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Sensorless DTC of induction motor using improved
neural network switching state selector controller

IQBAL MESSAÏF, EL-MADJID BERKOUK and NADIA SAADIA

The paper deals with development of sensorless Direct Torque Control (DTC) system based
on neural network. This network is built to solve the task of proper switching states selection
based on information about electromagnetic torque and stator flux (position and magnitude)
of induction motor. In fact, this technique which uses conventional switching table is not con-
venient for one-line and real time control for its high computation time. In order to avoid this
problem a solution based on neural network is proposed. Welltrained Artificial Neural Network
structure can replace successfully the switching table. However, in the Neutral-Point-Clamped
topology, it has an inherent problem of Neutral Point Potential (NPP) variation. In this way, a
Neural Network-Direct Torque Control technique has been applied and the estimated value of
the Neutral Point Potential is used, which is calculated by motor currents. This control strategy
offers the possibility of selecting appropriate switchingstate to achieve the control of Neutral
Point Potential. Simulation results verify the validity ofthe proposed method.

Key words: direct torque control, NPC three-level inverter, switching table, neural point
potential, neural network, induction motor

1. Introduction

In recent years many studies have been developed to find out different solutions for
the induction motor control having the features of precise and quick torque response,
and reduction of the complexity of field oriented algorithms. The Direct Torque Control
(DTC) technique has been recognized as viable solution to achieve these requirements.
The main advantages of DTC are: absence of coordinate transformation and current
regulator and absence of separate voltage modulation block. In addition, DTC minimizes
the use of motor parameters, so it is very little sensible to the parameters variation [1],[2].
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The operation with unbalanced voltage in the DC bus affects the Neutral Point
Clamped (NPC) converter performance due to the generation of uncharacteristic har-
monics in the inverter output voltage. In order to maintain the equal voltage division, it
is critical to control the Neutral Point Potential (NPP). A large amount of research has
looked at solving of this problem [3],[4],[5].

NPP has the closed relations with the vectors that can be implemented by differ-
ent switch combinations. Therefore, analysis of the variation of NPP is required and a
control method for maintaining the NPP should be developed.

In principle, DTC method bases on instantaneous space vector theory. By optimal
selection of the space voltage vectors in each sampling period, DTC achieves effective
control of the electromagnetic torque and the stator flux on the basis of the errors between
theirs references and estimated values. It also regulates the NPP through the information
on the voltage capacitors. It is possible to directly control the inverter states through a
switching table in order to reduce the torque and flux errors within the desired bands
limits and also the NPP variations.

Common disadvantage of conventional DTC is the large dimensions of its switching
table, particularly in the multilevel inverter [6],[7],[8]. This technique is not convenient
for one-line and real-time control. The use of Artificial Neural Networks (ANN) can
solve this problem. It has been motivated by theirs properties of learning capability,
speed computation and generalization to improve the control performance of the system
and by several advantages over the conventional controllers, such as stability, speed and
robustness [9],[10].

The paper is organized as follows: sections 2 and 3 present respectively the three-
level inverter NPC topology and the DTC strategy, the analysis of the NPP is developed
in next section, the authors study the stability problem of the input DC voltage sources
inverter using the redundancy criteria of the available voltage vectors. The structure of
ANN and the training method are described at section 5. Afterperfectly training, this
structure achieved the effective input and output control of the DTC system fed by a
three-level NPC voltage source inverter (VSI). Finally, conclusion and perspectives are
given in the last section.

2. Basic DTC Principles

A block diagram of a basic direct torque control (DTC) controller is given in Fig.1.
In principle, DTC is a direct hysteresis stator flux and electromagnetic torque control
scheme, which triggers one of the available discrete voltage vectors generated by a VSI
to keep the stator flux and torque within the limits of two predefined bands. The correct
application of this principle allows a decoupled control offlux and torque [11].

In Direct Torque Control schemes, the magnitude of the stator flux linkage vector is
controlled which further can be decomposed to its orthogonal components expressed at
a stationary reference frame as:
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ϕds =

∫

(vds−Rsids)dt (1)

ϕqs =
∫

(vqs−Rsiqs)dt (2)

whereϕds andϕqs are d-axis and q-axis stator flux linkage components.

