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Dead-time compensation in continuous-review
perishable inventory systems with a remote supply
source

PRZEMY SEAW IGNACIUK and ANDRZEJ BARTOSZEWICZ

In this paper we address the problem of efficient control of continuous-review perishable
inventory systems. In the considered systems the goods at a distribution center used to fulfill
unknown, variable demand deteriorate at a constant rate, and are replenished with delay from a
remote supply source. We develop a new supply policy which incorporates the Smith predictor
for dead-time compensation. A number of properties of the designed policy is formulated, and
strictly proved. In particular, we show that the policy guarantees that the assigned storage space
at the distribution center is never exceeded which means that the cost of emergency storage is
eliminated. Moreover, we show that with appropriately chosen controller parameters all of the
demand imposed at the distribution center is realized from the readily available resources, thus
ensuring the maximum service level.

Key words: inventory control, perishable inventory systems, time-delay systems, Smith
predictor

1. Introduction

It follows from the extensive review papers documenting the research work in the
past [4, 9-11, 13, 14] that certain areas of inventory control are not sufficiently addressed
at the formal design level. This concerns in particular a large and very important class
of problems related to the management of perishable commodities (food, drugs, gaso-
line, etc.). The main difficulty in developing control schemes for perishable inventories
stems from the necessity of conducting exact analysis of product lifetimes. The design
problem becomes cumbersome in the situation when the product demand is subject to
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significant uncertainty and inventories are replenished with nonnegligible delay, which
frequently happens in modern supply chains. In such circumstances, in order to maintain
high service level and at the same time keep stringent cost discipline, when placing an
order it is necessary not only to account for the demand during procurement latency but
also for the stock deterioration in that time.

Since the stock accumulation of perishables cannot be represented as pure integra-
tion, the effects of order procurement delay cannot be adequately accounted for by intro-
ducing the notion of work-in-progress or inventory position variables (constituting the
sum of the on-hand and on-order goods), as it has been done in a number of successful
research works for nondecaying inventories, e.g. [1, 3]. In contrast to our earlier results
devoted exclusively to the periodic-review inventory systems with nondeteriorating stock
[6]-[8], in this work we analyze continuous-review systems with random lifetime of the
stored goods. Since the major obstacle in the considered application is the delay in the
feedback loop (see e.g. [S] for a discussion of the influence of lead-time delay on the
dynamics of the traditional inventory systems), we explicitly address the issues related
to order procurement latency in system modeling and controller design.

In order to solve the stability problems related to nonnegligible delay, we propose
to apply the Smith predictor [15]. The designed control strategy is demonstrated to es-
tablish nonnegative and bounded ordering signal, which is a crucial requirement for the
practical implementation of any replenishment rule. It is also shown that in the inven-
tory system governed by the proposed policy the stock level never exceeds the assigned
warehouse capacity. This means that the potential necessity for expensive emergency
storage outside the company premises is eliminated. At the same time, we demonstrate
that the stock is never depleted, which implies full demand satisfaction from the readily
available resources and the 100% service level. It is noted, however, that the designed
controller may generate overshoots at the output in response to abrupt demand changes.
Therefore, in order to overcome the problems related to the increased storage space due
to the stock level overshoots, we propose a modified controller. The improved policy
retains all the favorable properties of the original scheme, yet avoids excessive stock
growth in the situation of sudden changes in the market trend. The proposed control
strategies are compared with the classical ordering rule - order-up-to policy (see e.g. [3]
for a comprehensive description of fundamental supply policies). It is shown that in the
inventory system with perishable goods our strategy outperforms the classical one in
terms of smoother ordering decisions, smaller storage space requirement, and reduced
order-to-demand variance ratio.

The paper is organized in the following way. First, in Section 2 we formulate the
inventory control problem and provide mathematical description of the relevant system
model. Next, in Section 3, we design the first strategy incorporating the Smith predictor
for dead-time compensation. In Section 4, we introduce the second, enhanced controller,
and prove its properties. The schemes are compared with the traditional ordering policy
analytically in Section 5, and in numerical tests in Section 6. Finally, we provide the
conclusions in Section 7.
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2. Problem formulation

We consider an inventory system in which the goods at a distribution center used
to fulfill the customers’ (or retailers) demand are acquired with delay from a remote
supply source. Such setting, illustrated in Fig. 1, is frequently encountered in production-
inventory systems where a common point (distribution center), linked to a factory or an
external, strategic supplier, is used to provide goods for another production stage or a
distribution network. The task is to design a control strategy which, on one hand, will
minimize the holding and shortage costs, and, on the other hand, will ensure smooth flow
of goods despite unpredictable changes in the market conditions.

Orders Demand
Supplier | Distribution [* — Customers
PP »| center ,(_ Distribution »| [Retailers
Goods network
Goods

Figure 1. Inventory system with a strategic supplier.

