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About a certain relation between two polynomials
of the same degree

TADEUSZ PIWOWARCZYK

This article presents several different methods for solving the problem of how to find a cer-
tain relation defined in chapter 2. The first method deals with the identities known in the theory
of symmetric polynomials as the elements of a certain vector space. The second method is de-
signed around the matrix transformations between symmetric polynomials. The third method is
designed around the property of a linear operator and its characteristic polynomial. The fourth
method is designed in the area of complex numbers, and introduces the multiplication group of
’complex roots of one’. Significant improvement in the third and fourth method is made by in-
troducing so called ’block method’. It facilitates all calculations by making them much shorter.
The article ends with an example showing symmetry and regularity of all procedures. Finally,
the article shows how to solve the problem for any degree n of the polynomial, and for any
degree k. At the end of the paper solutions for n¬ 5 and k¬ 5 are tabulated.

Key words: roots of polynomials, symmetric polynomials, companion matrix, eigenvalues,
transformations

1. Introduction

The relation Rk defined below plays an important role in the analysis of the rational
functions (transmittances). Chronologically speaking, this problem was taken into con-
sideration in 1958, and then the attempts to solve were published in [8]. One can find
there the Encke roots and the Graef-Łobaczewski method. By means of fast convergent
procedures we can estimate not only the sign of the roots, but also the numerical values
of the roots (stability, simplification of the rational functions and other applications). It
should be noticed at this point that the simplification of the rational function can also
be solved by using other approaches (spectral notation of symmetric polynomials) [10].
Also the relation Rk is used to analyze the polynomials with fractional powers.

The problem how to determine the relation Rk will be solved in this article by using
several methods. All methods are connected with the theory of polynomials of multiple
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variables. The procedures proposed in the article are ready to be applied for n ¬ 5 and
k¬ 5. For higher degrees, especially the degree k, the necessary transformations are time
consuming so the application of the computer calculations are necessary. Tab. 3 at the
end of the paper shows the solutions up to 5-th degree. In other words, Tab. 3. presents
the coefficients of the second polynomial as functions the coefficients of the first one. All
the functions are computed and checked by using the methods introduced in this paper.

Of all the formulas presented in this paper only two can be found in the literature
of the subject. The first one comes from [1] where its author, J. Ambrosiewicz, analyzes
the natural powers of the companion matrices C raised to a natural power n. They are
connected with the power sums of eigenvalues of a given linear operator (the trace of
the companion matrix in the natural power trCn). In the spectral notation we have here
the formula (20). The second formula which can be found in literature, for example in
[6], is the matrix formula (26) written in the present paper in the spectral notation. The
other formulas, definitions and theorems, which occur in this paper are the author’s own
original and genuine contributions to the subject.

2. Definition of the relation Rk

Two polynomials of the same degree n

f (s) = a0 · sn +a1 · sn−1 + ...+an−1 · s+an, ai ∈ ℜ (1)

g(s) = b0 · sn +b1 · sn−1 + ...+bn−1 · s+bn, bi ∈ ℜ (2)

satisfy the relation Rk if two equations f (s) = 0 and g(s) = 0 have the roots respectively
given in the following sets:

{s1,s2, . . . ,sn} , (3){
sk

1,s
k
2, . . . ,s

k
n

}
. (4)

To determine the relation Rk means finding the following n functions

bi(a0,a1, ...,an), i = 1,2, . . . ,n. (5)

The coefficients of (1) in the theory of symmetric polynomials in a spectral notation (see
Appendix) [11],[12],[13] take the form

ai = (−1)i−1 · ((1,1, . . . ,1︸ ︷︷ ︸
i

)) (6)

and the coefficients of (2) take the form

bi = (−1)i−1 · ((k,k, . . . ,k︸ ︷︷ ︸
i

)). (7)
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This fact seems to be obvious. The expressions (5) depend of following identities

((k,k, ...,k︸ ︷︷ ︸
i

)) = fi,k[((1)),((1,1)), ...,((11, ...,1︸ ︷︷ ︸
i·k

))]. (8)

Table 4. Identities of the type (8).

