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Abstract. The linear parameter-varying (LPV) discrete-time model based design of a fuzzy scheduling control scheme is developed through

incorporating the advantages of P1-TS theory, and applying the local pole placement method and interval analysis of closed-loop system

polynomial coefficients. The synthesis of fuzzy scheduling control scheme is proposed in the form of iterative procedure, which enables to

find the appropriate number of intervals of a fuzzy interpolator ensuring that a family of local linear controllers places closed-loop polynomial

coefficients within a desired range. The computational complexity of multidimensional fuzzy scheduling control scheme synthesis is reduced

using a fundamental matrix method and recursive procedure for fuzzy rule-based interpretation. The usability of the proposed method is

illustrated by an implementation example and experimental results obtained on a laboratory scaled overhead crane.
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1. Introduction

The variation of operating conditions, time varying parame-

ters and external influences of a nonlinear plant involve the

robustness of a control scheme. The well-known and popu-

lar method is the gain scheduling control which is effective-

ly applied in a wide range of applications where the system

dynamic varies within the known interval of scheduling vari-

ables. The gain scheduling design is frequently an iterative

process, based on the series expansion linearization of a sys-

tem about its equilibrium points at which a family of local

linear controllers is determined to satisfy the system robust-

ness. The survey of scheduled control synthesis is presented

in [1, 2], however, the effectiveness of a gain scheduling con-

trol system is still the subject of attention in the recent works

[3–6]. The numerous research works demonstrate the useful-

ness of a fuzzy scheduled based control in different applica-

tions [7–9], developed especially based on the Takagi-Sugeno

(TS) model [10]. Also, numerous authors adopted the inter-

val mathematics [11, 12] for robust control systems synthesis

[13–15]. Interval analysis is implemented for modeling inter-

val systems and designing robust controller according to the

iterative procedures [16–18], Monte Carlo technique [19], or

through applying the soft computing methods, e.g. evolution-

ary algorithm (EA) [20] and artificial neural network [21].

Although many works concern the problem of synthe-

sis the linear or fuzzy interpolation based scheduled control

schemes, the less attention in the literature is addressed to

the problem of desired location of nominal operating points

associated with scheduled controllers. This problem is solved

using interval analysis of closed-loop system poles employed

in genetic [22] and iterative [16] algorithms used to find the

appropriate number of local controllers linearly interpolated

within the bounds of the one exogenous variable. The fuzzy

clustering method [23] and EA [24] are proposed to reduce the

fuzzy partitions of the TS fuzzy gain scheduling system based

on the assessment of control system performance. In [25, 26]

the EA is employed to minimize the number of fuzzy sets

specified for scheduling variables, rope length and mass of a

payload, and design a TS fuzzy controller for an anti-sway

crane control system. In [27, 28] the iterative procedure uti-

lizing the interval analysis of closed-loop polynomial coeffi-

cients is developed for fuzzy interpolation based discrete-time

control scheme implemented on a laboratory scaled overhead

crane. However, the mentioned methods does not show di-

rectly a general solution for multi-input multi-output (MIMO)

fuzzy scheduler design.

In this paper the LPV discrete-time scheduling control

scheme design is developed based on a local pole placement

method, interval analysis of closed-loop polynomial coeffi-

cients and fuzzy interpolator elaborated based on the P1-TS

theory proposed in [29–31]. The zero-order P1-TS fuzzy in-

terpolator can be equivalently represented by a zero-order TS

fuzzy system with input variables’ fuzzy sets associated with

the membership functions represented by polynomials of the

first-order, and rule conclusions represented by the zero-order

polynomials. The zero-order TS system corresponds also to a

fuzzy singleton-type reasoning method [32].

The new contribution of this paper and its relation to

the previous author’s papers are as follows. The fuzzy model

based design of scheduling control scheme proposed in [27,

28] is in this paper presented in more feasibly form through

applying the analytical theory and fundamental matrix recur-

sion method proposed in [29–31] for fuzzy rule-based system

interpretation, that results in reduction of the computation-

al complexity of multidimensional scheduling control scheme
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synthesis. Thus, incorporating the advantages of P1-TS theory

into interval arithmetic and local pole placement based syn-

thesis of scheduling control scheme, the iterative procedure

is developed for multi-input fuzzy scheduler design. In a case

study, the usefulness of this procedure is verified and com-

pared for two different assumptions for a desired closed-loop

poles interval, in the experiments carried out on a laboratory

scaled overhead crane.

The paper is organized as follows. Section two describes

a P1-TS fuzzy scheduling control scheme for a LPV discrete-

time control system. The iterative synthesis of fuzzy schedul-

ing control system using local pole placement at operating

points determined based on the interval analysis of closed-

loop system polynomial coefficients is proposed in the form

of iterative procedure in section three. Section four presents

the case study, which confirms the usability of the proposed

method illustrated by experimental results obtained on a lab-

oratory scaled overhead crane. Section five delivers the final

conclusions.

