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Abstract. In the article the problem of the azimuth ambiguity in synthetic aperture radar (SAR) images and its genesis are presented.
A method of suppressing the ambiguities by utilization of Doppler-sensitive signals is proposed, and the necessary modifications to the
SAR synthesis algorithm are discussed. The SAR system parameters required for an optimal performance of the method are discussed and
simulation results are presented.
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1. Introduction

Synthetic aperture radar (SAR) techniques [1–5] allow to ob-
tain very high resolution radar images of the observed objects
due to the coherent integration of the echo signals collected
over a long distance called the synthetic aperture (SA).

Developers of SAR systems, as it is in the case of any radar
system for air surveillance, must acknowledge the limitations
that result from the very nature of the radar signals and the
propagation of the electromagnetic waves. One of such limita-
tions is the sounding frequency (pulse repetition frequency –
PRF) criterion that affects the ambiguity of the SAR image in
the direction parallel to the radar carrier trajectory (azimuth
or Cross-Range direction).

When too low a PRF is applied, the initial echo signal
phase change may be greater than 2π, which results in false
(ambiguous) images of observed objects [6, 7].

The literature presents various methods of elimination
those ambiguities in SAR images where properties of the real
antenna were exploited [6], the image synthesis algorithm was
modified [7] or multichannel reception was applied [8]. In this
paper a method of ambiguity suppression with application of
Doppler-sensitive signals as sounding signals in SAR systems
is presented. As this requires some modifications to the image
synthesis algorithm, those are described as well.

2. The origin of the azimuth ambiguities

The SAR system principle is based on terrain observation by
a moving radar along its route, storing the received echo sig-
nals and processing them as if they were received by a single,
very long antenna [1–5].

In order to present the SAR echo signal structure a side-
looking configuration airborne radar will be considered. The
geometry of such a system is shown in Fig. 1.

Fig. 1. The geometry of the described system

A radar sensor mounted on board of an aircraft is moving
with a constant velocity vR, at a constant altitude hR, along a
straight route, parallel to the OY axis. The radar is emitting
sounding signals at a carrier frequency f0, with a PRF equal
to Fp.

Directional pattern of the real antenna is positioned so its
main beam is perpendicular to the velocity vector and illumi-
nates a patch of terrain.

Echo signals reflected from objects in illuminated space
are received and stored in the systems memory.

In a synthetic aperture radar, the distance between radar
and the observed target changes due to the motion of the radar
platform (or the target). If a coordinate system from Fig. 1 is
assumed, then, from the geometry of the system shown in
Fig. 1, one could describe the distance change function in the
following form
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RT (u) =
√

x2
T + (yT − vRu)2 + (zT − hR)2, (1)

where u is the time associated with radar movement and is
called the “slow time”, in contrast to the time t associated
with electromagnetic wave propagation and called the “fast
time”, (xT , yT , zT ) are the coordinates of the observed target
positioned on the ground.

For the analytic form of the sounding signal presented as
follows [4]

sT (t) = a(t) exp(j2πf0t), (2)

where a(t) is the complex amplitude of the signal, and f0 is
its carrier frequency, the received echo signal from a single
point-like object can written down in the following form [4]

sR(t, u) = a [t − tT (u)] exp {j2πf0 [t − tT (u)]} , (3)

where tT is the time from the moment of the transmission of
the sounding signal to the return of the echo signal and it is
defined as follows [1, 4]

tT (u) =
2RT (u)

c
. (4)

In the radar receiver the echo signals are down-converted,
then, taking into account (4), the echo signal can be writ-
ten as

sRDC(t, u) = A [t − tT (u)] exp [−j2πf0tT (u)]

= u

[

t −
2RT (u)

c

]

exp

[

−j2π
2RT (u)

λ

]

.
(5)

Due to the fact, that the radar starts sending the sounding sig-
nals from discrete positions along its trajectory, the received
signals are naturally sampled in the slow time (azimuth) di-
rection. Moreover in order to store and process the signals in
a digital signal processing system they have to be sampled in
the fast time domain.