((2)) = -2((1,1)) + ((1))2 (9)
((2,2)) = 2((1,1,1,1)) - 2((1,1,1))((1)) +((1,1))2 (10)
((2,2,2)) = -2((1,1,1,1,1,1)) + 2((1,1,1,1,1))((1)) - 2((1,1,1,1))((1,1)) + ((1,1,1))2 (11)
((3)) = 3((1,1,1)) -3((1,1))((1)) + ((1))3 (12)
((3,3)) = 3((1,1,1,1,1,1)) - 3((1,1,1,1,1))((1)) - 3((1,1,1,1))((1,1)) + (13)

3((1,1,1,1))((1))2 + 3((1,1,1))2 -3((1,1,1))((1,1))((1)) + ((1,1))3

((4)) = -4((1,1,1,1)) + 4((1,1,1))((1)) + 2((1,1))2 - 4((1,1))((1))2 + ((1))4 (14)
((5)) = 5((1,1,1,1,1)) - 5((1,1,1,1))((1)) - 5((1,1,1))((1,1)) + 5((1,1,1))((1))2 + (15)

5((1,1))2((1)) -5((1,1)((1))3+ ((1))5

((6)) = -6((1,1,1,1,1,1)) +6((1,1,1,1,1))((1)) + 6((1,1,1,1))((1,1)) - (16)
6((1,1,1,1))((1))2 +3((1,1,1))2 - 12((1,1,1))((1,1))((1)) +
6((1,1,1))((1))3 - 2((1,1))3 +9((1,1))2((1))2 - 6((1,1))((1))4 +((1))6

3. The first method

In the monograph [11] we can find some identities of the type (8). They are displayed
in Tab. 1.

Using the identities presented in Tab. 1 i.e. (9),(10),(11),(12) and (13) we can solve
three cases only:

s2 +a1 · s+a2, k = 2, (17)

s2 +a1 · s+a2, k = 3, (18)

s3 +a1 · s2 +a2 · s+a3, k = 2. (19)

To solve the problem for any n and any k we should know firstly how to extend the Tab.
1. This can be done using different methods. In [11] a vector space is defined which
elements are symmetric polynomials. Among them there are identities (8). However,
in order to find such identities for a higher degree we need to apply time consuming
procedures. An algebra generalization of this method is presented below as the second
method.
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4. The second method

In the monograph [11] one can find a matrix procedure which shows how to calculate
the polynomial ((k)) if the polynomials ((1)),((1,1)), ...,((11, ...,1︸ ︷︷ ︸

k

)) are given.

((k)) = (20)

tr



0 1 0 . 0 0
0 0 1 . 0 0
0 0 0 . 0 0
0 0 0 . 0 0
. . . . . .

(−1)k((1,1, ...,1︸ ︷︷ ︸
k

)) (−1)k−1((1,1, ...,1︸ ︷︷ ︸
k−1

)) (−1)k−2((1,1, ...,1︸ ︷︷ ︸
k−2

)) . ((1,1)) −((1))



k

.

Symbol tr stands for the trace of a matrix. The procedure (20) can be performed by
another matrix formula

T1

T2

T3

T4

.

Tk


=



1 0 0 0 . 0
−V1 1 0 0 . 0
V2 −V1 1 0 . 0
−V3 V2 −V1 1 . 0
. . . . . .

(−1)k ·Vk (−1)k−1 ·Vk−1 (−1)k−2 ·Vk−2 (−1)k−4 ·Vk−3 . 1



−1

·

·



V1

−2 ·V2

3 ·V3

−4 ·V4

.

(−1)k+1 · k ·Vk


(21)

where
Vk = ((1,1, ...,1︸ ︷︷ ︸

k

)), (22)

Tk = ((k)). (23)

Matrix formula (21) was designed especially for the purpose of this paper. It simplifies
determination of symmetric polynomials T1,T2, . . . ,Tk i.e. ((1)),((2)), ...,((k)). Formula
(21) plays a supplementary role in this paper, and its inductive proof is omitted here.
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Once we know the functions

((k)) = G[((1)),((1,1)), ...,((11, ...,1︸ ︷︷ ︸
k

))] (24)

we can compute the final function ((k,k, ...,k︸ ︷︷ ︸
i

)). In the monograph [1] the following

symmetric polynomial was analyzed

((k,k, ...,k︸ ︷︷ ︸
i

)) = fk,n[((k)),((2 · k)), ...,((i · k)], (25)

((k,k, ...,k︸ ︷︷ ︸
i

)) =
1
i!
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



((k)) ((2 · k)) ((3 · k)) ((4 · k)) . ((i · k))
1 ((k)) ((2 · k)) ((3 · k)) . (((i−1) · k))
0 2 ((k)) ((2 · k)) . (((i−2) · k))
0 0 3 ((k)) . (((i−3) · k))
. . . . . .