Figure 1. Basic DTC controller.

The torque could be expressed in terms of stator flux, rotor flux and the angleγ
between them, i.e.:

Γe = p
Lm

σLsLr
ϕsϕr sin(γ) . (3)

In formula (3)σ = 1− L2
m

LsLr
, Lm is the magnetizing inductance of the motor, andLs and

Lr are the stator and rotor inductance, respectively.
In general, rotor flux changes much more slower than that of the stator. If sampling

periodTe is short enough, and the stator flux is assumed to be constant,the torque can be
rapidly changed by tuningγ in the desired direction (Fig. 2). The angleγ can be easily
changed by the appropriate space voltage vector.

If for simplicity, it is assumed that the stator voltage dropRsis is small and is ne-
glected, than the stator flux variation can be expressed as:

∆ϕs ≈ vsTe. (4)

As shown in formula (4), the stator flux variation is nearly proportional to voltage vector,
because the sampling period is constant, and stator flux space vector will move fast if
non-zero switching vectors are applied.
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Figure 2. Stator and rotor fluxes and stator current vectors.

If p denotes the number of pole pairs, the original torque equation (equation (3)) has
another presentation as follows:

Γe = p(iqsϕds− idsϕqs) . (5)

3. Three-level inverter topology and the NPC voltage source

The advantage of the three-level NPC voltage source inverter can be summarized as
follows:

• voltage across the switches is only half of the DC bus voltage,

• switching losses are cut in the half with reduced harmonics of output waveforms
for the same switching frequency,

• power rating increases.

However, the drawbacks of this kind of inverter is complex control, more devices to be
involved, and the charge balance problem of the NPP.

The schematic diagram of this inverter is shown in Fig. 3. It is built-up with twelve
switches, each one containing freewheeling diode and six power diodes that allow for
connection of the phases outputs to the middle pointo. As in the two-level VSI, the
necessary conditions for the switching states of the three-level VSI are that the DC link
capacitors should not be shorted and each bridge leg has three status: 1, 0 and -1. Switch-
ing controlSi can be defined as:

Si = −1 ⇒ (Si1,Si2,Si3,Si4) = (0,0,1,1)
Si = 0 ⇒ (Si1,Si2,Si3,Si4) = (0,1,1,0)
Si = 1 ⇒ (Si1,Si2,Si3,Si4) = (1,1,0,0)

wherei = a,b,c.
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Figure 3. Schematic diagram of a three-level NPC VSI.

Therefore, the stator voltage vector in the Park stationaryplane (d,q) might be written
as follow:

vs =

√

2
3

[

vaN +vbNej 2π
3 +vcNej 4π

3

]

(6)

wherevaN, vbN andvcN represent the stator simple voltages.
Relatively to the two-level inverter which is only capable to produce 8 voltage vec-

tors [10], a three-level inverter has 33 = 27 switching states as Fig. 4 shows. If voltages
of two capacitors are equivalent, some switching vectors are overlapped and there are
19 effective vectors. According to the magnitude of the voltage vectors, we divide them
into four groups:

The large vectors are the vectors that all of three switches are connected to either
off, 1 or -1 potentials except the case of all three are connected at the same point. The
medium vectors are the ones that have only one phase connected at neutral point and
other two switches are connected to 1 and -1 potential each other. The small vectors have
two switches connected at the same point and the remaining one connected at another
adjacent point. The zero vectors have all three switches connected to same point. The
zero vectors do not have output voltage. Besides, some spacevectors as the small ones
refer to two different switches configurations (for example100 and 0-1-1).

Keeping in mind the simplicity of DTC, the same principle, asexplained in section
2, can be applied if three-level inverter feeds the induction motor.



440 I. MESSÄIF, E-M. BERKOUK, N. SAADIA

Figure 4. Space voltage vector with their switching states.

For the regulation of the field, let the variableεϕ be located in one of the two regions
to which variableCϕ in two states is associated. The flux control is made by two-level
hysteresis controller andCϕ defines the action which is wished according to the behavior
of the field. Also, for the regulation of the electromagnetictorque, a high level perfor-
mance torque control is required. To improve the torque control, let of the mismatch
εGammabelongs to one of the five regions, with which a variableCΓ in five states is as-
sociated. The torque control is then controlled by a hysteresis controller built with two
lower bounds and two upper known bounds, andCΓ defines the action which is wished
according to the behavior of the torque.

