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On the existence of a common solution to the Lyapunov equations
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Abstract. In this paper, a system of Lyapunov equations

A
∗

i P + PAi = −Qi (i = 1, . . . , m), (A)

is considered in which Ai are given n × n complex matrices, Qi are unknown n × n Hermitian positive definite matrices and P, if any, is
a common solution to the Lyapunov equations (A). Both sufficient and necessary and sufficient conditions are derived for the existence of
such a matrix P . Examples are presented to illustrate the results.

Key words: common quadratic Lyapunov function, switched system, robust stability.

1. Introduction

The classical theorem of Lyapunov states that the equilibri-
um state of a linear time-invariant continuous-time system
ẋ = Ax is asymptotically stable if and only if there exists,
for any positive definite Hermitian matrix Q, a positive def-
inite Hermitian matrix P satisfying the following Lyapunov
equation:

A∗P + PA = −Q.

If there exists, for a given set of matrices A, a positive definite
Hermitian matrix P such that:

∀A ∈ A A∗P + PA is negative definite,

then the matrix P is said to be a common solution to the

Lyapunov equation for the set of matrices A; the function
V (x) = x∗Px is then a common quadratic Lyapunov func-

tion for A.
The problem of the existence of a common solution to

a given set of Lyapunov equations, which is closely related
to the stability of an important and widely studied class of
switched systems (for a brief survey of some recent results in
this field see Klamka et al. [1]), has been extensively stud-
ied in the past three decades. For instance, results are known
for pairwise commutating matrices (Narendra & Balakrish-
nan [2]), for matrices similar to a triangular matrix with a
common similarity matrix (Mori et al. [3]), for Hermitian
matrices (Cohen & Lewkowicz [4]), for matrices in a com-
panion form (Shorten & Narendra [5]), or for 2 × 2 matrices
(Shorten & Narendra [6], Cohen & Lewkowicz [7], Laffey &
Šmigoc [8]). Unfortunately, there is a lack of analytical results
applicable to the entire class of matrices.

The outline of the paper is as follows. After preliminary
Sec. 2 we study in Sec. 3 the problem of the existence of a
common solution to the Lyapunov equations. We provide both
sufficient and necessary and sufficient conditions for a finite
number of the Lyapunov equations to have such a solution.

We also reconsider the problem of the existence of a com-
mon solution to the Lyapunov equations for two matrices A
and A∗. In Sec. 4, we present illustrative examples and finally,
in Sec. 5, we summarize the results.

2. Notations and preliminary results

Throughout this paper we use standard notations: R and C

shall stand for the field of real and complex numbers, respec-
tively; Rn×n (resp. Cn×n) denotes the space of square ma-
trices of dimension n with real (resp. complex) entries. For a
matrix A ∈ Cn×n, AT and A∗ stand for its transpose and a
conjugate transpose, respectively. σ(·) denotes the spectrum of
a matrix (the set of all its eigenvalues). Let P = P ∗ ∈ Cn×n,
we write P > 0 (resp. P < 0) to express that P is positive
(resp. negative) definite. Recall also that a matrix is said to
be (Hurwitz) stable if its spectrum is contained in the open
left half of the complex plane.

For a matrix A = [a·1, . . . , a·n] ∈ Cn×n where a·i is its
i-th column and for a vector v = (v1, . . . , vn2)T ∈ Cn2

we
define

vec(A) :=
(
aT
·1, a

T
·2, . . . , a

T
·n

)T
∈ C

n2

and

matr(v) :=




v1 vn+1 · · · v(n−1)n+1

v2 vn+2 · · · v(n−1)n+2

...
...

...

vn v2n · · · vn2




∈ C
n×n.

Obviously,

matr (vec(A)) = A, vec (matr(v)) = v.
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Recall that the Kronecker product of two n × n matrices A,
B, denoted as A ⊗ B, is an n2 × n2 matrix of the form

A ⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB




,

where aij is the (i, j)-entry of A.
Let L(A) :=

(
AT ⊗ In

)
+ (In ⊗ A∗), where In is the

identity matrix of dimension n. It is known that the matrix
L(A) is invertible if and only if σ(−A) ∩ σ(A∗) = ∅ (e.g.
Horn & Johnson [10]). In particular, the matrix L(A) is in-
vertible if A is stable.