0 0 0 0 . ((k))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (26)

Using the matrix formula (26) we will be able to determine all the formulas which will
appear in the Tab. 3 at the end of the paper. However, the procedures are still time con-
suming and tedious.

5. The third method

The method presented below is called a ’linear operator approach’. Let define the
companion matrix C and the identity matrix I.

C =



0 1 0 0 . 0
0 0 1 0 . 0
0 0 0 1 . 0
0 0 0 0 . 0
. . . . . .

−an −an−1 −an−2 −an−3 . −a1


, I =



1 0 0 0 . 0
0 1 0 0 . 0
0 0 1 0 . 0
0 0 0 1 . 0
. . . . . .

0 0 0 0 . 1


. (27)

For given polynomials (1) and (2) we can write them as the characteristic polynomials

f (s) = |C− I · s| (28)

and consequently,
g(s) =

∣∣Ck − I · s
∣∣ . (29)
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Formula (29) is obvious. Detailed analysis of (29) can be found in [11] and [1].
Using (29) we can determine all the formulas which will be shown in the Tab. 3 at the
end of this paper. If applied for the higher degrees of the function this approach is still
very tedious.

6. The fourth method

The method described in section 5, the ’linear operator method’ is effective and clear
from algebra point of view, but for greater n, and especially for larger k, it is much time
consuming and tedious. Simplification is then necessary. For this purpose we should
consider modification of the formula (29) as follows

g(sk) =
∣∣Ck − I · sk

∣∣ . (30)

Thus, properly speaking, we analyze the power k of a given linear operator. To analyze
(30) we introduce the ’roots of one’ in a complex number. For a natural number k define
K as

K = cos
2 ·π

k
+ i · sin

2 ·π
k

. (31)

The complex value K has the following property

K +K2 +K3 + ...+Kk = 0, Kk = 1. (32)

In complex numbers the formula (30) can be factored

g(sk) =
∣∣Ck − I · sk

∣∣= ∣∣∣(C− I · s ·K) ·
(
C− I · s ·K2) · ... ·(C− I · s ·Kk

)∣∣∣ (33)

thus
g(sk) =

∣∣Ck − I · sk
∣∣= |C− I · s| · |C− I ·K · s| · ... ·

∣∣C− I · s ·Kk−1∣∣ (34)

and finally
g(sk) =

∣∣Ck − I · sk
∣∣= f (s) · f (K · s) · ... · f (Kk−1 · s). (35)

The points (33), (34) and (35) can be taken as steps leading to the proof of the basic
formula (35). In this paper the formula (35) is called ’the complex number formula’. All
the solutions presented in Tab. 3 are checked according this formula. In (35) sk should be
replaced by s. This substitution is always possible. We can also demonstrate the formula
(35) in some other way. After the right hand side of (35) is factored by introducing the
appropriate roots of the given functions, one can write the following product:
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f (s·) = (s− s1) · (s− s2) · ... · (s− sn), (36)

f (s ·K) = (s ·K − s1) · (s ·K − s2) · ... · (s ·K − sn), (37)

...

f (s ·Kk−1) = (s ·Kk−1 − s1) · (s ·Kk−1 − s2) · ... · (s ·Kk−1 − sn)). (38)

By changing the order in the above product we arrive at the complex numbers

(s− s1) · (s ·K − s1) · ... · (s ·Kk−1 − s1) = sk − sk
1, (39)

(s− s2) · (s ·K − s2) · ... · (s ·Kk−1 − s2) = sk − sk
2, (40)

...

(s− sn) · (s ·K − sn) · ... · (s ·Kk−1 − sn) = sk − sk
n, (41)

thus
(sk − sk

1) · (sk − sk
2) · ... · (sk − sk

n) = g(sk). (42)

Expression (43) ends the demonstration of the formula (35) i.e.

g(sk) = f (s) · f (K · s) · ... · f (Kk−1 · s). (43)

Formula (43) makes the procedure much shorter, and delivers a set of interesting prop-
erties of g(s). Further simplifications are possible by introducing a subdivision of the
given function f (s) in k blocks.