Several switching tables for three-level inverter are presented in literature [6], [7].
An optimal table for the inverter selector has been developed [12], to achieve accurate
control. The flux position in the (d,q) plane is quantified in six sectorsSof 600 degrees
starting with the first sector situated between−300 and 300. Numbers in the table for
inverter state are written according to Fig. 4. In order to simplify the problem, the me-
chanical rotor speed is considered when assigning the voltage vectors needed at each
sectors. The speed of the stator flux linkage vector is given by the modulus of the ap-
plied voltage vector. Thus, the voltage vectors are chosen according to the rotor speed
[8]. Voltage vectors with low amplitude are chosen for lowerspeeds. Taking into ac-
count available voltage vector amplitudes in a three-levelinverter, two different tables
have been used. Each table corresponds to a specific speed range, as shown in Table 1.
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Table 6. Switching table

Ω < Ωnom
2 Ω­ Ωnom

2

S S

Cϕ CΓ 1 2 3 4 5 6 1 2 3 4 5 6

+2 21 22 23 24 25 26 16 17 18 19 20 15

+1 2 3 4 5 6 1 21 22 23 24 25 26

+1 0 Zero vector Zero vector

-1 6 1 2 3 4 5 26 21 22 23 24 25

-2 26 21 22 23 24 25 20 15 16 17 18 19

+2 22 23 24 25 26 21 22 23 24 25 26 21

+1 3 4 5 6 1 2 17 18 19 20 15 16

0 0 Zero vector Zero vector

-1 5 6 1 2 3 4 19 20 15 16 17 18

-2 25 26 21 22 23 24 25 26 21 22 23 24

+2 23 24 25 26 21 22 23 24 25 26 21 22

+1 3 4 5 6 1 2 17 18 19 20 15 16

-1 0 Zero vector Zero vector

-1 5 6 1 2 3 4 19 20 15 16 17 18

-2 24 25 26 21 22 23 24 25 26 21 22 23

(-2/-1/0/+1/+2: high decreases/decreases/equal/increases/high increases)

Note, that the zero vectors are always selected to minimize the commutation number of
switches.

4. Analysis of the neutral point potential

The multi-level structure has an inherent problem of NPP unbalance. As the level
increases, the problem becomes more complicated. This study concentrates on modeling
the properties of DTCs with respect to the current in the neutral point. The direct reason
of NPP unbalance is the current flow from/to the neutral point. As mentioned above,
NPC three-level inverter has redundant states. Thus, some discrete voltage level can be
obtained by more than one switching state. The voltage evolution for a given capacitors
are different for each state, as shown in this section. This redundancy permits to control
of the capacitors voltages while the requested vector voltage is supplied [13].
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The large vectors and the zero vectors do not change the voltage of neutral point.
For the medium vector, there is only one vector for a specific direction. The line current
flows through the neutral point for a given vector and the NPP is then affected. The
compensation of voltage capacitor balance has to be given tothe next medium vector
because this vector could flow opposite current from the capacitor bank.

Fig. 5 shows example of one small vector given by two different switching com-
binations. Both combinations produce the same output voltage v1, but when the first
combination is applied, the current flows into the neutral point and produces discharge
in the capacitorC1 and then follows out and produces a charge in the same capacitor.
This property provides the possibility to control the voltage of the neutral point.

Basing on this property, a control strategy will be presented and applied to three level
NPC VSI. In Tab. 2, some switching states and the corresponding capacitors voltage
evolution are presented. The capacitor voltage evolutionsare different at each one of
those switching states. Thus, using the required voltage vector as inputs together with
the actual state of the capacitor voltages and the current direction in the neutral point,
a control algorithm is defined. Then, the inverter will be controlled by the switching
state assuming the requested discrete voltage vector and the needed capacitor voltage
evolutions. The diagram of the control algorithm is shown inFig. 6.