The following theorem (Horn & Johnson [10]) plays a key
role in our further considerations.

Theorem 1. Let A and Q be two n × n complex matrices
and let A be such that the matrix L(A) is invertible. Then
there exists an n × n matrix P being the unique solution to
the following Lyapunov equation

A∗P + PA = −Q. (1)

Moreover, if Q is Hermitian then so is P .
Note that Eq. (1) can be rewritten in the equivalent form

(see e.g. Horn & Johnson [10])

L(A) vec(P ) = − vec(Q),

and hence, its only solution can be expressed as

P = −matr
(
L−1(A) vec(Q)

)
, (2)

where L−1(A) denotes the inverse of L(A).
Given matrices A, B, Q ∈ Cn×n, where Q = [qij ] is

a Hermitian matrix and suppose the matrix L(A) is nonsin-
gular. Let βij ∈ Cn2

(for i = 1, . . . , n, j = 1, . . . , n) be
i + n · (j − 1)-th column of L(B)L−1(A), i.e.

L(B)L−1(A)

= [β11, β21, . . . , βn1, β12, β22, . . . , βn2, . . . , β1n, . . . , βnn],

and put
Hij(A, B) := matr(βij), (3)

for i = 1, . . . , n, j = 1, . . . , n. Also, let

vec(Q) = (q11, q21, . . . , qn1, q12, . . . , qn2, . . . , qnn)
T
∈ C

n2

.

Under these notations, we have

L(B)L−1(A) vec(Q) =

n∑

i=1

n∑

j=1

βijqij ,

and thus

matr
(
L(B)L−1(A) vec(Q)

)
=

n∑

i=1

n∑

j=1

Hij(A, B)qij . (4)

The next proposition, following straightforward from the
above considerations, is given without a proof.

Proposition 2. Let A and B be two n× n complex matrices
and suppose the matrix L(A) is nonsingular. Moreover, let

Q be an n × n complex matrix and assume that an n × n
complex matrix P is a solution to the following Lyapunov
equation

A∗P + PA = −Q. (5)

Then

B∗P + PB = −
n∑

i=1

n∑

j=1

Hij (A, B) qij . (6)

Additionally, if Q is Hermitian then so is

n∑

i=1

n∑

j=1

Hij(A, B)qij .

Now we formulate and justify some important proper-
ties of the matrices Hij(A, B). These matrices play a key

role in our further considerations. Matrices Qk = [q
(k)
lm ]

(k = 1, ...., n) occurring in the theorem are defined as fol-
lows:

q
(k)
lm =

{
1 for l = m = k,

0 otherwise.

Theorem 3. Let A and B be two n × n complex matrices
and suppose the matrix L(A) is nonsingular. Let Hij(A, B)
(i = 1, . . . , n; j = 1, . . . , n) be matrices given by (3). Then

(i) Hii(A, B) = − (B∗Pi + PiB), where Pi is a solution
to the Lyapunov equation A∗Pi + PiA = −Qi;

(ii) Hii(A, B) = H∗

ii(A, B);
(iii) Hii(A, A) = Qi;
(iv) (Hij(A, B) + Hji(A, B))

∗
= Hij(A, B) + Hji(A, B);

(v) for B1, B2 ∈ Cn×n, α, β ∈ R, α 6= 0 we have:

(a) Hij (A, B1 + B2) = Hij (A, B1) + Hij(A, B2);

(b) Hij (αA, βB) = β
αHij(A, B).

Proof. The nonsingularity of the matrix L(A) ensures that
there exists, for each matrix Qi (i = 1, . . . , n), the Hermitian
matrix Pi satisfying the Lyapunov equation

A∗Pi + PiA = −Qi.