The imposed demand (the requests for goods coming from the market) is modeled as
an a priori unknown, bounded function of time d(¢), where ¢ represents time. We assume
that demand can follow any statistical distribution as long as 0 < d(t) < dyax, Where dpqx
is a positive constant. If there is a sufficient number of items at the distribution center
to satisfy the imposed demand, then the actually met demand A(z) (the goods sold to
customers or sent to retailers in the distribution network) will be equal to the requested
one. Otherwise, the imposed demand is satisfied only from the arriving shipments, and
the additional demand is lost (we assume that the sales are not backordered, and the
excessive demand is equivalent to a missed business opportunity). Thus,

0<h(t) <d(t) < dmax- (D

The on-hand stock used to fulfill the market demand deteriorates at a constant rate o,
0 < o < 1, when kept in the distribution center warehouse. The stock is replenished
with delay L, > 0 from a remote supply source. Denoting the quantity ordered from the
supplier at time 7 by u(¢), and the received shipment by ug (), we have

ug (t) =u(t—Lp). (2)

Consequently, the stock balance equation can be written in the following way

y=—0y(t)+ug(t)—h(t)=—oy(t)+u(t—L,)—h(r). 3)

According to the stock balance equation, the on-hand stock decreases due to the realized
sales represented by function 4(-), and the decay characterized by factor c. It is refilled
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from the goods acquired from the supplier ug(-). For the sake of further analysis it is
convenient to represent (3) in an integral form. We assume that initially the warehouse
is empty, i.e. y(0) = 0, and the first orders are placed at t = 0, i.e. u(t) = 0 for r < 0.
Solving (3) for y(-), we obtain (see the Appendix)

t

t

y(t) = /e_G(I_T)MR (t)dt— /e_"(’_“")h (t)dr. (4)
0 0

Since ug(t) = u(t — L) and u(t < 0) = 0, we can rewrite (4) in the following form

0 0 (5)
1—L, t
= / e "Ly (1) dt— /e_cg_r)h (t)dr.
0 0

Note that in order to adequately model the stock accumulation of perishable goods, a
saturating integrator needs to be applied, which makes the considered system nonlinear.
However, if one can ensure that the control signal is nonnegative for arbitrary ¢, then by
introducing the function representing the actually realized sales, h(r) < d(t), the stock
dynamics is reduced to linear equation (5). In the further part of the paper, we will design
a control law which will be shown to satisfy the conditions u(¢) > 0and h(r) = d(t). As a
result, the inventory system will stay in the linear region of operation for the whole range
of the external disturbance 0 < d(f) < dyay. The system block diagram with the linear
part represented using transfer functions is shown in Fig. 2. The saturating integrator
in the internal loop accounts for accumulating the stock of perishables characterized by
decay factor 6. The controller, with transfer function G¢(s), is supposed to steer the on-
hand stock level y(¢) towards the reference value y, s such that high level of demand
satisfaction is achieved.

3. Smith predictor based controller

The primary obstacle in providing efficient control in the considered class of systems
is the latency in procuring orders. Indeed, each nonzero order placed at the supplier at
instant # will appear at the distribution center with lead-time L, atinstant ¢+ L, > t which
may lead to oscillations, or even cause instability. In order to satisfactorily counteract the
adverse effects of delay in the analyzed system with perishable goods, it is not sufficient
to introduce the inventory position variables (constituting the sum of on-hand stock and
open orders), or the notion of work-in-progress, as it is usually done in the traditional
inventory systems with nondeteriorating stock [1, 3]. This is due to the fact that the pure
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Figure 2. System model.

sum of open orders (or the work-in-progress) does not account for the stock degradation
within lead-time. To overcome the delay problem, in this work we propose to apply the
Smith predictor [15], which proved a successful method of dead-time compensation in
many engineering areas [12]. The basic idea behind the Smith predictor is to simulate the
behavior of a remote plant inside the controller structure, thus eliminating the delay from
the main feedback loop. The controller incorporating the Smith predictor is described in
detail in a latter part of this section.

3.1. Principal control strategy

The schematic diagram of the proposed control strategy employing the Smith pre-
dictor for dead-time compensation is illustrated in Fig. 3.

d(n)

Saturating ! ¥
integrator o

L Warehouse

Controlled plant

|
|
I G(s)
|
|
|

Controller
L

Figure 3. Closed-loop system with a Smith predictor based controller.
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The control structure consists of the primary plant controller C(s) and the Smith
predictor using the linearized model of the plant G(s) = 1/(s+ &). With the primary
controller selected as the proportional one C(s) = K, where K is a positive constant, we
obtain the transfer function of the overall control structure G¢(s),

_ C(s) B K
T 14C(5)[G(s)—e LG (s)]  1+KG(s)(1—e L)

In the linear region of operation the plant dynamics is fully represented by the transfer
function G(s) = 1/(s+ o). Then, we can write the closed-loop transfer functions:

