ξ)sin(ξ/A) |ξ|¬ Aπ A=1.339

2A2 0 |ξ|> Aπ

Welsch W2
(

1−exp
(
−(ξ/W)2

))
/2 exp

(
−(ξ/W)2

)
— W = 2.985

Talwar ξ2/2 1 |ξ|¬ k k= 2.795

k2/2 0 |ξ|> k

4.2. Statistical analysis of prediction error and time fluctuation

Let us have signal of lengthL, divided into segments of fixed lengthN and values
H, Sbeing set. Afterwards, we effect suitable robust identification of model (1), coeffi-
cient and indicate residue vectoreee= (e1,e2, . . . ,ep)

T. Now, it’s time to think of how to
characterize error prediction in one segment and how best tocharacterize variability of
error prediction of the whole signal in time. In kind of criterion featuring as total error
prediction in one segment the following two characteristics can be used. The first one
can be described through the relation

R= (E|eee|q)1/q =

(
1
p

p

∑
k=1

|ek|
q

)1/q

(10)



126 D. ZACHOVÁ, J. KUKAL, O. VYŠATA

whereq∈ 〈0,∞) a p= N−H −S+1. Let’s identify this method as a method of root of
expected value of residues (MREVR(q)).

In order to make description of the second characteristic easier let us setak = |ek|
and let us arrangeak in such a way thata(1) ¬ a(2) ¬ . . . ¬ a(p). Afterwards, the total
signal error prediction in one segment will be calculated as

R= a(⌊qp⌋) (11)

where parameterq∈ (0,1〉 andp= N−H −S+1. This approach we call the method of
quantiles of the residues (MQR(q)).

Thus, we get for each channel time series prediction errors{R1,R2, . . . ,RM}, re-
spectively structured selection

{
R(1),R(2), . . . ,R(M)

}
whereM = ⌊L/N⌋. For assess the

variability of the prediction errors EEG signal in time can be used such as one of the
following sample (segment) characteristics :

• maximumRmax= max{R1,R2, . . . ,RM};

• minimumRmin = min{R1,R2, . . . ,RM};

• rangeRR = Rmax−Rmin;

• meanR̄= 1
M ∑M

k=1 Rk;

• standard deviationσ =
√

1
M−1 ∑M

k=1 (Rk− R̄)2;

• medianR̃= 1
2(R(M/2)+R(M/2+1)) for the evenM, respectivelyR̃= R((M+1)/2) for

the oddM;

• median absolute deviationMADZ = Z̃ whereZ̃ stands for median ofZ1, Z2, ..., ZM

andZi =
∣∣∣Ri − R̃

∣∣∣ for i = 1, 2, ..., M;

• 1st quartile (lower quartile)R0.25 = R(⌊0.25M⌋);

• 3rd quartile (upper quartile)R0.75 = R(⌊0.75M⌋);

• interquartile rangeIQR= R0.75−R0.25.

These aggregating characteristics will be denoted asQ in the next text.

4.3. Quality of classification

There is a direct relationship between the quality of parameter setting and the
quality of classification. In our case, the optimal parameter setting has greatest dif-
ferences inQ between groups AD and CN. The quality of parameter setting was
driven by the apparatus of statistical hypothesis testing.Variability of the prediction
error we calculated for each channel and each person. Thus, there are two samples
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Figure 1. ROC curve of 2nd channel for interquartile range (Welsch’s method, MREVR(q), N=150, H=10,
S=1)
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Figure 2. Fluctuation of MREVR in time for a healthy person (IQR = R0.75 −R0.25)

QAD :=
{

QAD
1 ,QAD

2 , . . . ,QAD
n

}
and QCN :=

{
QCN

1 ,QCN
2 , . . . ,QCN

m

}
where n and m indicate

the number of individuals in AD and CN groups. The null and the alternative hypothesis
were constructed as follows:

H0: expected value of random variables QAD, QCN are not different, i.e. µAD = µCN ;
H1 : expected value of random variables are different, i.e. µAD 	= µCN .
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Figure 3. Fluctuation of MREVR in time for a patient with Alzheimer’s disease (IQR= R0.75−R0.25)