It follows from Proposition 2 that

B∗Pi + PiB = −Hii(A, B), (7)

proving (i). Point (ii) follows immediately from (i).
Taking B = A in Proposition 2 Eq. (6) yields the follow-

ing
A∗Pi + PiA = −Hii(A, A). (8)

It proves (iii). To justify point (iv) let introduce, for fixed
i, j ∈ {1, . . . , n}, an n×n matrix Q(i,j) = [q

(i,j)
k,l ] defined as

follows

q
(i,j)
k,l =

{
1 for (k, l) ∈ {(i, j), (j, i)} ,

0 otherwise.

By applying Proposition 2 for Q = Q(i,j) we get from (6)

B∗P + PB = − (Hij(A, B) + Hji(A, B)) .
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Since matrices Q(i,j) (i, j = 1, . . . , n) are Hermitian we get
that P is also Hermitian and hence (iv) holds. Finally, one
can easily seen that for α, β ∈ R, α 6= 0 we have

L(βA) = βL(A) and L−1(αA) = α−1L−1(A).

Combining these observations with the linearity of the oper-
ator B → L(B)L−1(A) we get point (v). It completes the
proof.

3. Main results

Let A = {A1, . . . , Am}, where Ai ∈ C
n×n (i = 1, . . . , m).

The main aim of this section is to obtain sufficient and neces-
sary and sufficient conditions for the existence of a common
solution P to the Lyapunov equations

A∗

i P + PAi = −Qi (i = 1, . . . , m),

where Q1, . . . , Qm are some unknown positive definite ma-
trices. If such a solution P exists we shall say that the set
A = {A1, . . . , Am} has a common Lyapunov solution.

3.1. Sufficient conditions for the existence of a common

Lyapunov solution. The following theorem gives a sufficient
condition for the existence of a common Lyapunov solution
for A = {A1, . . . , Am}.

Theorem 4. Let A = {A1, . . . , Am} ⊂ C
n×n, let A1 be a

stable matrix and suppose there exists a positive semidefinite
diagonal matrix D = diag (d1, . . . , dn) such that

n∑

i=1

Hii(A1, Ak)di > 0 (k = 2, . . . , m). (9)

Then the set A has a common Lyapunov solution.

Proof. It follows from the stability of A1 that the matrix
L−1(A1) is invertible and hence matrices Hii(A1, Ak) (k =
1, . . . , m; i = 1, . . . , n) exist. Moreover, it follows from (9)
that the set N+ = {i ∈ N : di > 0} is nonempty. Take any
ε > 0 and consider the matrix Q̃ε = diag (q̃1 (ε) , . . . , q̃n (ε))
defined as follows

q̃i(ε) =

{
di for i ∈ N+,

ε for i /∈ N+.

The matrix Q̃ε is positive definite. Thus, there exists a pos-
itive definite Hermitian matrix Pε satisfying the Lyapunov
equation

A∗

1Pε + PεA1 = −Q̃ε.

We now show that for some ε the matrix Pε is a common
Lyapunov solution for A. From Proposition 2 we get that for
k = 2, . . . , m:

A∗

kPε + PεAk = −

n∑

i=1

Hii (A1, Ak) q̃i (ε)

= −
∑

i∈N+

Hii (A1, Ak) di − ε
∑

i/∈N+

Hii (A1, Ak) .

Assumption (9) implies that there exists an ε0 > 0 for which
∑

i∈N+

Hii(A1, Ak)di + ε0

∑

i/∈N+

Hii (A1, Ak) > 0,

for k = 2, . . . , m. It follows from Proposition 2 matrix Pε0
is

a common Lyapunov solution for A.
From Theorem 4 one can immediately draw two following

conclusions.

Conclusion 1. If for some i ∈ {1, . . . , n} the matrices
Hii (A1, Ak) are all positive definite for k = 2, . . . , m then
A has a common Lyapunov solution.

Conclusion 2. Let A and B be two n× n complex matrices.
Suppose the matrix A is stable. If for some i ∈ {1, . . . , n}
the matrix Hii (A, B) is positive definite then the pair {A, B}
has a common Lyapunov solution.

3.2. Necessary and sufficient conditions for the existence

of a common Lyapunov solution. Our next two theorems
give necessary and sufficient conditions for the existence of a
common Lyapunov solution for A = {A1, . . . , Am}.