The received signals are stored in a two-dimensional ar-
ray, where one dimension represents the fast time, and the
other – number of the sounding period, associated with the
slow time. Then the echo signal from (5) can be written as
follows [1, 4]

sRDC(m, n) = u

[

mts −
2RT (n)

c

]

exp

·

[

−j2π
2RT (n)

λ

]

,

(6)

where m is the number of the range cell (number of a fast-
time sample), ts is the sampling period, n is the slow-time
sample number and RT (n) can be defined as follows

RT (n) =
√

x2
T + (yT + nd)2 + h2

R. (7)

In Fig. 2. a 2-D distribution of the magnitude of the raw echo
signal from a single point-like object is presented.

Fig. 2. Two-dimensional amplitude distribution of a simulated raw
echo signal form a single point like object

In Eq. (7) d is the distance between two consecutive points
along the radar trajectory, where the sounding signal is emit-
ted, and it can be computed as follows [1]

d =
vR

Fp
. (8)

The initial phase of the echo signals is proportional to the
distance to the object and changes in a hyperbolic way. One
has to notice, that this phenomenon is in fact a result of the
Doppler effect, and the instantaneous frequency fD(u) of the
raw echo signal from a single object in the azimuth domain is
equal to the Doppler shift of the signal spectrum. It is easy to
observe that the raw echo SAR signal is a chirp with a nearly
linear frequency modulation. In Fig. 3. such a signal and its
spectrogram are presented.

Due to its discrete nature, the SAR signal has the same
limitations to its spectrum as any sampled signal, and there-
fore it should satisfy the Nyquist criterion.

In order to meet the Nyquist criterion in the fast time do-
main, a proper value of the sampling frequency fs has to be
established.

In the slow time domain, the signal is sampled in consec-
utive sounding periods. The selection of a proper value of the
pulse repetition frequency (PRF) Fp in SAR has to meet at
least two requirements [2]. The first one concerns the range
of the observed distances, the increase of which requires the
reduction of the PRF. The second one is in fact the Nyquist
criterion, which means that the PRF should be at least twice
the frequency of the highest Doppler component existing in
the echo signal.

In Figs. 2 and 3 one can observe the amplitude modu-
lation of the signal in azimuth domain with the real antenna
pattern, which is the limiting factor for the raw signal Doppler
bandwidth. The effective width of the Doppler band BD is
strongly dependent on the radar velocity vR and the width of
the main lobe of the real antenna pattern θmax according to
the following equation [1]
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BD = 4
vR

λ
sin

θmax

2
≈ 2

vR

λ
sin θmax, (9)

where λ is the wavelength of the sounding signal, and the
main lobe width θmax is its width at the −3 dB level.

a)

b)

Fig. 3. The real part of the raw SAR signal – cross-section in azimuth
domain (a), and the spectrogram of the raw SAR signal (b)

If a PRF value lowers than the 2BD is chosen, the super-
imposing of the adjacent periods of the spectrum (aliasing)
will occur. As a result, there will be additional (false) points
where the fD reaches zero. At those points the SAR image
synthesis algorithm will generate replicas of the object im-
age, which makes the SAR image ambiguous and severely
degenerates its quality.

In Fig. 4. an example of the SAR raw signal in azimuth
direction with Nyquist criterion violation and its spectrogram
is presented. As in Fig. 3. amplitude modulation with antenna
pattern is visible, but in this case the points where the fre-
quency of the signal reaches zero are observable within the
main beam.

In Fig. 5. a comparison of SAR images generated with
simulated signals for the two above described cases are pre-

sented. Due to the aliasing phenomenon additional, ambigu-
ous, object images, also referred to as ghost targets, occur in
the plot.

a)

b)

Fig. 4. Real part of the raw SAR signal – cross-section in azimuth
domain (a), and spectrogram of the raw SAR signal with the Nyquist

criterion violated (b)

Fig. 5. A comparison of an unambiguous and ambiguous SAR ima-
ges
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The most natural approach to this problem would be the
reduction of the beamwidth θmax of the real antenna, which
allows to suppress the ambiguities, but at the price of image
azimuth resolution due to the signal history shortening.

Another way of avoiding the ambiguity problem, if a com-
promise between a range and Doppler requirements cannot be
found, is to narrow the swath in the range direction, howev-
er this reduces the amount of information acquired by the
system.

From the above considerations, it appears that the optimal
situation would be if, during synthesis of a particular pixel of
the SAR image, the history of the signal was long enough to
achieve the required azimuth resolution, but at the same time
the contributions from neighboring objects had the negligibly
low amplitude.