Figure 5. Two different switching combinations of vectorv1.

In order to realize safe operation of this topology for the three-level inverter, an
appropriate method needs to be found for keeping NPP as half of the input voltage.


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
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vbc

vca






=






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Sca1Sca−1







[

UC1

UC−1

]

(7)



SENSORLESS DTC OF INDUCTION MOTOR USING NEURAL NETWORK CONTROLLER 443

Table 7. Effect of small vectors on neutral current and voltage capacitor variation

Positive switching states Negative switching states

iNP ∆UC1 ∆UC−1 iNP ∆UC1 ∆UC−1

(1,0,0) ia - + (0,-1,-1) −ia + -

(0,0,-1) ic - + (1,1,0) −ic + -

(0,1,0) ib - + (-1,0,-1) −ib + -

(-1,0,0) ia - + (0,1,1) −ia + -

(0,0,1) ic - + (-1,-1,0) −ic + -

(0,-1,0) ib - + (1,0,1) −ib + -

”+” positive evolution ”-” negative evolution

Figure 6. Control algorithm block diagram.

whereSab1 = Sa1−Sb1, Sab−1 = Sa−1−Sb−1 . . . , Sa1, Sb1, Sc1, Sa−1, Sb−1 andSc−1 rep-
resent the inverter switching functions for the positive (e.g. Sa1, Sa2) and negative (e.g.
Sa3, Sa4) switches.

The voltage ofC1 andC−1 in terms of the full DC link voltage and the neutral point
error voltageεNP are written as:











UC1 =
U0

2
+ εNP

UC−1 =
U0

2
− εNP

(8)
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The equation that relates the currentsi1 and i−1 with the inverter output currentsia, ib
andic is written as follow:

[

i1
i−1

]

=
1
3

[

Sab1Sbc1Sca1

Sab−1Sbc−1Sca−1

]







ia− ib
ib− ic
ic− ia






. (9)

One should notice, thatC1 = C−1 = C and the neutral current,iNP, is equal toi1 + i−1.
We can derive equation (10), which defines the dynamic relationship betweeniNP and
εNP.

iNP = −2C
dεNP

dt
. (10)

Finally, combining these equations, a dynamic equation describing the three-level
switching network is developed:

dεNP

dt
= −

1
6C

[Sab1 +Sab−1Sbc1 +Sbc−1Sca1 +Sca−1]×







ia− ib
ib− ic
ic− ia






(11)

The DTC technique is achieved by alternately selecting one of the available voltage
vectors to keep stator flux and electromagnetic flux near the corresponding references
and also stabilize the NPP variations. The selection table generates pulses(Sa,Sb,Sc) to
control the power switches in the inverter. This technique is not convenient for one-line
and real-time control for its high computation time.

5. Networks as a universal approximator

5.1. Switching state selector using ANN

Neural networks can be described as a universal approximation [14]. They approx-
imate complex functions using several layers of neurons, structured in a similar way as
the human brain. Artificial Neural Networks (ANN’s) possessthe virtue of learning and
generating. The learning capability makes ANN’s very powerful in control applications
where the dynamics of a plant or process control is partiallyknown or the mathematical
representation is very complicated. The generalization property is very useful because it
allows to train neural network with a limited training data set.

Thus, the ANN is trained to simulate complicated relation between the inverter
switching states and the errors of the stator flux, output torque and the voltage capacitor.
After well trained, it is used as the switching states selector for the DTC of induction
motor fed by the three-level NPC VSI.

In our case, the ANN structure needs a minimum of four layers as shown in Fig.7
[12]. The configuration of the input and output layer depend to the problem solving. In
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our case, it require five linear input nodes (the outputs of the three controllers flux, torque
and voltage capacitor, the stator flux locus plus one information about motor speed,
[CΓ,Cϕ,S,CU ,C|Omega]|

T ) and three linear output nodes (as[nna,nnb,nnc]
T ). [Sa,Sb,Sc]

T

represents the desired outputs. Note that the thresholds connected can be considered as
weights to be adapted with the training algorithm.

Figure 7. Neural network structure.