Theorem 5. Let A = {A1, . . . , Am} ⊂ C
n×n and suppose

the matrix A1 is stable. The set A has a common Lyapunov
solution if and only if there exists an n × n positive definite
matrix Q = [qij ] such that

n∑

i=1

n∑

j=1

Hij (A1, Ak) qij > 0, (10)

for k = 2, . . . , m.

Proof. It follows from the assumptions that the ma-
trix L−1(A1) is invertible and, hence, all the matrices
Hij(A1, Ak) exist.
Sufficiency. Suppose there exists a positive definite matrix
Q = [qij ] satisfying inequalities (10). Let P be a solution to
the Lyapunov equation

A∗

1P + PA1 = −Q. (11)

It follows from the Lyapunov’s theorem that P is positive
definite. We now show that P is a common Lyapunov solu-
tion for A. From (11) and from assumption (10) by applying
Proposition 2 we obtain that, for k = 2, . . . , m,

A∗

kP + PAk = −

n∑

i=1

n∑

j=1

Hij (A1, Ak) qij < 0.

Necessity. Suppose there exists a positive definite matrix P
being a Lyapunov solution for A, i.e.

A∗

kP + PAk < 0 (k = 1, . . . , m) . (12)

Letting Q := − (A∗

1P + PA1), it follows from (12) that such
defined matrix Q is positive definite. Moreover, combining
(12) and Proposition 2, we get for k = 2, . . . , m that

A∗

kP + PAk = −

n∑

i=1

n∑

j=1

Hij (A1, Ak) qij < 0.

It means that (10) holds completing the proof.
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Theorem 6. Let A = {A1, . . . , Am} ⊂ Cn×n and let the
matrix A1 be stable. Suppose P is an n× n positive definite
matrix such that

A∗

1P + PA1 = − diag (d1, . . . , dn) < 0. (13)

Then P is a common Lyapunov solution for A if and only if
n∑

i=1

Hii (A1, Ak) di > 0,

for k = 2, . . . , m.

Proof. It follows from the stability of the matrix A1 that there
exists a positive definite matrix P satisfying condition (13).
Thus, from Proposition 2, we obtain for k = 2, . . . , m that:

A∗

kP + PAk = −

n∑

i=1

Hii (A1, Ak) di < 0.

It ends the proof.
From Theorem 6 we get the following

Conclusion 3. Let A = {A1, . . . , Am} ⊂ C
n×n and let the

matrix A1 be stable. Suppose P is an n× n positive definite
matrix such that

A∗

1P + PA1 = −I. (14)

Then P is a common Lyapunov solution for A if and only if
n∑

i=1

Hii (A1, Ak) > 0,

for k = 2, . . . , m.

3.3. A common Lyapunov solution for A and A∗. Given
two n × n matrices A and B. One can easily show that be-
tween conditions

(a) A and B have a common Lyapunov solution;
(b) the convex combination of A and B is stable;
(c) A + B is stable;

the following relations hold: (a) implies (b) and (b) implies
(c); it can be also easily seen that (c) does not imply nei-
ther (b) nor (a). We now show that (b) does not imply (a) in
general. To see this, take two matrices in a companion form:

A =

(
0 1

−9 −2

)
, B =

(
0 1

−1 −2

)
.

One can easily check that the matrix αA+(1 − α)B is stable
for α ∈ [0, 1]. On the other hand, the matrix AB has a neg-
ative eigenvalue. It means, according to Theorem 3.1 in [5],
that A and B do not have a common Lyapunov solution.

Consider now a pair of matrices {A, A∗} , where A∗ is a
transpose conjugate of A. It is well known that matrices A
and A∗ are always both stable or unstable. In case of stabili-
ty, however, it does not mean they have a common Lyapunov
solution. For example, the matrix

A =

(
−1 2i

0 −1

)

is stable whereas the matrix 1
2 (A + A∗) is singular and hence

unstable. It follows that, in general, matrices A and A∗ do not
have to possess a common Lyapunov solution.