Ge (s) (6)

a) with respect to the reference input Y, r(s) = yrer/s,

Y6) | Gel)eGls) K, .
Yeer(s)  14+Gc(s)e °G(s) T sto+K
b) with respect to the disturbance D(s) = L(d(t)),
Y (s) o G(s) _7s+G+K(1—€7LPS) ®)
D(s) 14+Gc(s)e t’G(s)  (s+0)(s+0+K)

It is clear from (7) and (8) that the term related to delay is eliminated from the charac-
teristic equation (the denominator of the closed-loop transfer function). Consequently,
since K > 0 and ¢ > 0, the closed-loop system under nominal operating conditions is
stable for arbitrary lead-time and any bounded disturbance. Moreover, since the closed-
loop poles lie on the negative real axis, the oscillations are avoided at the output.

3.2. Properties of the proposed strategy

Before we state the properties of inventory policy (6), it is convenient to present it in
time domain. Taking into account the initial conditions, we can write the policy in time
domain by direct inspection of the block diagram shown in Fig. 3 in the following form

t Z—LI7

u(t) =K yref—y(t)—/e“’(t‘r)u(t)dr+ / e =Ly (1) dt| . 9)
0 0

This control law can be interpreted as to generate orders in proportion to the difference
between the current on-hand stock and its reference value K[y,.s —y(¢)] decreased by the
amount of open orders quantified by the rate of deterioration within the last lead-time
(the integrals in formula (9)).

The properties of the proposed control strategy will be given in three theorems,
and strictly proved. The first proposition shows that the ordering signal generated by
controller (9) is always nonnegative and bounded, which is a crucial prerequisite for
the implementation of any cost-efficient inventory management policy. The second
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theorem specifies the upper bound of the on-hand stock, which constitutes the smallest
warehouse capacity required to store all the incoming shipments. Finally, the third
proposition shows how to select the stock reference value in order to guarantee that
all of the imposed demand will be fulfilled from the readily available resources at the
distribution center. As a result the maximum service level is ensured.

Theorem 1 For any time t > 0 the ordering signal generated by controller (9) applied
to system (3) satisfies the following inequalities

K OYref <

C+K\u(f)<Kyref- (10)

Moreover, there exists a time instant to such that for any t > tg

u(t) < Kw (11)
Proof Substituting (5) into (9) we get
t t
u(t) =K |Yref — / e Uy (1) dT+ / e Vp(t)dr| . (12)
0 0
Consequently, the derivative
d t
_ Y —ot ot _
=K% / [ (t) — h (1)) dx
0
t
— _K{—ce ™ / % [u(T) — h ()] dT+ e [u (1) — h (1)) (13)
0
t
—K{o / %09 [y (2) — h ()] dT — [ () — o (1)]
0
It follows from (12) that
t
oK / =) [ (2) — h (1)) dT = & [Kypey — u (1)) (14)
0

Hence, we can rewrite (13) as

=0 [Kyrer—u(t)]—K[u(t)—h(t)] = 6Ky —(6+K)u(t)+Kh(r). (15)
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Investigating iz = 0 we get
c h(t
u(r) = g s TR,
o+K

According to constraint (1) the minimum satisfied demand equals zero. At the initial
time u(0) = Ky,.y > 0. Therefore, since 0 < 6 < I and A(-) > 0, we get from (16) that
u(-) decreases as long as it is bigger than K[Gy,r+ h(-)]/(c + K), and it never falls
below KGy,.r/(6+ K). Moreover, there exists a time instant ) when u(-) reaches the
level of K[GYrer + dpax|/ (0 + K) for the first time. Since (-) < dypqax, We get from (16)
that for all r > 19

(16)

M@)g,(w.
o+K

This conclusion ends the proof. 0

Theorem 2 If policy (9) is applied to system (3), then the on-hand stock at the distribu-
tion center never exceeds the level of y,.y for 6 = 0 and

d _
Ymax = +K[yref+ == (1—e "Lv)] for 6> 0. (17)

Proof Applying (12) to the stock balance equation (3), we get

-L, -L,
y=—oy(t) +Kypes — K / e~OU-Ly=%) (1) d1 — / e S Lo D (t)dt | —h (1),
0 0
(18)
which can be rewritten as
thl, t
y=—0y(t)+Kyref —K / e oL =Ny (1) dt— /e“’“‘”h(t) dt
0 0
(19)

t

—K/ ~ol-1) dr+K/ SU—Ly=Dp, (2) d— h(r).