7. Block method

The method described below called the ’block method’ can be applied to the
’matrix method, as well as to the ’complex number’ method. We decompose the
given function f (s) of the degree n into k following blocks denoted by the functions
A1(s),A2(s), ...,Ak(s).

A1(s) = sn +ak · sn−k + ..., (44)

A1(s) = a1 · sn−1 +ak+1 · sn−k−1 + ..., (45)

...

Ak(s) = ak · sn−k +a2·k · sn−2·k + ... . (46)

Obviously
f (s) = A1(s)+A2(s)+ ...+Ak(s). (47)
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When analyzing (29), as well as (43) we get (48) and (49). By operating only with the
block symbols A1,A2, ...,Ak we get the formal function F(A1,A2, ...,Ak). It is evident
that the function (49) is equivalent to the notation (43). The below matrix formula is the
consequence of (29) and (43):

F(A1,A2, ...,Ak) = (48)

(−1)k ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 1 . 0 0 0
. . . . . .

0 0 . 1 0 0
0 0 . 0 1 0
0 0 . 0 0 1

(−Ak +1) −Ak−1 . −A3 −A2 −A1



k

−



1 0 . 0 0 0
. . . . . .

0 0 . 0 0 0
0 0 . 1 0 0
0 0 . 0 1 0
0 0 . 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In a complex number domain the block formula F(A1,A2, ...,Ak) can be determined as a
product

F(A1,A2, ...,Ak) = [A1 +A2 + ...+Ak] ·
·[K ·A1 +K2 ·A2 + ...+Kk ·Ak] ·

... (49)
·[Kk−1 ·A1 +Kk−2 ·A2 + ...+K ·Ak]

Using only the symbols of the blocks i.e. A1,A2, ...,Ak in (48), or in (49), we can ana-
lyze the formal function F(A1,A2, ...,Ak). By replacing the symbols of the blocks with
appropriate functions we get the solution

g(sk) = F [A1(s),A2(s), ...,Ak(s)]. (50)

The function (50) is called the ’block formula’, and plays essential role in simplification
of determination the function, and finally, the solution g(s).

8. Solution of the function F for k ¬ 5

To simplicity the notation we slightly change the symbols of the blocks for k ¬ 5:

A = A1, B = A2, C = A3, D = A4, E = A5. (51)

Block formulas are designed for practical calculations of the problem discussed above.
For any degree n, and given k, we can compute so called block function F(A1,A2, ...,Ak).
Below, there are presented four cases for k = 2,3,4,5. The best readability of the formu-
las seems to be in a ’structure number notation’ [2]. The columns show the product of
the symbols. The square table shows the sum of columns (the product).
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1. n ∈ N, k = 1
F(A) = A (52)

2. n ∈ N, k = 2
F(A,B) = (A+B)(A−B) = A2 −B2 (53)

or, when expressing (53) in the ’structure number notation’

F(A,B) =

[
A
A

]
−

[
B
B

]
(54)

3. n ∈ N, k = 3

F(A,B,C) = (A+B+C)(A2 +B2 +C2 −AB−AC−BC) = A3 +B3 +C3 −3ABC
(55)

or, when expressing (55) in the ’structure number notation’

F(A,B,C) =

 A B C
A B C
A B C

−3 ·

 A
B
C

 (56)

4. n ∈ N, k = 4

F(A,B,C,D)= (A+B+C+D)(−A+B−C+D)(A2+B2+C2+D2−2AC−2BD)
(57)

or when expanding and expressing (57) in the ’structure number notation’

F(A,B,C,D) =


B D
B D
B D
B D

−


A C
A C
A C
A C

−4 ·


A A
B D
B D
C C

+
(58)

4 ·


A B
A C
B C
D D

+2 ·


A
A
C
C

−2 ·


B
B
D
D


5. n ∈ N, k = 5

F(A,B,C,D,E) = X [Y −Z +T −R−3a+2b] (59)

where
X = A+B+C+D+E (60)
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Y = A4 +B4 +C4 +D4 +E4 (61)

Z = A3(B+C+D+E)+B3(A+C+D+E)+
(62)

C3(A+B+D+E)+D3(A+B+C+E)+E3(A+B+C+D)

T = A2B2 +A2C2 +A2D2 +A2E2 +B2C2 +B2D2 +
(63)

B2E2 +C2D2 +C2E2 +D2E2

R = ABCD+ABCE +ABEF +ACDE +BCDE (64)

a = A2(DB+CE)+B2(AC+DE)+C2(AB+DE)+
(65)