5.2. Training algorithm of ANN

The training diagram is presented in Fig. 8. Training data are produced from the
conventional switching table (Tab. 1). So, the outputs of the switching table method are
compared with the outputs of the ANN, and the error is used to tune the weights of the
neural network. The initial weights were chosen randomly within the rang -1 to +1.

The training process is made off-line using the Levenberg-Marquardt (LM) method
[15],[16]. This method represent one of the most powerful algorithms for the training of
feed-forward networks. It gives a good compromise between the speed of the Newton
algorithm and the stability of the steepest descent method.

If the weights of the network are considered as the components of a vectorw, the
training process involves the determination of this vectorwhich optimizes a performance
functionE, equation (12). This function can base on the output error oron state criteria
for process output. In our case, forK output units (K = 3 in our case) and a set ofP
training patterns, the criteria which is used is given by:

E(w) =
P

∑
p=1

K

∑
i=a,b,c

(

o(p)
i −nn(p)

i

)2
. (12)

Named also Mean Square Error (MSE) cost function, wherenn(p)
i ando(p)

i denote respec-
tively the output activations and desired responses, andw is the column vector containing
all the weights and the thresholds of the network.
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Figure 8. Off-line training block diagram of ANN.

The main idea in second order methods is the local approximation of the cost func-
tion by a quadratic form as follows:

E(w+ ∆w) = E(w)+ ∇E(w)T∆w+
1
2

∆wT∇2E(w)∆w (13)

where∇E(w) and∇2E(w) are the gradient vector and the matrix of second derivatives
(Hessian matrix) of the cost function respectively. The optimal step∆w is obtained by
the optimality condition [18]:

∆w = −
[

∇2E(w)
]−1∇E(w). (14)

Due to the special form (sum of squares) of equation (12), theHessian matrix can be
approximate as follows:

∇2E(w) = JT(w)J(w)+µI (15)

where J(w) is the Jacobian matrix of first derivatives of the residualse(p)
i =

(

o(p)
i −nn(p)

i

)

, I the identity matrix andµ the learning parameter. Forµ = 0, the al-

gorithm becomes Gauss-Newton method. For very largeµ the Levenberg-Marquardt al-
gorithm becomes steepest descent or error back-propagation algorithm. This parameter
is automatically adjusted at each iteration in order to secure convergence.
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The steps involved in training a neural network using LM algorithm are as follows
[17]:

1. Present all inputs to the network and compute the corresponding network outputs
and errors. Compute the MSE over all inputs as in equation (12).

2. Compute the Jacobian matrix,J(w) wherew represents the weights and the thresh-
olds of the network.

3. Solve the Levenberg-Marquardt weight update equation (14) to obtain∆w.

4. Recompute the error usingw+∆w. If this new error is smaller than that computed
in step 1, then reduce the training parameterµ by µ−, let w= w+∆w, and go back
the step 1. If the error is not reduced, then increaseµby µ+ and go back to the step
3. Parametersµ− andµ+ are defined by user.

5. The algorithm is assumed to converged if the norm of the gradient is less than
some predetermined value, or when the error has been reducedto some error goal.

6. Simulation results

The optimal configuration in term of precision and computation time leads to a feed-
forward neural network type with four layers: 5 input-layerneurons, 12 neurons in the
first hidden layer, 12 neurons in the second hidden layer and 3output-layer neurons [12].
The sigmoid function is used as non-linear activation function for hidden and output
layers whereas the linear function is chosen for the input layer.

The training automated with Matlab simulation program and the Levenberg-
Marquardt method is developed for this purpose and this structure is trained off-line
using all training data obtained from the conventional switching table (Tab. 1). At the
end of training process (when an acceptable mean squared error and absolute error be-
tween desired and NN outputs are reached, as Figs. 9 and 10 show), the model obtained
consists of the weight and threshold vectors, which are summarized in the Appendix.

The three-level DTC strategy without control of the NPP has been tested by simu-
lation, the motor characteristics are shown in the Appendix. All simulations have been
obtained with a sample time for the control loop of 100µs. The voltage of the DC bus
is 514V and a constant load torque equal to the nominal value has been applied. The PI
controller speed gains arekp = 0.83 andki = 5.82 respectively.