0

Using (5) we can notice that the term in the square brackets in (19) actually equals y(7).
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Consequently, we have

t
V= Kyney— (6 +K)y(t) — K / eI (1) du— K / ¢ S0 (1) dr
t-L,
t—L,
YK / ¢TI (1) dT— (1) = Kypy — (6 K)y () —h())  (20)

0
—L,

1’—1 / T)dt— K/ dar.
0

Investigating y = 0 leads to

Kyref
c+K G+K

t T

drt

y(t) =

|
)

21

t
o(r— h(t)
o(r—1) s
/e h(E)dT+ S
L

t—L,

It follows from (21) that since K > 0, 6 > 0, exp(c6L,,) > 1, and h(-) > 0, the biggest
value of y(-) is expected when h(T) = dyqx for T <t —L, and k(1) = 0 in the interval
(t—Lp, t]. We get immediately from (21) that for 6 = 0 (the case of nondeteriorating
stock)

h(t
y(t)zyreerO—/h(T)dT—I(()<yref- (22)
—L,

Evaluating the first integral in (21) for the case of ¢ > 0, we obtain

1—L, 1—L, —L,

/ e~ (7) dt < dima / e =Dt — g e / Odr

(=]
(=]
(=]

= dmaXL {eﬁ(f*Lp) _ 1} (23)
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Consequently, applying (23) to (21), we arrive at

K

d K d
L max —glL max —oL
y(t)gﬁ—i-i[( yref"i_(ecp_])Te GP:|ZG+K I:yref'+ p (l_e Gp) = Ymax-
(24)
This ends the proof. 0O

It follows from Theorem 2 that if the warehouse of size y,,, specified by (17)
is assigned at the distribution center, then all the incoming shipments can be stored
locally, and any cost associated with emergency storage is eliminated. Apart from
the efficient warehouse space management, a successful inventory control strategy in
modern supply chain is expected to achieve high level of demand satisfaction. The
proposition formulated below shows how the reference stock level should be selected so
that y(z) > 0, which implies that all of the demand imposed on the distribution center is
satisfied from the readily available resources.

Theorem 3 If policy (9) is applied to system (3), and the reference stock level is selected
as
Yref > dmax (L, +1/K) for 6=0, (25)

Yref > dmax [ (1 —€ ) Jo+1/K] for ¢ >0, (26)

then the on-hand stock level at the distribution center is strictly positive for any t > L.

Proof : Note that ¢%» — 1 > 0. Hence, considering (1) and (21), we can expect the
smallest on-hand stock level in the circumstances when /(1) = 0 for T <¢—L, and
h(T) = dpax for T belonging to the interval (t — L,, t]. It follows from the assumed initial
conditions that the warehouse is empty for any # < L,,. In the case of the system with
nondeteriorating stock (¢ = 0) we get from (21)

t
h
y(t):yref—ko—/l’l('t)d't—I((t)>yref_dmax(Lp+1/K)' (27)

t—L,

Thus, using assumption (25) we have y(7) > 0 for 6 = 0. Evaluating the second integral
in (21) for t > L, in the case when /(t) = dynax and 6 > 0, we obtain

t t t

/ ¢ (1) dT < dinax / e UGt = dpage™ / dn
1—L, 1—L, 1—L,

o1
_ —ot [ €
= Umax€

(¢}

t > . (28)
= dmax% [é’cl — ec(t_Lp)} — max (1 — E_GL”) .

-L, c
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Applying (28) to (21), we get the on-hand stock level y(+) at the instant when it is mini-
mum

K dmax —oL dmax
t) > ref — l—e %) ——=|. 29
y()/G+K[Yef (1—e %) = (29)
If the reference stock level is adjusted according to (26), then using (29) one may con-
clude that

K —0
y(t) > m{y,ef—dmax[(l—e L) Jo+1/K]} > 0. (30)

This completes the proof. 0

4. Modified control law

The Smith predictor based controller designed in the previous section establishes
a smooth, nonoscillatory ordering signal. However, an overshoot in the output variable
(the stock level) may be generated for an abrupt change in the market trend. This leads
to increased warehouse capacity required to accommodate the resulting spike in y(-).
Below, we formulate an enhanced control law, which allows for maintaining all the fa-
vorable properties of the original strategy, yet with an overshoot-free output, and thus
reduced warehouse capacity.

4.1. Proposed control strategy

We propose to apply the following control law

t

u(t) =K |yrer—e ry(t) — / e Oy (t)dr| . 31)

t—L,

Therefore, in the modified scheme, the order quantity is established in proportion to the
reference stock level minus the scaled output (the term exp(—6L,)y(t)), decreased by
the amount of goods on-route quantified by the rate of deterioration within lead-time
(the integral in (31)). The structure of the improved controller is illustrated in Fig. 4. We
can notice from Fig. 4 that the constant delay offset, exp(—GL,), is introduced in the
feedback and compensating loops.