D2(AB+CE)+E2(AB+CD)

b = A2(D+C)(B+E)+B2(A+C)(D+E)+C2(D+B)(A+E)+
(66)

D2(A+B)(C+E)+E2(A+D)(B+C)

or, when expanding and expressing (59) in the ’structure number notation’

F(A,B,C,D,E) =


A B C D E
A B C D E
A B C D E
A B C D E
A B C D E

−

5 ·


B C A A A A B A A A B
C D B A A D C B B C B
C D D A A E E B C C B
C D D C B E E B D C D
D E D D E E E C E E E

+ (67)

5 ·


B A A A B C B A A A
B C A A D C B A A B
C C B B D D C D C B
D D C B E E C D E E
D D C D E E E E E E


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In the above block formulas the polynomials X ,Y,Z,T,R are symmetric. The poly-
nomials designated by a and b stand for non symmetric polynomials. They are so called
‘cycling polynomials’. The block formulas for k = 1 and k = 3 are composed of sym-
metric polynomials only. Once we have the block formula for given k we can compute
g(s) for given f (s) regardless of its degree n. If f (s) is composed of one block only, then
g(s) is reduced f (sk) (sk should be replaced by s). There are other interesting corollaries
resulting from the block formulas approach.

9. Composition

The relation Rk can be composed as follows:

Ri ◦R j = Ri j (68)

The composition in this case is commutative and associative

Ri ◦R j = R j ◦Ri (69)

Ri ◦ (R j ◦Rl) = (R j ◦Ri)◦Rl (70)

The above properties show that it is sufficient to determine the relation Rk if k is a prime
number.

10. Example

For a given function f (s) of the degree n = 7 find the function g(s) if k = 3

f (s) = a0 · s7 +a1s6 +a2s5 +a3s4 +a4s3 +a5s2 +a6s+a7, a0 = 1. (71)

When applying any of the four described methods we find the monomials in coefficients
of g(s) with appropriate numerical (integer) coefficients. They can be arranged and clas-
sified. A proper way to graphically present such an arrangement is to design it around
the indexes of ai, like in a structure number.

−3 ·

 0 0 0 0 0 0 3 3 3 3 3 3 6 6 6 6 6 6
1 1 4 4 7 7 1 1 4 4 7 7 1 1 4 4 7 7
2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5

 , (72)

1 ·

 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

 , (73)
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3 ·

 0 0 3 3 6 6 1 1 4 4 7 7 2 5
0 0 3 3 6 6 1 1 4 4 7 7 2 5
3 6 0 6 0 3 7 4 1 7 4 1 5 2

 (74)

6 ·

 0 1
3 4
6 7

 (75)

The above 42 monomials of bi, written in the form of indexes in columns, can be clas-
sified in many different ways. They show significant symmetry. Symbol ⇒ presents
appropriate mapping. If one takes the numerical coefficients (72), (73), (74) and (75)
with appropriate sign they should be understood in the way as e.g for (77): b1 =
−3 ·a0a1a2 +a3

1 +3 ·a2
0a3.

b0 ⇒

 0
0
0


 7

7
7

⇐ b7 (76)

b1 ⇒

 0 1 0
1 1 0
2 1 3


 7 6 7

6 6 7
5 6 4

⇐ b6 (77)

b2 ⇒

 0 0 3 2 0 3 1
1 4 1 2 0 3 1
5 2 2 2 6 0 4


 7 7 4 5 7 4 6

6 3 6 5 7 4 6
2 5 5 5 1 7 3

⇐ b5 (78)

b3 ⇒

 0 0 3 3 6 3 1 4 2 0
4 7 1 4 1 3 1 4 2 3
5 2 5 2 2 3 7 1 5 6


 7 7 4 5 1 4 6 3 4 7

3 0 6 3 6 4 6 3 4 4
2 5 2 5 5 4 0 6 2 1

⇐ b4

(79)
In the structure number notation the symmetry in indexes becomes much more visible.
In the above example the following property is true:

bi(a0,a1,a2,a3,a4,a5,a6,a7) = b7−i(a7,a6,a5,a4,a3,a2,a1,a0) (80)

Also the numerical coefficients are identical – see Tab. 2. This symmetry can be gener-
alized for any n, and any k. Thus, the solution is

bi(a0,a1,a2,a3, ...,an−1,an) = bn−i(an,an−1, ...,a3,a2,a1,a0), n ∈ N, i = 1,2, ...,n.
(81)
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Table 5. Symmetry of the coefficients.