Fig.11 presents respectively the simulation results of thestator line voltage, capaci-
tors voltage (UC1 andUC−1) and the neutral current variations (iNP). The DC link has a
capacity of 3.9mF and theirs voltages are unbalanced. The NPP is rising significantly, it
may causes overvoltage across the semi-conductor switchesand affect the motor perfor-
mances. Therefore, analysis for the variation of NPP is required and a control method
for maintaining this potential point should be developed.
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Figure 9. Mean square error for LM training algorithm.

Figure 10. Absolute errors between table and NN outputs.

Also, the results given by the ANN structure are almost the same with these given by
the conventional switching table, which shows that the ANN has been properly trained.
Therefore, this structure can replace the switching table method to be the output vector
selector for the DTC of the three-level inverter-fed induction motor.

Simulation results in a speed control loop of NN-DTC strategy in case where the
NPP is controlled, is presented in next figures. A constant load torque equal to nominal
value has been applied. The amplitudes of hysteresis band are fixed to∆ϕs = 3%,∆Γe1 =
2.7% and∆Γe2 = 3%.

In Fig.12, the voltage capacitors (UC1,UC−1) are shown. The inverter control algo-
rithm keeps the capacitor voltages between the permitted limits, the slight unbalance,
with regard to the exact expected values, is due to the allowed tolerance of±3% around
the exact value. In addition, the NP current has a mean value practically null, however the
non symmetric variations of this current is due to that the control is assured exclusively
by the large and medium vectors in the second half of switching table.

Furthermore, it is possible to reduce the torque ripple amplitude by approximately
twice when compared to a two-level NN-DTC strategy [10] for the same sampling pe-
riod, as shown in Fig. 13. Besides controlling the electromagnetic torque, DTC also
controls the stator flux, whose variation is shown in the samefigure. The observed ripple
in both electromagnetic torque and flux occurs because hysteresis controllers are used.
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Figure 11. DTC without control of NPP: stator line voltage, deviation of capacitor voltages and neutral
point current.
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Figure 12. NN-DTC with control of NPP: voltages across the input capacitors, Neutral Point current varia-
tions.

Figure 13. NN-DTC Performances: electromagnetic Torque two-level, three-level NN-DTC strategy, stator
flux variation, mechanical speed .
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7. Conclusion and perspectives

This research, based on the DTC of induction motor associated with a three-level
NPC VSI, proposes using the Artificial Neural Network as the switching table in the
DTC system.

The DTC was introduced to give a fast and good dynamic torque of an induction
motor. It does not require any mechanical sensor in the rotorcomparatively to the con-
ventional methods. Its high dynamic response follows from the absence of the PI current
regulator normally used in torque controllers. Also, this control strategy provides easy
way to perform the Neutral Point Potential. A precise estimation of the Neutral Point Po-
tential is used to select the appropriate switching state ofinverter as shown in switching
table. The proposed method provided stabilization of NPP variation and improvement
of the motor current waveform. Furthermore, the NPP voltagecould be kept with small
variation by choosing relatively large capacitors for the capacitor bank.

Because, this technique is not convenient for one-line and real-time control (the im-
plementation of this control strategy requires a great amount of ROM memory, used to
store the switching table plus the high computation time), asimplified method to choose
the switching states(Sa,Sb,Sc) of the inverter is used. By using the ANN, the selection
of the voltage vector becomes much convenient and the switching state can be obtained
without any delay when the torque, stator flux and NPP are different from theirs ref-
erences. This structure can be trained off-line using all training data obtained from the
conventional switching table, this means that once the neural network is trained, it does
not need to be trained any more even if the induction motor experiment any change in
parameters.

Application of neural network become more important, especially when the level of
inverter is increases (3, 5 levels, or more) and theirs switching tables are more complex.
In fact, with the increasing number of available voltage vectors of multilevel inverter, it
brings difficulty to choose the proper switching state of inverter.