The transfer function of the modified controller is determined as

_ C(s) B K
C1+CE)[Gs) —e e G (s)]  THKG(s) (1-etrlit))

Ge (s) (32)

and the closed-loop transfer functions:

a) with respect to the reference input Y,.(s) as given by (7),
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b) with respect to the disturbance D(s) as

Y(s)  s+o+K(1—eblst9)
D(s)  (s4+0)(s+06+K)

(33)

Similarly as in the case of controller (9), the term related to delay is eliminated from
the characteristic equation. Therefore, since K > 0 and ¢ > 0, the closed-loop system
with controller (31) implemented is stable for arbitrary lead-time and any bounded dis-
turbance, and no oscillations appear at the output.

d(r)
_______________ r—% - - - - - 7"
)4 ! Saturating|| 'Y (i)
; integrator |f [ o
I I
G(s) I > I
S -t
' Warehouse :
} b - — - -
Controlled plant

Figure 4. Closed-loop system with the improved controller (31).

4.2. Properties of improved strategy

The properties of controller (31) will be formulated as three theorems, and strictly
proved. The first proposition shows that the ordering signal generated by the proposed
controller is non-negative and bounded. The second theorem specifies the upper limit
of the stock level. Finally, the third proposition shows how the reference stock level
should be selected so that all of the demand is realized, and the maximum service level
is obtained.

Theorem 4 For any time t > 0 the ordering signal generated by controller (31) applied

to system (3) satisfies inequalities (10). Moreover, there exists a time instant ty such that

foranyt >t

OYref + e_GLpdmax
c+K

u(t) <K (34)
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Proof Substituting (5) into (31) we get

t=L, t t
u(t)=K< yrep—e /eiG(I*LfT)u (t)drt —/efc(tfr)h (t)dt|— /efc(tfr)u (t)drt
0 0 t=L,
t t
=K |Yref — /e_c(’_ﬂu (t)dt+e O /e_c(’_ﬂh (t)dr| . (35)
0 0
Consequently,
t
0= — % e*Gt/ % [u(t) —e °h(1)] dr
0
t
=-K{ —ce ™ /e(’T [u(t)—e h(t)]di+e e [u(t)—e °h(t)] p (36)
0
t
~k{o / =909 [y (1) — e ~Lon ()] dt — [u(t) — e Lo (1)]
0
It follows from (35) that
t
oK / ¢ [ (1) — =Lk (1)] dt = 6 [Kyper — u(1)]. (37)
0

Hence, we can rewrite (36) as
1=6 [Kyrep—u (t)]—K [u(t)—e "h ()| =6Kyef— (6 +K)u(t) +Ke ®h(t). (38)

Investigating i1 = 0 we get

c “SLop (¢
u() = kDres HE ) (39)
6+ K

According to constraint (1) the minimum satisfied demand equals zero. At the initial time
u(0) = Kyrer > 0. Therefore, since 0 < 6 < 1 and A(-) > 0, we get from (39) that u(-)
decreases as long as it is bigger than K[Gy,.s + exp(—0L,)h(-)]/(c+ K), and it never
falls below Koy,.r/(c+ K). Moreover, there exists a time instant 7y when u(-) reaches
the level of K[Gy.f + exp(—GL,)dmax]/ (0 + K) for the first time. Since A(-) < dyayx, We
get from (39) that for all ¢ > 1y

Gyref + e_GLP dmaX

u(t) <K
o+K

This conclusion ends the proof. 0
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Theorem 5 If policy (31) is applied to system (3), then the on-hand stock at the
distribution center never exceeds the level of Ky,.r/(c +K).

Proof Applying (35) to the stock balance equation (3), we get

—L, _
y=—0y(t)+Kyrr—K / e ULy (t)dt— e~ / oU=Ly=Yp (t)dt| —h(r).
0 0
(40)
Using (5), we can represent (40) in the alternative form
t
Y= —0y(t)+ Ky — Ky () — K / e (1) dT—h(1). @1)
1-L,
Investigating y = 0, we obtain
K / h(t)
_o(t— t
YO =g [Yrer— / e ot T)h(T)dT—T : (42)

—L,

Therefore, since K > 0, ¢ > 0, and A(-) > 0, it follows from (42) that the biggest
value of y(-) is expected when (1) =0, i.e. y(f) < Kyr.r/(6+K). This ends the proof.

Theorem 6 If policy (31) is applied to system (3), and the reference stock level is
selected as (26), then the on-hand stock level at the distribution center is strictly positive
foranyt> L,

Proof It follows from the assumed initial conditions that y(z) = 0 for f < L,. On the other
hand, we get from (1) that the maximum realized demand equals d,,,,. Consequently,
using (42) and (28), we get

K dmax — L] dmaX
y() > g s == (1=e77) ===
K (43)
— ok Dy = o [(1 =€) fo /K] ).
Applying the theorem assumption, we obtain y(z) > 0. This completes the proof. 0

Remark It follows from Theorems 3 and 6 that the proposed controllers (9) and (31) use
the same reference stock value to ensure full demand utilization. Theorem 5 states that
the on-hand stock in the system regulated by controller (31) never exceeds the level of
Kyrer/(6+ K), which is smaller than the maximum stock level expected in the system
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regulated by controller (9) stated in Theorem 2. Consequently, the improved controller
(31) requires less storage space and imposes smaller holding costs than policy (9). Con-
sequently, it offers a less costly solution to the goods flow control problem in the ana-
lyzed class of systems with deteriorating stock. We will show in the simulation example
considered in a latter part of the paper that it also outperforms the Smith predictor based
strategy in throttling the demand variations, thus providing a viable solution to elimi-
nating the bullwhip effect (amplification of demand variations translated to the ordering
signal) in perishable inventory systems.