Assuming equal variances in both groups, we can use the two-sample two-sided
t-test [4], where the test criterion is calculated as

T =
QAD−QCN√

(n−1)σ2
AD+(m−1)σ2

CN

√
mn(n+m−2)

n+m
. (12)

QAD andQCN denote the sample means,σ2
AD a σ2

CN are sample variances.
The criterion (12) has Student’s t-distribution withd f = n+m−2 degrees of free-

dom. We calculated adequatep-value for givenT andd f .
Another possible tool for assessing the quality of classifiers is the sensitivity and

specificity. Sensitivity reflects the probability of correct classification of positive sample
(AD) and specificity reflects the probability of correct classification of negative sample
(CN).

Let TP (true positive) be number of samples that the classifier correctly classified
into AD, let FP (false positive) be number of samples that theclassifier incorrectly clas-
sified into AD, let TN (true negative) be number of samples that the classifier correctly
classified into CN and let FN (false negative) be number of samples that the classifier
incorrectly classified into CN. The sensitivity and the specificity can be estimated as
follows:

• sensitivity (true positive fraction) TPF= TP
TP+FN ;

• specificity (true negative fraction) TNF= TN
FP+TN.

The optimum, threshold for AD / CN classification is obtainable from ROC curve [1]
as compromise between maximum values of TPF and TNF. We prefer to maximize
min(TPF, TNF) according to minimax decision principle.
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5. Results

There were 32 EEG records included in our study. The groups ofAD and CD consist
of 16 and 16 patients. We used international 10-20 electrodesystem [5]. During the
measurement of electrical activity, our subject were examined in the bed having with
closed eyes and without any external stimulus. Manually selected low-artifact segments
of EEG data were approximately 300 seconds long with sampling frequency of 200 Hz.
Only anti-aliasing analogue filter was used during data preprocessing. Electric potential
was measured in millivolts.

Table 2. Minimump-values for the default setting

channel p-value characteristic method (q)

1 0.003301 IQR MQR(1/2)

2 0.000201 IQR MREVR(2)

3 0.070778 Rmin MQR(1/2)

4 0.077238 IQR MREVR(2)

5 0.013298 IQR MREVR(2)

6 0.001757 IQR MREVR(2)

7 0.002733 MAD MQR(1/2)

8 0.182820 Rmin MQR(1/2)

9 0.081693 Rmin MREVR(2)

10 0.118012 IQR MREVR(2)

11 0.113751 IQR MQR(1/2)

12 0.045587 IQR MKR(1/2)

13 0.012805 RR MREVR(2)

14 0.047399 Rmin MREVR(2)

15 0.052538 Rmin MKR(1/2)

16 0.378503 Rmin MREVR(2)

17 0.231664 Rmin MREVR(2)

18 0.101802 σ MREVR(2)

19 0.137812 Rmin MREVR(2)

During computer experiments, which we aimed to optimum parameter setting,
we used model (1) with fixed functional baseϕ j(Yk, . . . ,Yk−H+1) = Yk− j+1 for j ∈
{1, 2, ..., H}. The following procedure was used:

• signal was divided into segments (N = 100);
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• standardization of each segment was performedY∗
i = Yi−Y

σ ;

• default values of model parameter were used (H = 10,S= 1);

• Tukey’s method was used as default robust method;

• default value for MREVR wasq= 2;

• default value for MQR wasq= 1/2;

• two most suitable channels were chosen on the basis of two-sample two-sided
t-test at significance level of 0.05;

• with the help ofp-value, optimal values for parametersN, H, Sandq were found,
and most suitable robust method was chosen.

Results of numerical calculations are included in the Tab. 2using default parameters.
Bold font was used forp-value below critical probability (0.05). The best in AD / CN
resolution are channel 2 and 6, which were subject consequential analysis. The second
aim was to study the influence of processing parameters (N, H, S) to p-value. Following
parameter values were involved in the combination with Tukey’s method:

• length of the segmentN=100, 125, 150, 200;

• history length of time seriesH=6, 8, 10;

• length of the prediction stepS=1, 2, 3.