Cohen and Lewkowicz considered in [4, 7] convex cones
of the form

HX =
⋂

A∈X

{P > 0 : A∗P + PA < 0} ,

where X ⊂ Cn×n is a matrix family, providing some prop-
erties of sets of matrices possessing common Lyapunov solu-
tions (see Section 3 in [4]). It follows from their observation
HX∗ = (HX)−1 (see Eq. (3.6) in [4]) that if some matrix
A has a Lyapunov solution being an involution (recall that a
matrix is an involution if it is its own inverse), then that invo-
lution is also a Lyapunov solution for A∗. The next theorem
answers the question when such an involution exists.

Theorem 7. For a stable matrix A, the following conditions
are equivalent:

(i) the matrices A and A∗ have a common Lyapunov solu-
tion;

(ii) the convex combination of A and A∗ is stable;
(iii) the matrix A + A∗ is negative definite.

Moreover, if any of the above conditions holds, then the
identity matrix is an involution being a common Lyapunov
solution for A and A∗.

Proof. (i)⇒(ii) This condition is obvious and holds for any
pair of matrices.

(ii)⇒(iii) By (ii) the matrix
1

2
(A + A∗) is stable and, as

a Hermitian matrix, must be negative definite.
(iii)⇒(i) By the negative definiteness of A + A∗ one can

write
A∗I + IA = AI + IA∗ < 0,

where I is the identity matrix. It means that P = I is a com-
mon Lyapunov solution for A and A∗ proving (i). The proof
is completed.

4. Examples

We close this paper with three examples illustrating and com-
pleting the results.

Example 1. In this example we deal with the problem of the
existence of a common quadratic Lyapunov function for a pair
of linear time-invariant continuous-time systems:

ẋ(t) = Ax(t), ẋ(t) = Bx(t), (15)

where

A =




−1 −1 1

1 −1 0

1 0 −1


, B =




−1 0 0

0 −1 0

−1 0 −1


.

One can easily check that the matrix A is stable. Thus, ac-
cording to notations introduced in Sec. 2, we have (matrices
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L−1(A) and L(B)L−1(A) are presented in Appendix):

H11 (A, B) =
1

4




6 −3 3

−3 2 −2

3 −2 2


,

H22 (A, B) =
1

16




14 1 9

1 14 −2

9 −2 6


,

H33 (A, B) =
1

16




22 −11 29

−11 6 −10

29 −10 30


.

None of three matrices H11(A, B), H22(A, B), H33(A, B)
is positive definite, and hence, we cannot use Conclusion 2.
However, since

H11 (A, B) + H22 (A, B) + H33 (A, B)

=
1

8




30 −11 25

−11 14 −10

25 −10 22


 > 0,

letting Q = I3 in Theorem 5 we get that the matrices A and B
have a common Lyapunov solution. Moreover, it follows from
the proof of Theorem 5 that the matrix P being a solution
to the equation AT P + PA = −I3 is a common Lyapunov
solution for A and B. In our case, according to (2), we have

P = −matr
(
L−1 (A) vec (I3)

)

= matr

(
1 −

3

8

7

8
−

3

8

7

8
−

5

8

7

8
−

5

8

11

8

)T

=
1

8




8 −3 7

−3 7 −5

7 −5 11


 .

Indeed, the matrix P is positive definite,

AT P + PA = −I3 < 0

and

BT P + PB =
1

8




−30 11 −25

11 −14 10

−25 10 −22


 < 0.

It means that P is a common Lyapunov solution for A and
B and the function V (x) = xT Px is a common quadratic
Lyapunov function for systems (15).

Example 2. This example illustrates some new method of
finding a common Lyapunov solution. It is based on the idea
used in the proof of Theorem 4.

Consider now two 2 × 2 stable matrices of the form

A =

(
−1 1

−2 0

)
, B =

(
−1 2

−2 −1

)
.