5. Relation to the classical inventory policies

In this section, we compare the proposed inventory management policies with the
classical ones - order-up-to (OUT) policy, and heuristically determined proportional
OUT (POUT) policy.

5.1. Classical inventory policies

In the case when demand forecasting is not used, the classical OUT policy can be
synthesized in the following way

uour (t) = your —y (t) — WIP(t), (44)

where your is the order-up-to level, y(¢) is the current stock value, and WIP(¢) represents
the pending order (order placed but not yet realized due to lead-time). Notice that in the
considered system with delay the pending order can be calculated by summing orders
u(-) generated within lead-time L,. Therefore, WIP(¢) = [’ L uour(t)dt, and the OUT

policy can be rewritten as

t

uout (t) =your —y(t) — / uour (T) dt. (45)
L,

On the other hand, in the systems where the bullwhip effect is of significant concern,
a different ordering rule typically needs to be applied. A successful modification of the
classical OUT policy aimed at smoothening the order variations and thus counteracting
the bullwhip effect in the traditional inventory systems is the POUT policy [3]. When
demand forecasting is not applied, the POUT policy can be presented as

t
1 1
upour (1) = T [ypour —y (2)] — = / upour (T) dT, (46)

t—L,
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where T;, and T,, are positive constants used for tuning purposes. Note that for 7, = T,, =
1 the POUT policy actually reduces to one given by (45). The structure of policy (46)
represented by means of transfer functions is illustrated in Fig. 5.

Upoyr(?)
+ -

-y(t -
Joour 7V (1) Tnl

3,
A
N

Figure 5. Transfer function realization of policy (46).

Comparing the proposed strategy (31) with policy (46), we can recognize a similar
control structure which involves the measurement of the current stock level and the cal-
culations performed on the order history. However, policy (31) explicitly accounts for the
effects caused by deteriorating stock, and thus it allows for avoiding the oscillations both
in the output variable and in the ordering signal which is not guaranteed by the POUT
policy for arbitrary system parameters (delay and decay factor). Moreover, our scheme
requires less tuning effort than controller (46) as it relies on one gain coefficient. Notice
also that both of the proposed policies (9) and (31) when applied to the system without
perishables (6 = 0) become equivalent the POUT one with 7, = T;, = 1 /K. As a result,
all the properties defined in the theorems will be valid for the POUT policy with 6 =0
and T, = T,, = 1/K when applied to the standard inventory system with nondeteriorating
stock.

5.2. Stability analysis

The transfer function of the POUT policy (46) is determined in the following way
B 1/T, B Tys

I+ 75 (1—ets)  T,(1+Tys—e ')

and the closed-loop transfer functions are given by

Ge (s) ; (47)

a) with respect to the reference input Ypour(s) = yrout/s,
Y (S) . Twse—Lps
Yeour () T (s+0) (14 Tys) + (T — Tn)s — Tyole L

(48)

b) with respect to the disturbance D(s),

Y(S) _ T, (1 +Tps — e—L[,s) w
D(s) T, (s+0)(1+4+Tys)+ (T, — T,) s — T,,0] Lo
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In order to comment on the closed-loop stability we need to study the roots of the
characteristic polynomial

P(s,e ") =T, (s +6) (1 4+ Tys) + [(T,, — T;,) s — T,,0] e L*. (50)

Due to the transcendental form of the characteristic equation P(s,exp(—Lps)) = 0, the
standard stability tests, e.g. Routh-Hurwitz test, are not applicable. Note that s = 0 is
the root of the numerator and the denominator of (48) and (49). Hence, to ascertain
stability one needs to ensure that there are no roots of (50) with positive real parts.
For the case of systems with non-deteriorating stock (6 = 0) we get immediately from
(50) that for 7,, = T,, the delay term is eliminated from the characteristic equation, and
the system is stable independent of delay. In the nontrivial case ¢ > 0, the conditions
for stability independent of delay will be established using the two-variable criterion
approach discussed in [16, ch. 2] which originates from the works of Kamen [17]-[19].