The results of testing are summarized in the Tabs. 4, 5. The best results were obtained
for N = 150,H = 8 or 10,S= 1 or 2 in the case of Turkey’s method and channels 2 and
6. The parameter setting was then used for the other methods and channels. As seen in
the Tab. 3, thep-values of robust methods are lower than in the squares approach (LSQ)
in the case of channel 6. Similar result (except Andrew’s andHuber’s method) is valid in
the case of channel 2 (see Tab. 3). The method MREVR is recommended for the segment
error evaluation. The methods MAD and IQR are the best for thefluctuation analysis.

6. Conclusion

Robust linear predictive filter was used for the characterization of signal variability
within individual segments. The quasi-stationarity analysis is recommended as a tool
for the classification of Alzheimer’s disease against controls. The best results were ob-
tained on EEG channel 2 with sampling period 200 Hz, segment lengthN = 150, history
depthH = 10, step of predictionS= 1, Welsch’s method, MREVR (method of root
of expected value of residues) characteristics of EEG fluctuations. Then, the adequate
optimum values are:
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Table 3. Minimump-values for the 6th channel and different robust methods

robust method p-value q method N−H −S characteristic

LSQ 0.000339 3/2 MREVR 150 - 8 - 2 IQR

Tukey 0.000326 2 MREVR 150 - 8 - 2 IQR

Andrews 0.000315 2 MREVR 150 - 8 - 2 IQR

Huber 0.000212 9/4 MREVR 150 - 8 - 2 IQR

Welsch 0.000299 2 MREVR 150 - 8 - 2 IQR

Talwar 0.000337 5/4 MREVR 150 - 8 - 2 IQR

Table 4. Minimump-values for the 2nd channel and Tukey’s method

N p-value H S characteristic method(q)

100 0.000236 10 2 Rmin MREVR(2)

0.000320 8 1 IQR MQR(1/2)

125 0.000261 10 1 IQR MREVR(2)

0.000283 10 2 σ MQR(1/2)

150 0.000071 10 1 IQR MREVR(2)

0.000225 8 1 IQR MQR(1/2)

175 0.000127 10 1 IQR MREVR(2)

0.000427 10 1 IQR MQR(1/2)

200 0.000171 10 1 MAD MREVR(2)

0.000495 8 1 IQR MQR(1/2)

• p-value= 6.11× 10−5;

• sensitivityTPF= 81.3%;

• specificityTNF= 87.5%.

From the biomedical point of view the novel method gives better sensitivity and
specificity comparing conventionally used quantitative methods. It will be verified on
bigger sample of AD patients. Sensitivity to the degree of mental deficit will be estab-
lished. Comparison of the groups of cortical and subcortical dementia and pseudodemen-
tia in depression will be made. This method may improve earlydiagnosis of Alzheimer’s
disease.
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Table 5. Minimump-values for the 6th channel and Tukey’s method

N p-value H S characteristic method (q)

100 0.000683 8 1 IQR MREVR(2)

0.001112 8 1 IQR MQR(1/2)

125 0.001047 8 1 IQR MREVR(2)

0.002533 10 1 σ MQR(1/2)

150 0.000326 8 2 IQR MREVR(2)

0.000764 8 1 IQR MQR(1/2)

175 0.000591 8 2 MAD MREVR(2)

0.002549 8 1 IQR MQR(1/2)

200 0.001146 6 3 R0.25 MREVR(2)

0.004374 8 1 IQR MQR(1/2)

Table 6. Minimump-values for the 2nd channel and different robust methods

robust method p-value q method N−H −S characteristic

LSQ 6.59× 10−5 7/8 MQR 150 - 8 - 1 IQR

Tukey 6.32× 10−5 9/4 MREVR 150 - 10 - 1 IQR

Andrews 6.74× 10−5 9/4 MREVR 150 - 10 - 1 IQR

Huber 6.66× 10−5 9/4 MREVR 150 - 10 - 1 IQR

Welsch 6.11× 10−5 9/4 MREVR 150 - 10 - 1 IQR

Talwar 6.47× 10−5 7/8 MQR 150 - 8 - 1 IQR
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