We have

L (A) =




−2 −2 −2 0

1 −1 0 −2

1 0 −1 −2

0 1 1 0


,

L (B) =




−2 −2 −2 0

2 −2 0 −2

2 0 −2 −2

0 2 2 −2




and, after necessary calculations, we get

L−1 (A) =
1

4




−2 0 0 −4

0 −2 2 2

0 2 −2 2

−1 −1 −1 −3




L (B) L−1 (A) =
1

2




2 0 0 0

−1 3 −1 −3

−1 −1 3 −3

1 1 1 7


.

Thus, according to (3),

H11 (A, B) =
1

2

(
2 −1

−1 1

)
,

H22 (A, B) =
1

2

(
0 −3

−3 7

)
.

Since the matrix H11 (A, B) is positive definite it follows
from Conclusion 2 that A and B have a common solution. In
order to find this solution we will adopt the method used in
the proof of Theorem 4. Since the matrix H22 (A, B) is not
positive definite, it follows from the proof of Theorem 4 that
a common Lyapunov solution for A and B can be obtained
from the following Lyapunov equation

AT Pε + PεA = −Qε, (16)

where Qε = diag (1, ε) for some ε > 0. The matrix

H11 (A, B) + εH22 (A, B)

=
1

2

(
2 −1 − 3ε

−1 − 3ε 1 + 7ε

)
(17)

is positive definite for ε ∈ (−1/9, 1). Putting in (16) ε =
1

2
we get the common Lyapunov solution for A and B:

P1/2 = −matr
(
L−1 (A) vec

(
Q1/2

))

= matr

(
1 −

1

4
−

1

4

5

8

)T

=
1

8

(
8 −2

−2 5

)
.
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Indeed,

AT P1/2 + P1/2A =
1

8

(
−1 1

−2 0

)T (
8 −2

−2 5

)

+
1

8

(
8 −2

−2 5

)(
−1 1

−2 0

)
=

1

2

(
−2 0

0 −1

)
< 0

(according to (16)),

BT P1/2 + P1/2B =
1

8

(
−1 2

−2 −1

)T (
8 −2

−2 5

)

+
1

8

(
8 −2

−2 5

)(
−1 2

−2 −1

)
=

1

4

(
−4 5

5 −9

)
< 0,

as expected.

Example 3. Let

A =




−3 + i −3i 1 − i

i −4 −1

−1 + i −3 −3 + i


.

According to Theorem 7, in order to check if the matrices A
and A∗ have a common Lyapunov solution it is necessary and
sufficient to examine the negative definiteness of the matrix
A + A∗. In our case,

A + A∗ =




−6 −4i −2i

4i −8 −4

2i −4 −6


 < 0,

and hence, a common Lyapunov solution exists. It follows
from the proof of Theorem 7 that one of such solutions is the
identity matrix I3.

5. Concluding remarks

In this paper the existence of a common solution to a finite
number of the Lyapunov equations was considered. Both suffi-
cient and necessary and sufficient conditions for the existence
of such a solution were derived. Also, it was proved that a
necessary and sufficient condition for matrices A and A∗ to
have a common Lyapunov solution is that the matrix A + A∗

is negative definite.

Appendix

For matrices A and B from Example 1 we have:

L−1(A) =
1

16
×

×




−8 −4 −4 −4 −4 −4 −4 −4 −4

4 −6 2 4 −1 3 4 −1 3

−4 −2 −10 −4 −3 −7 −4 −3 −7

4 4 4 −6 −1 −1 2 3 3

−4 1 −3 1 −7 −1 −3 −1 −3

4 3 7 −1 1 −5 3 3 5

−4 −4 −4 −2 −3 −3 −10 −7 −7

4 −1 3 3 1 3 7 −5 5

−4 −3 −7 −3 −3 −5 −7 −5 −15




,

L(B)L−1(A) =
1

16
×

×




24 14 22 14 14 18 22 18 22

−12 13 −7 −11 1 −9 −15 7 −11

12 7 27 11 9 19 15 11 29

−12 −11 −15 13 1 7 −7 −9 −11

8 −2 6 −2 14 2 6 2 6

−8 −6 −14 2 −2 10 −6 −6 −10

12 11 15 7 9 11 27 19 29

−8 2 −6 −6 −2 −6 −14 10 −10

8 6 14 6 6 10 14 10 30




.
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