It follows from [17] that the closed-loop system with the characteristic equation
P(s,exp(—Lps)) = 0 is stable independent of delay if and only if

P(s,e ™) #£0 Res >0, L,>0. (51)

Alternatively to solving (51), one can seek for the critical delay values at which the stable
poles of the system with no delay cross the imaginary axis. Following the reasoning pre-
sented in [16, ch. 2], verification of the stability of the system with single delay (or with
multiple commensurate delays) amounts to checking if P(s,z) = 0 admits an imaginary
solution so = jo, or a unitary solution |zg| = 1, where z = exp(—L,s). On the other hand,
by the complex conjugate property of polynomials with real coefficients, in order to find
the roots of the bivariate polynomial P(s,z), it is sufficient to obtain the simultaneous
solution (for positive ®) of two equations

P(s,z) =0 and P(s,z) =0, (52)

where P(s,z) = zP(—s,z~!) is the conjugate polynomial of P(s,z). By eliminating either
s or z from set (52), the problem of finding the roots of the bivariate polynomial P(s,z)
may be reduced to calculating the roots of a one-variable polynomial. The parameter
range for the stability independent of delay of system (48)-(49) established using the
discussed approach is given in Theorem 7.

Theorem 7 The closed-loop system (48)-(49) is stable independently of delay for arbi-
trary 0 < 6 < 1, if either
T,>0 for T,>1/o, (53)

or
0<T,<2T,/(1-T}c*) for 0<T,<1/c. (54)
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Proof First, notice that P(s,1) = T,,s(T,s + 7,6 + 1) has no root with positive real part
for positive gain constants 7,, and T;,. Therefore, the system is stable in the delay-free
case.

With z = exp(—L,s) we get the characteristic and conjugate polynomials of the an-
alyzed system,

P(s,z2) =T, (s+0)(1+T,s)+ (T, —T,) s — T,6]z = 0,

_ (55)
P(s,z) =z, (6 —s) (1 = T,s)+[(T, — T.,) s — T,6] = 0.
Eliminating z, we obtain
Tys* [T T (s — %) = 2T, + T] _ 0. (56)
T,(s—o)(Tws—1)
which has two nonzero roots for T, # 1/ and T,, # 2T, /(1 — T>c?),
T2T,0%+2T,—T,
s(ﬂ;:i\/" WO = (57)
T2T,

The system is stable independent of delay if there are no imaginary solutions to (56). We
get from (57) that no imaginary root exists if

T T,6* + 2T, — T, =T, (T;6> — 1) + 2T, > 0. (58)

In the case when 7, > 1/c condition (58) is fulfilled for any 7, > 0. On the other hand,
when T, < 1/0, (58) is equivalent to T,, < 27, /(1 — Tnzcz). Thus, whenever the gains are
chosen as either (53) or (54), the stable poles of the system with no delay do not cross
the imaginary axis when L, > 0, and system (48)-(49) is stable independent of delay for
arbitrary 0 < ¢ < 1. This ends the proof. 0

6. Numerical example

The properties of the designed policies (9) and (31) are verified in simulations
conducted for the model of perishable inventory system described in Section 2. The
system parameters are set in the following way: lead-time L, = 7 days, inventory
decay factor 6 = 0.08 day ', and the maximum daily demand at the distribution center
dmay = 20 items/day. Two tests are run: one for the piecewise constant demand subject to
seasonal changes illustrated in Fig. 6, and the other test for the highly variable demand
following the normal distribution with mean 10 items/day and variance 36 (items/day)?.
The controller performance is compared with the classical inventory policy (46).
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Figure 6. Demand at the distribution center.

Test 1 In the first simulation example we assume that the market demand follows the
pattern illustrated in Fig. 6 which reflects abrupt seasonal changes in a half-year trend.
Since d(-) does not fluctuate within the respective seasons, variance reduction (and the
bullwhip effect) is of little concern. However, in order to gain competitive advantage
in the analyzed case, it is imperative to quickly react to the sudden trend changes.
Consequently, the controller gain is adjusted to obtain fast reaction to d(-) transitions
as K = 10 day~', and the POUT tuning coefficients as T, = T,, = 1/K = 0.1 day.
The reference stock level for policy (9) and (31) is adjusted according to (26) as
Yref = 115 > 109 items so that high level of demand satisfaction is achieved. This results
in the required storage space: for policy (9) determined from Theorem 2 as 221 items,
and for policy (31) obtained from Theorem 5 as 115 items. The order-up-to level for
the POUT policy is adjusted so that it generates the same holding costs as the improved
policy (31). We set ypout = 160 items.