Those contradictory requirements can be met by applica-
tion of Doppler-sensitive sounding signals.

3. Doppler-sensitive signals

The idea to employ the signals sensitivity to Doppler effect
has been considered earlier for both domains of active sonar to
eliminate the reverberations [9] as well as in air surveillance
radar to solve the Doppler ambiguity for high velocity targets
with linear range migration [10]. In this work the Doppler
sensitivity defined as the matched filter output signal ampli-
tude reduction rate is considered, which allows to separate the
targets in SAR signal, thus suppressing the azimuth ambigu-
ities.

The most popular tool for evaluation of the radar signals is
their Woodward’s ambiguity function. This function describes
a complex envelope of the signal at the output of the optimal
receiver against the echo delay time τ and its Doppler shift
fD. Usually it is defined as [11–14]

|χ (τ, fD)| =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

u (t)u ∗ (t + τ) exp (j2πfDt) dt

∣

∣

∣

∣

∣

∣

for |τ | ≤ T,

(10)

where u(t) – complex envelope of the signal, u∗(t) – complex
conjugate of u(t), τ – time delay, fD – Doppler frequency
shift, T – signal duration time.

This function possesses many interesting properties. From
the discussed problems point of view the most essential are
that:

• the ambiguity function has its maximum in the origin of
the coordinate system, which means, that the signal reach-
es maximal value only if the signal if fully matched to the
filter,

• the width of ambiguity function around the origin define
the potential simultaneous resolution in time (range) and
Doppler (radial velocity),

• the cross-section of the ambiguity function with the χτ
plane (from (10), for fD = 0)

|χ(τ, 0)| =
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u(t)u ∗ (t + τ)dt

∣

∣

∣

∣

∣

∣

(11)

is the magnitude of the one-dimensional autocorrelation
function of the complex envelope of the signal,

• the cross-section of the ambiguity function with the χfD

plane (from (10), for τ = 0)

|χ(0, fD)| =
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|u(tt)|
2
exp(−j2πfDt)dt
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∣
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∣

∣

∣

(12)

is the magnitude of the Fourier transform of the squared
magnitude of the complex envelope of the signal.

In practical situations the real envelope of the signal (mag-
nitude of the complex envelope) is close to rectangular. Then
the function (12) takes a shape of a |sin c x| – like function
with the first zero for fD = 1/T . Probably the most common-
ly used radar signal, a chirp with linear frequency modulation
(LFM) has the ambiguity function described as follows [12]

|χ(τ, fD)| =

∣

∣

∣

∣

∣

∣

(

1 −
|τ |

T

) sin
[

πT
(

1 − |τ |
T

)

(

fD + B
T τ

)

]

πT
(

1 − |τ |
T

)

(

fD + B
T τ

)

∣

∣

∣

∣

∣

∣

for |τ | ≤ T,
(13)

where B – is the signal bandwidth (LFM sweep width).
The cross-section of the function (13) with the χfD (for

τ = 0) plane takes the form

|χ (0, fD)| =

∣

∣

∣

∣

sin (πTfD)

πTfD

∣

∣

∣

∣

,

which does not mean, however, that the signal level at the out-
put of the optimal receiver reaches its first zero for fD = 1/T .
The Doppler shift of the signal spectrum causes a dislocation
of the signal maximum along the time axis according to the
rule τ = − (fD/B)T , with a simultaneous reduction of the
maximum signal value [12]

χmax(fD) = 1 −
|fD|

B
. (14)

From the above equation, for fD = 1/T the LFM signal lev-
el at the output of the optimal receiver will not be zero, but
it will be slightly reduced and the maximum of the signal
will be shifted in time. This phenomenon, called the “Range-
Doppler Coupling”, is responsible for a most desirable in air
surveillance radars Doppler tolerance of this kind of signals.