n = 7 k = 3

b0 = (a0)
3 (82)

b1 = −3a0a1a2 +(a1)
3 +3(a0)

2a3 (83)
b2 = −3a0a1a5 −3a0a4a2 −3a3a1a2 +(a2)

3 +3(a0)
2a6 +3(a3)

2a0 +3(a1)
2a4 (84)

b3 =
−3a0a4a5 −3a0a7a2 −3a3a1a5 −3a3a4a2 −3a6a1a2 +(a3)

3 +3(a1)
2a7+ (85)

3(a4)
2a1 +3(a2)

2a5 +6a0a3a6

b4 =
−3a7a3a2 −3a7a0a5 −3a4a6a2 −3a4a3a5 −3a1a6a5 +(a4)

3 +3(a6)
2a0+ (86)

3(a3)
2a6 +3(a5)

2a2 +6a7a4a1

b5 = −3a7a6a2 −3a7a3a5 −3a4a6a2 +(a5)
3 +3(a7)

2a1 +3(a4)
2a7 +3(a6)

2a3 (87)
b6 = −3a7a6a5 +(a6)

3 +3(a7)
2a4 (88)

b7 = (a7)
3 (89)

11. Other relations

We can apply symmetric polynomials [11] to solve a large set of other problems. For
example, given the polynomial

s3 +a1 · s2 +a2 · s+a3 (90)

with the roots
U = {s1,s2,s3} (91)

find a polynomial
s3 + c1 · s2 + c2 · s+ c3 (92)

where the roots are
W = {s1 + s2,s1 + s3,s2 + s3}. (93)

Solution:

The coefficients of (90) in a spectral notation take the following form:

a1 =−((1)), a2 =−((1,1)), a3 =−((1,1,1)). (94)

Polynomial (92) can be written as

(s− s1 − s2) · (s− s1 − s3) · (s− s2 − s3) (95)

When expanding (95) we get the coefficients c1,c2,c3

c1 =−2 · (s1 + s2 + s3) (96)
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c2 = s2
1 + s2

2 + s2
3 +3 · (s1 · s2 + s1 · s3 + s2 · s3) (97)

c3 =−s2
1 · s2 − s2

1 · s3 − s2
2 · s1 − s2

2 · s3 − s2
3 · s1 − s2

3 · s2 −2 · s1 · s2 · s3 (98)

In the spectral notation the coefficients (96) - (98) can be written as

c1 =−2 · ((1)), c2 = ((2))+3 · ((1,1)), c3 =−((2,1))−2 · ((1,1,1)). (99)

In the theory presented in [1] we have the identities

((2)) =−2 · ((1,1))+((1))2, ((2,1)) =−3 · ((1,1,1))+((1,1)) · ((1)). (100)

Substituting (100) to (99) one gets

c1 =−2 · ((1)), c2 = ((1))2 +((1,1)), c3 = ((1,1,1))− ((1,1)) · ((1)). (101)

When replacing spectral symbols in (99) by standard symbols of coefficients we get

c1 = 2 ·a1, c2 = a2
1 +a2, c3 =−a3 +a2 ·a1. (102)

Thus the following polynomial satisfies (92)

c1 =−2 · ((1)), c2 = ((1))2 +((1,1)), c3 = ((1,1,1))− ((1,1)) · ((1)). (103)

12. Comments

Four methods of determining the relation Rk, and their improvement (block decom-
position) can be applied for any n, and theoretically for any k. Analysis allows to formu-
late a set of theoretical properties and rules.

1. Coefficients bi are composed of appropriate monomials with numerical, integer
coefficients.

2. Integer coefficients can be determined by analyzing the block decomposition.
They are connected with a generalized Pascal triangle and are associated with
((r1,r2, ...,ri)).

3. It is sufficient to know the solutions for k only, where k is a prime number. Once
we know the integer coefficients in the block function F(A1,A2, ...,Ak) which are
always integer, we are able to determine the coefficients of all monomials.

4. The above properties constitute a base to elaborate theoretical procedure (the fifth
method) which delivers numerical coefficients.

5. The problem of finding the relation Rk is only an example of a much larger set of
problems. One of such problem is presented in sec. 11.