Thus it is important to look at practical implementation system to prove that the
proposed structure using ANN is useful, and that it is possible to implement the proposed
controller easily. On the other hand, it can be more interesting to associate the fuzzy
control in order to determine the inputs of ANN structure. Itwill be adopted to categorize
the flux sector, torque and flux error more rigorous.
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[8] I. M ESSÄIF, E.-M. BERKOUK and N. SAADIA : DTC strategy of an asynchronous
motor fed by a photovoltaic multilevel voltage source inverter. The Second Int.
Conf. on Nuclear and Renewable Energy Resources, Ankara, Turkey, 4-7 July
(2010), 365-371.

[9] K. H UNT, D. SBARBARO, R. ZBIKOWSKI and P. GOWTHROP: Neural networks
for control systems-A survey.Automatica, 28(6), (1992), 1083-1112.
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Appendix

Induction machines parameters.The rated values and parameters used in the
simulation programs are as follows:

Rated motor power: 1.5kW
Rated speed: 1420 rpm
Rated voltage: 220V
Rated frequency: 50Hz
Stator resistance: 4.85Ω
Rotor resistance: 3.805Ω
Stator inductance: 0.274H
Rotor inductance: 0.274H
Mutual inductance: 0.258H
Pole pairs: 2
Inertia: 0.031kg·m2

Weights and thresholds values

Layer 1

th2 = (-21.997943849780732, -2.8062648671614454, -16.894503302915275,
-9.6033891762362185, -15.736466153925884, -21.583693919867514,
3.5863737341303148, -0.76523548382560114, 9.1330602946510862,
-7.9168553005742828, -1.81451247757013, 6.8690445297560778)

w2
1 = (16.284300265094046, -9.8456073740355414, 1.3116483772530267,

0.040061935169735406, -0.13689840742193785)
w2

2 = (-1.42394863344802, 0.69912100584946268, 0.71197398046613958,
1.6475658927935007e-006, 0.80493639585876331)

w2
3 = (4.0507582284080579, -6.6671147922321667, 0.58922165007311944,

-0.0016861541201888066, 1.9918266439619319)
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w2
4 = (3.9772532145236403, 9.4331444798793935, -1.2380916207911628,

-0.1084343726615007, 15.589627783184511)
w2

5 = (-24.545897368154783, -12.970933424214216, 2.5037897479155249,
0.087569752442235693, 3.7320209600938821)

w2
6 = = (-1.7867881122885343, -12.432916101124835, 0.75758375267679867,

0.037311139117969613, 6.2429061696102783)
w2

7 = = (-0.35691671579914197, -1.673848734979011, 0.17844839137430007,
-5.7334442617734105, -7.8977065970055369)

w2
8 = = (0.14595922254006588, -16.662481883099463, 1.2185362275320208,

6.2357734820171304e-005, 0.67956948294952424)
w2

9 = = (-1.3363919925006174, -2.8948335898973756, 0.66818715550394081,
6.5207050030231537, -13.896047291025372)

w102 == (-2.311111232887308, -1.8918132667828247, 1.1555992431832216,
4.0256069591864751e-005, 0.92565616796595185)

w112 == (0.17675025597846117, -6.0574990149521826, -0.088370774403667432,
-1.3184481354912387, 8.4103008341388374)

w122 == (1.0386577591057899, -12.474219076014899, -2.1563739165317051,
0.14310815958431586, 0.66647628592994546)

Layer 2

th3 = = (-22.676193901849391, -9.003122370538831, -2.6253939470017693,
22.334199535130395, 4.5153863470943154, 9.2430763196058656,
1.4247357311672042, 3.4673076864141055, 2.1969320165592294,
-21.055170182724552, 0.14843772786762865, -9.1023820441670527)

w3
1 = = (-0.46759333239229928, 15.452003209736899, -7.5458437740165767,

7.8937851557906944, 0.40247028809580637, -16.610201291162316,
0.77503424133802756, 22.565264939852383, 1.1595857973340775,
1.8882658351216219, -0.66667189845911845, 0.36886088922902582)

w3
2 = = (2.505724179120977, -26.451389407666451, 0.11720492719293713,

-8.9066308168692032, 4.2749596675286492, 9.6339610352944689,
-0.19043983135791925, -15.373381676315283, 0.37369299491847691,
-9.3249461505121864, 13.70636394006649, -21.442960845692266)