In this article, however, we are looking for signals with
low Doppler tolerance or high Doppler sensitivity, where this
sensitivity can be expressed as the width of the main lobe
of the χmax(fD). An example of a class of such signals are
the binary phase shift keying (BPSK) signals. It is possible to
show that the maximum of the main lobe of the signal at the
output of the optimal receiver as a function of the Doppler
shift is given by [15]

|χmax(fD)| =
1

N

∣

∣

∣

∣

sin(πfDNtchip)

sin(πfDtchip)

∣

∣

∣

∣

, (15)

where tchip is the duration time of a single chip (a segment
of the signal), N is the code length (number of chips). The
first zero of this function is located at fD = 1/(N tchip).
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As a representative of the BPSK signals a pseudo noise
(PN) binary phase manipulated signal has been considered.
A general form of the complex envelope of the PN signal
(assuming unitary amplitude) can be described as [11]

u(t) =



















N−1
∑

n=0
rect

[

t−(0.5+n)tchip

tchip

]

ejθn

for 0 ≤ t < Ntchip

0 for 0 > t ≥ Ntchip

, (16)

where n – chip number, θn – initial phase of the n-th chip of
the signal, θn ∈ {0, π}.

rect(t) – unitary amplitude rectangular pulse with unitary
duration time

rect(t) =

{

1 for − 0.5 ≤ t < 0.5

0 for − 0.5 > t ≥ 0.5
.

The ambiguity function of a PN signal with the code length
N = 255is presented in Fig. 6.

Fig. 6. Ambiguity function for a PN signal with the code length
N = 255

4. Application of Doppler-sensitive signals

to SAR

If a signals with a sufficient level of Doppler sensitivity is
applied as the sounding signal in SAR, the amplitude of the
raw echo signal after the range compression will depend not
only on the real antenna pattern, but also on the effect of
compression filter mismatch. This means that the amplitude
of the signal may be reduced in order to shorten the signal
history, but it can also be restored for the synthesis of the
appropriate point of the SAR image.

This restoration of the signals amplitude is done through
a proper shift of the matched filter transfer function in the fre-
quency domain by the exact value of the Doppler frequency.

From the previous paragraph the width of the ambiguity
function of the PN-BPSK signal in the Doppler shift direction
is equal to 2/T . This means that in order to suppress the am-
biguities, the sounding signal duration time should be close
to a pulse repetition interval, which suggests that the radar

should work in a continuous wave regime. If this is the case
the first zero of the ambiguity function along the Doppler axis
will fall close to the first ambiguity (see Fig. 7).

Fig. 7. Real part of the range-compressed raw SAR signal. The first
zero of the ambiguity function falls exactly at fD = PRF

One has to notice that in a single sounding period the
radar receives the echo signals from a large number of objects
from different azimuth angles, thus having different Doppler
shifts. The compensation, however, can be performed only
for a single object, which allows to distinguish its echo signal
and suppress signals form other objects. Therefore in order
to employ the sensitivity of the signals to the Doppler ef-
fect, a SAR synthesis algorithm, where range compression
as well as the azimuth compression are performed for each
slow time sample separately, must be applied. This can be
done by the exact two-dimensional time domain correlation
algorithm [16].

This algorithm, without the Doppler effect compensation,
bases on the range-compressed raw SAR signal and performs
convolution of samples of the signal with the reference func-
tion chosen according to the range cell migration function. It
can be described as follows [16]

GSAR(m, n) =

NSA/2
∑

b=−NSA/2

sRC

· [l(m, b), n + b] wref (b),

(17)

where GSAR(m, n) is the complex intensity of a SAR im-
age pixel for m-th range cell and n-th azimuth position,
sRC(m, n) is the (m, n)-th sample of the raw SAR signal
after the range compression, wref (b) is the azimuth reference
function for the b-th synthetic aperture element, and b is an
integer number from range of (−NSA/2; NSA/2), NSA being
the number of synthetic aperture elements.

In Eq. (17) l(m, b) is the number of the range cell com-
puted form the range cell migration compensation (RCMC)
function
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l(m, b) =

⌊

√

R2
0(m) + b2d2 − Rmin

dR

⌋

, (18)

where ⌊x⌋ is the floor function returning the greatest integer
function not greater than x, and dR is the range cell size
associated with the sampling frequency fs [4]

dR =
c

2fs
. (19)

In the above equation c is the electromagnetic wave propaga-
tion velocity.