6. Full set of integer coefficients appears if the degree of f (s) equals k2.
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Table 6. Solutions for chosen n¬ 5 and k¬ 5.

k = 2 k = 3

b1 = 2a2 − (a1)
2 b1 =−3a1a2 +(a1)

3

b2 = (a2)
2 b2 = (a2)

3

b1 =−(a1)
2 +2a2 b1 =−3a1a2 +(a1)

3 +3a3

b2 = (a2)
2 −2a1a3 b2 = 3(a3)

2 −3a1a2a3 +(a2)
3

b3 =−(a3)
2 b3 = (a3)

3

b1 =−(a1)
2 +2a2 b1 =−3a1a2 +(a1)

3 +3a3

b2 = 2a4 +(a2)
2 −2a1a3 b2 = 3(a1)2a4 +3(a3)2−3a1a2a3 −3a2a4 +(a2)

3

b3 =−(a3)
2 +2a4a2 b3 = (a3)

3 −3a2a3a4 +3a1(a4)
2

b4 = (a4)
2 b4 = (a4)

3

b1 =−(a1)
2 +2a2 b1 =−3a1a2 +(a1)

3 +3a3

b2 = 2a4 +(a2)
2 −2a1a3

b2 =−3a1a5 −3a2a4 +3(a1)2a4 −3a1a2a3+

3(a3)
2 +(a2)

3

b3 =−(a3)
2 −2a1a5 +2a4a2

b3 =−3a1a3a5 +(a3)
3 −3a2a3a4 +3a1(a4)

2+

3(a2)
2a5 −3a4a5

b4 = (a4)
2 −2a5a3 b4 =−3a3a4a5 +(a4)

3 +3a2(a5)
2

b5 =−(a5)
2 b5 = (a5)

3

Appendix

The spectral notation used in the Theory of Symmetric Polynomials allows to find
unlimited number of identities. The simplest two examples of this kind are the following:

((1))2 = ((2))+2((1,1)), (104)

((1))3 = ((3))+3((2,1))+6((1,1,1)). (105)

In the standard notation both of the above expressions are understood as

(x1 + x2 + . . .)2 = (x1)
2 +(x2)

2 + · · ·+2(x1x2 + x1x3 + . . .), (106)

(x1+x2+. . .)3 =(x1)
3+(x2)

3+· · ·+3[(x1)2x
2+(x1)

2x3+. . . ]+6(x1x2x3+x1x2x4+. . .).
(107)

The spectral theory delivers effective procedures which allow to find symmetric polyno-
mials as functions:

f [((1)),((1,1)),((1,1,1)), . . . ], (108)
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Table 3. Cont.

k = 4

b1 =−2(a2)
2 +4a2(a1)

2 − (a1)
4

b2 = (a2)
4

b1 =−4a1a3 +4a2(a1)
2 − (a1)4 −2(a2)

2

b2 = 2(a1)
2(a3)

2 +(a2)
4 +4(a3)

2a2 −4a1a3(a2)
2

b3 =−(a3)
4

b1 =−4a1a3 −2(a2)
2 +4a2(a1)

2 − (a1)
4 +4a4

b2 =−8a1a3a4 −4a1a3(a2)
2 −4a4(a2)

2 +4a4a2(a1)
2 +2(a1)

2(a3)
2 +4(a3)

2a2+

6(a4)
2 +(a2)

4

b3 = 4(a4)
3 +4a4(a3)

2a2 − (a3)
4 −4(a4)

2a1a3 −2(a4)
2(a2)

2

b4 = (a4)
4

b1 =−4a1a3 −2(a2)
2 +4a2(a1)

2 − (a1)
4 +4a4

b2 = 8a1a2a5 +(a2)
4 −4a4(a2)

2 −4a1a3(a2)
2 +4(a3)

2a2 −8a4a1a3 −4(a1)
3a5+

6(a4)
2 −4a3a5 +4a4a2(a1)

2 +2(a1)
2(a3)

2

b3 = a4a1a2a5 −4(a4)
2a1a3 +4a4(a3)

2a2 −4a5a3(a2)
2 +4a1(a3)

2a5 +4(a4)
3−

6(a1)
2(a5)

2 +4a2(a5)
2 − (a3)

4 −2(a4)
2(a2)

2 −8a4a3a5

b4 =−4(a4)
2a3a5 +(a4)

4 +4a4a2(a5)
2 +2(a3)

2(a5)
2 −4a1(a5)