w3
3 = = (-2.2281676402207937, 0.10793222582413549, -13.030916857923382,

3.0027647234395474, -0.13016964579272552, -0.89058033073265552,
2.5133294125682166, 12.107029475697026, 33.815022421690536,
13.070546711994716, 35.949817585385041, -8.8495633126207967)

w3
4 = = (-0.74018870461623065, 12.294701815744725, 14.371699918878504,

11.070344294883538, 13.14060110944409, -5.4793483272057513,
6.8121694957194769, -2.09213658594365, -12.593589089387052,
0.47154107576217574, 1.8009272241385277, 3.8641663856807567)

w3
5 = = (2.4123038361508327, -9.4431851909242308, 13.071308766140445,



SENSORLESS DTC OF INDUCTION MOTOR USING NEURAL NETWORK CONTROLLER 455

-6.733980777705681, -4.6323837374179231, 14.632955039544461,
0.30880854145648945, -4.4495543967548228, 3.901007997740122,
-10.336160372627797, -0.80176351918139421, -9.9716382194172049)

w3
6 = = (-21.432225790711129, -11.92379365171433, 2.7356289241925222,

-0.93968074954168568, -20.276424664886267, 12.26261246595722,
1.0364678048853286, 3.7360723637867266, -1.3190554396404646,
-4.9256114704928082, 7.4372727278576587, -19.086228598504469)

w3
7 = = (0.29872596798925727, 3.0655473947914138, -0.88493124176032523,

0.099124178104921828, 0.9900702303173391, -3.387133141611943,
-0.65057180299133066, 4.1640536134527757, -1.303060352033504,
-1.1190313861802155, -2.7362906843564359, 2.5301182362070258)

w3
8 = = (-11.612411143142829, 17.822840802314317, -11.496470699992056,

4.2401650269136928, 0.71758213189710307, 3.3863112562208091,
26.844115123412362, 18.695749016720345, 4.3802774061097285,
-10.020054643907214, 14.981042496008088, 0.2072253908861264)

w3
9 = = (1.1799916356935791, -0.57342348619627725, 5.9300655974028214,

10.133678203548076, 5.8691311310088228, -16.562312072557742,
-6.4510618189574345, 0.20961008563844402, -5.956194470530729,
1.7266287152244764, 3.5034423823176422, -12.708289422796119)

w103 == (-1.408226775504037, -15.378712902460412, -9.0519923081900426,
8.6263523035364855, -19.384938201329227, 9.166687204035517,
5.843604798537112, -10.356932404964473, 18.661129897145347,
11.896078456425553, 13.556033490660276, -7.9738512139018605)

w113 == (4.038128875827323, -7.2919898928641862, 3.3225514051608727,
-9.9895734785880901, 3.9943295554433504, 8.3732493633661527,
-8.4292627597658285, -7.5456298172366765, -0.048970310057541745,
-1.969506732711884,-6.6567510003276498, -1.2213403418421078)

w123 == (8.7689270367951604, -10.463325771618628, -9.5954573712712321,
2.8301004984935569, 10.233203165198306, 3.3155683191597629,
2.484061781055658, -0.047422502961697845, 2.784040183458437,
6.3521176534333899, -6.0183798188665811, 8.1410338717638471)

Layer 3

th4 = = (19.923906817689616, -7.2660320842304076, -25.45406790860882)
w4

1 = (14.580467981810571, -23.32798271302952, 21.940897127600131,
-32.410860544130792, 10.877494699177998, 29.155515582494623,
-79.21341539804132, -30.726583100041772, -25.696347889949344,
-32.412209161118639, -48.151109113471115, 10.567488875012431)

w4
2 = = (12.538529201608728, 42.436556517534051, -36.576659297885321,

17.987664625375853, -27.269391733932711, -36.004154302621018,
19.896621856678262, 35.988570512484721, -7.9404294813104368,
17.987806803556715, 14.205427275156564, -48.736219023745434)
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w4
3 = = (-34.824672367326414, -22.817396700828688, 34.410649907918469,

2.0037322758005147, 6.7215047586859162, 13.49993887771446,
2.2765684337529777, 1.9289750194633457, 21.885350238570204,
2.0038544184099827, -4.133258876178413, 33.951696082529047)