By R0(m) the distance between the radar trajectory and
the target from m-th range cell equal to

R0(m) = mdR + Rmin, (20)

where Rmin is the distance associated with the first range cell.
The modified algorithm also performs the sum form

Eq. (17), however the signal being convolved with the refer-
ence function is changed. It is range-compressed in a Doppler-
compensated matched filter according to the number of the
synthetic aperture element for which it is computed. Then the
algorithm Eq. (17) takes the following form

GSAR mod (m, n) =

NSA/2
∑

b=−NSA/2

sb
RC

· [l(m, b), n + b] wref (b),

(21)

where sb
RC [l(m, b), k + b] is a sample of the raw SAR signal

for (k + b)-th pulse (azimuth position) and for m(l, b) range
cell after range compression in the matched filter compensat-
ed by a Doppler shift associated with b-th synthetic aperture
element. This signal can be computed as follows

sb
RC(m, n + b) =

Np
∑

p=0

sRDC

·(m + p, n + b)wMF (m + p) exp [−j2π fD(m, b)],

(22)

where sRDC(m, n) is the m-th fast time sample of the down-
converted raw signal before the range compression for the n-th
azimuth position, wMF (m + p) is (m + p)-th sample of the
fast time matched filter pulse response, fD(m, b) is the value
of the Doppler shift of the raw signal for the b-th synthet-
ic aperture element and the m-th range cell. This frequency
depends on the immediate value of the radial velocity of the
observed object relative to the radar antenna, and for subse-
quent SA elements it changes with the sinus of the angle of
observation θ(m, b)

fD(m, b) = 4
vR

λ
sin θ(m, b). (23)

From the ∆PRPT A triangle (see Fig. 1) having catheti equal
to R0(m) and d · b one can obtain

sin θ(m, b) =
R0(m)

√

R2
0(m) + d2b2

. (24)

The above considerations have been verified by computer sim-
ulations. Echo signals from point-like objects received by a

SAR system have been modeled. The most important para-
meters of the simulation are presented in Table 1.

Table 1

No. Parameter Value

1 Carrier frequency f0 15 GHz

2 PRI 3.6 ms

3 Pulse duration time Ti 0.45–3.4 ms

4 SAR platform velocity 50 m/s

The simulations were conducted for both LFM and PN-
BPSK signals. The ambiguity performance of the SAR system
was measured as a ratio between the peak of the ambiguous
and true image (AASR – Azimuth Ambiguity to Signal Ra-
tio).

In Fig. 8. a comparison of azimuth cross-sections of SAR
images synthesized from LFM (uncorrected) and PN-BPSK
(corrected) signals is presented. An ambiguity suppression
grater than 20 dB has been achieved due to the signal Doppler
sensitivity.

Fig. 8. A comparison of SAR images (azimuth cross-sections) for
LFM (blue) and Doppler-corrected PN-BPSK (red) signals

In Fig. 9. AASR against signal duration time normalized
to PRI for different synthetic aperture lengths is presented.

Selecting the CW regime for a SAR radar allows for a sig-
nificant reduction of ambiguous images, with AASR as good
as −30 dB.

The question of the practical application of the proposed
method raises the issues of non-ideal radar’s carrier move-
ment, in particular the problem of the carrier’s velocity insta-
bility. This, in the case of drastic velocity fluctuations, could
impair the performance of the matched filter tuning proce-
dure and, consequently, the SAR image restoration. It should
be noted, however, that in order to achieve a high resolution
SAR image the carrier’s movement parameters must be es-
timated, either by an additional on-board navigation system
or through the autofocus procedures. Therefore the velocity
of the carrier would be known with a sufficient accuracy to
perform the filter tuning.

226 Bull. Pol. Ac.: Tech. 63(1) 2015



Azimuth ambiguity suppression in SAR images using Doppler-sensitive signals

Fig. 9. The AASR against normalized signal duration time for dif-
ferent synthetic aperture lengths

5. Conclusions

In this article a method of azimuth ambiguities suppression
in SAR images has been presented. The proposed method is
based on utilizing the signals sensitivity to the Doppler effect.
Radar systems using Doppler-sensitive signals present a sig-
nificant reduction of the signal at the output of the matched
filter due to the Doppler shift of the received echo, which
shortens the raw signal history and suppresses the amplitude
of ambiguous images. In order to achieve the desired SAR
image azimuth resolution the signal history is reconstructed
by adaptation of the matched filter during the image synthesis
algorithm.

The simulation results show that better than 30 dB ambi-
guity reduction can be obtained for a CW radar.
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