The orders generated by the controllers are shown in Fig. 7, and the resulting
on-hand stock level in Fig. 8: policy (9) - curve a), policy (31) - curve b), and policy (46)
- curve c). We can see from the graphs depicted in Fig. 7 that the proposed controllers
(9) and (31) quickly respond to the sudden changes in the demand trend without
oscillations or overshoots in the ordering signal. Policy (31) establishes smaller order
quantities than controller (9), which leads to smaller purchase costs while maintaining a
given service level. The ordering signal generated by the POUT policy is contaminated
by overshoots and oscillations, thus being more difficult to follow by the supplier and
requiring bigger safety stock from the supply source. We can see from Fig. 8 that the
stock level resulting from the application of policies (9) and (31) does not increase
beyond the maximum level calculated from Theorems 2 and 5, which means that the
assigned warehouse capacity is sufficient to store the goods at the distribution center at
all times. Moreover, the on-hand stock never falls to zero after the initial phase which
implies full demand satisfaction and the 100% service level. The y(¢) curve obtained
from policy (9) exhibits large overshoots after sudden changes in the demand trend,
which leads to increased holding and warehouse maintenance costs. The improved
policy (31) is free from overshoots, and it offers the least costly solution of the three
investigated controllers.
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Figure 7. Ordering signal: a) policy (9), policy (31), POUT policy (46).
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Figure 8. On-hand stock level: a) policy (9), policy (31), POUT policy (46).

Test 2 In the second test we verify the controller performance in the presence of highly
variable demand following the normal distribution with mean 10 items/day and variance
36 (items/day)>. Since the demand exhibits rapid fluctuations (coefficient of variation
CV - standard deviation over mean - amounts to 0.6), we decrease the controller gains
to smoothen the ordering variations. We set K = 0.5 day~! for policy (9) and (31), and
T, = T,, = 1/K = 2 days for policy (46). In order to ensure full demand satisfaction, the
stock reference value is set according to (26) as y,.r = 150 > 147 items. The order-up-to
level for policy (46) ypout = 205 items so that the same holding costs are generated as
in the case of policy (31). The first simulation (a) is run for the nominal system, whereas
in the second one (b), the orders are realized with delay varying randomly between 6
and 9 days, and the decay factor fluctuates randomly within the interval [0, 0.2]. The
statistics of the ordering decisions and the bullwhip indicator (order-to-demand vari-
ance ratio, [2]) are given in Table 1. The data listed in Table 1 demonstrates that with
proper gain adjustment, all controllers eliminate the risk of the bullwhip effect as the
bullwhip indicator is smaller than one. This is achieved even when the precise values of
the system parameters are not known to the controllers. In that case (b) however, the or-
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Table 3. Variable statistics.

. Order variance Bullwhip
System Ordering rule R Lo
[items~/day~] indicator

controller (9) 19 0.53

a) nominal  controller (31) 10 0.28
controller (46) 15 0.42

controller (9) 28 0.78

b) perturbed controller (31) 12 0.33
controller (46) 18 0.5

der smoothening property degrades resulting in a bigger order-to-demand variance ratio.
The POUT policy performs better than controller (9), but it results in a bigger value of
the bullwhip indicator than the improved policy (31).

7. Conclusions

In this work we addressed the problem of goods flow control in continuous-review
inventory systems with deteriorating stock. The focus was placed on the effects related
to delay in realizing the stock replenishment orders. A new supply policy employing the
Smith predictor for dead-time compensation was proposed. The closed-loop system sta-
bility with the designed controller implemented is guaranteed for arbitrary delay and any
bounded demand pattern. The ordering signal smoothly adapts to the demand changes,
and thus it is easy to follow by the supplier. It is also demonstrated that the stock level
resulting from the application of the proposed policy does not increase beyond the pre-
cisely determined warehouse capacity, which eliminates the need for costly emergency
storage and facilitates capacity planning at the goods distribution center. It is shown how
to select the controller parameters to achieve full satisfaction of the unknown market
demand. Since the basic Smith predictor based strategy may lead to overshoots in the
stock level in response to abrupt demand changes, we introduce a modified controller.
The improved control law retains all the favorable properties of the original scheme but
ensures exponential convergence of the stock level to steady state without overshoots
and oscillations
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Appendix

We solve differential equation (3) with the initial conditions: y(0) = 0, and ug(t) =
u(t —L,) =0 fort < L,. First we consider the homogeneous equation

y+oy(t) =0, (59)

which leads to

y(t)=y(0)e . (60)

In order to determine the nonhomogeneous solution we assume y(¢) in the following
form

y()=q(t)e ™, (61)

where ¢(t) is a function differentiable with respect to time. Differentiating both sides of
(61) we obtain

Ot

y=ge ® —oq(t)e . (62)
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Substituting (61) and (62) into (3), we get

Ge % =ug(t)—h(r). (63)
Solving (63) for ¢(z) yields
at) = [ lur(t) ~ h(t))de+C, (64
0

where C is the constant of integration. Substituting (64) into (61), we arrive at

y(1) = / ¢ lug (1) —h(1)]dTt+C p e =Ce ™ + / ¢~ [ug (1) — h(1)] dr.
0

0
(65)

Applying the initial condition y(0) = 0, we have C = 0, and

y() = [ fur 1) (o)) . (66)
0
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