3

b5 =−(a5)
4

g[((1)),((2)),((3)) . . . ]. (109)

For example
((2,1)) =−3((1,1,1))+((1,1))((1)) (110)

((2,1)) =−((3))+((2))((1)) (111)

((2))((1)) =−2((1,1))((1))+((1))3 (112)

((1,1))((1)) =−1/2((2))((1))+1/2((1))3 (113)

The above examples of identities are computed as results of the transformations in a
vector space. The basic transformations for n = 2 and n = 3 are presented below:[

((1,1))
((1))2

]
=

[
1 0
2 1

]
·

[
((1,1))
((2))

]
, (114)
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Table 3. Cont.

k = 5

b1 =−5a2(a1)
3 +(a1)

5 +5a1(a2)
2

b2 = (a2)
5

b1 = 5a3(a1)
2 +5a1(a2)

2 −5a2(a1)
3 −5a3a2 +(a1)

5

b2 =−5a1(a3)
3 −5a3(a2)

3a1 +5(a3)
2a2(a1)

2 +(a2)
5 +5(a3)

2(a2)
2

b3 = (a3)
5

b1 = (a1)
5 −5a3a2 −5a2(a1)

3 +5a3(a1)
2 −5a1a4 +5a1(a2)

2 +5(a3)
2(a2)

2−
5a1(a3)

3 +5(a1)
2(a4)

2

b2 =−5a4(a2)
3 +5(a3)

2a2(a1)
2 +(a2)

5 +5(a1)
2a4(a2)

2 −5a1a4a3a2 +5(a4)
2a2+

5a4(a3)
2 −5(a1)

3a4a3 −5a3(a2)
3a1

b3 =−5a1(a4)
3a2 −5(a3)

3a2a4 +5a1(a4)
2(a3)

2 +5a3(a2)
2(a4)

2 +(a3)
5 −5(a4)

3a3

b4 = (a4)
5

b1 =−5a1a4 +5a1(a2)
2 −5a2(a1)

3 −5a3a2 +5a3(a1)
2 +(a1)

5 +5a5

b2 =−5a5a2(a1)
3−15a5a1a4 +10a5a3(a1)

2−15a5a3a2 +5(a3)
2(a2)

2 +5(a4)
2a2+

5a4(a3)
2 −5a4(a2)

3 +5(a1)
2(a4)

2 −a1(a3)
3 +10(a5)

2 +(a2)
5 −5(a1)

3a4a3−
5a1a4a2a3 +5(a1)

2a4(a2)
2 −5a3(a2)

2a1 +5(a3)
2a2(a1)

2 +10a5a1(a2)
2

b3 =−5(a4)
3a3 +10a5a4(a3)

2 −5a5a1a4a3a2 +5a5(a1)
2(a4)

2 +5a3(a22
) (a4)

2−
5(a3)

3a2a4 −5a5a1(a3)
3 +5a5(a3)

2(a2)
2 −5a5a4(a2)

3 +10a5(a4)
2a2+

5a1(a4)
2(a3)

2 −5a1(a4)
3a2 +5(a5)

2a1(a2)
2 −15(a5)

2a3a2 +5(a5)
2a3(a1)

2−
15(a5)

2a1a4 +10(a5)
3 +(a3)

5

b4 =−5a5(a4)
3a3 −5(a5)

3a3a2 −5(a5)
3a1a4 +5(a5)

2a4(a3)
2 +5(a5)

2(a4)
2a2+

5(a5)
4 +(a4)

5

b5 = (a5)
5

[
((2))
((1))2

]
=

[
0 1
1 2

]
·

[
((1,1))
((2))

]
, (115)

 ((1,1,1))
((1,1))((1))

((1))3

=

 1 0 0
3 1 0
6 3 1

 ·
 ((1,1,1))

((2,1))
((3))

 , (116)
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((2))((1))
((1))3

=

 0 0 1
0 1 1
6 3 1

 ·
 ((1,1,1))

((2,1))
((3))

 . (117)

When calculating the inverse transformations we get a set of new formulas. When we
perform the compositions of the appropriate transformations we arrive at the complete
set of formulas. The matrix formulas (20), (21) and (23) which can be found in [6],
are essential to calculate particular set of spectral formulas. For the power n = 4 the
dimension of the vector space d(4) = 5. For the power n = 50 the dimension of the
vector space d(50) = 204226.
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