2. P1-TS fuzzy scheduling control scheme

Consider the closed-loop control system (Fig. 1) represented

by the discrete-time transfer functions of a plant (1) and con-

troller (2) with parameters varying in relation to the vector of

exogenous variables w = [w1, w2, ..., wr ]
T .

GO(z,w)=
bn−1(w)zn−1 + bn−2(w)zn−2 + ... + b0(w)

zn + an−1(w)zn−1 + ... + a0(w)
.

(1)

GC(z,w) =
dm−1(w)zm−1 + dm−2(w)zm−2 + ... + d0(w)

zm + cm−1(w)zm−1 + ... + c0(w)
.

(2)

Fig. 1. Discrete-time closed-loop control system

The interval plant operating conditions vary within the

bounded intervals of measurable variables

w ∈ [wi] = [w−

i , w+
i ], i = 1, 2, ..., r, (3)

thus, dividing an each interval [wi] into ni subintervals [αi,j ,

αi,j+1] (where αi,j < αi,j+1, and j = 1, 2, ..., ni) the uncer-

tainty of the model’s parameters and controller coefficients

approximation can be based on a zero-order MIMO P1-TS

fuzzy system with linear membership functions Ni,j(wi) and

Pi,j(wi) (Fig. 2) defined as follows:

Ni,j(wi) =
αi,j+1 − wi

αi,j+1 − αi,j

,

Pi,j(wi) = 1 − Ni,j(wi).

(4)

Fig. 2. Linear membership functions specified for the interval

[αi,j , αi,j+1] of variable wi

The further detailed explanation of P1-TS system theory

can be found in [30]. The crisp output vector of a zero-order

P1-TS system is a vector containing the parameters of a plant

model (1) and controller (2) given by

v(w) = gT
r ΩrQk, (5)

where g and Ω are called generator vector and fundamental

matrix, respectively, which can be determined recursively for

r inputs w1, w2, ..., wr according to (6) through assuming the

initial generator g0 = 1 and fundamental matrix Ω0 = 1:

g0 = 1, Ω0 = 1,

gi =

[

1

wi

]

⊗ gi−1,

Ωi =
1

αi,j+1 − αi, j

[

αi,j+1 − αi,j

−1 1

]

⊗ Ωi−1,

(6)

for i = 1, 2, ..., r, where “⊗” denotes the Kronecker product.

The matrix Qk (where k = 1, 2, ..., n1 ·n2 ·...·nr) contains

the parameters of a plant model and controller at 2r nomi-

nal operating points corresponding to the bounds of intervals

[αi,j , αi,j+1] (where i = 1, 2, ..., r) specified for r inputs:

Qk =











a
(1)
0 a

(1)
1 ... d

(1)
m−1

a
(2)
0 a

(2)
1 ... d

(2)
m−1

... ... ... ...

a
(2r)
0 a

(2r)
1 ... d

(2r)
m−1











k

. (7)

The P1-TS system can be equivalently represented by a TS

fuzzy system divided into n1 ·n2 ·...·nr subsystems, where the

k subsystem is represented by the rule base (8) with the rule’s

consequents corresponding to the rows of matrix Qk consist-

ing of closed-loop control system parameters determined for

2r nominal operating points (9).

R1 : IF w1 is N1,j and w2 is N2,j and ... and wr is Nr,j

then v(w) =
[

a
(1)
0 , a

(1)
1 , ..., d

(1)
m−1

]

k
,

R2 : IF w1 is P1,j andw2 is N2,j and ... and wr is Nr,j

then v(w) =
[

a
(2)
0 , a

(2)
1 , ..., d

(2)
m−1

]

k
,

...

R2r : IF w1 is P1,j and w2 is P2,j and ... and wr is Pr,j

then v(w) =
[

a
(2r)
0 , a

(2r)
1 , ..., d

(2r)
m−1

]

k
.

(8)
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s = 1 : (α1,j , α2,j, ..., αr,j),

s = 2 : (α1,j+1, α2,j, ..., αr,j),

...

s = 2r : (α1,j+1, α2,j+1, ..., αr,j+1).

(9)

The activation degrees of rules (8) is calculated as follows:

τ(w) = gT
r (w)Ωr = [τ1(w), τ2(w), ..., τ2r (w)] . (10)

3. Local pole placement and interval analysis

based synthesis

The objective of synthesis of P1-TS fuzzy based control

scheme is to specify for each scheduling variable wi subin-

tervals [αi,j , αi,j+1] and determine controller’s parameters

at nominal operating points (9) corresponding to the bounds

of these subintervals, such as the control scheme places all

close-loop system poles within desired regions. By assuming

that at each nominal operating point s = 1, 2, ..., 2r the real

numbers intervals

[zf ]s = [z−f , z+
f ]s = {zf ∈ R | z−f ≤ zf ≤ z+

f }, (11)

represent the desired regions of closed-loop stable poles zf

(where f = 1, 2, ..., n + m), the performances of a fuzzy

logic-based control system satisfy desired conditions if the

coefficients of closed-loop system characteristic equation lie

within the coefficients intervals of desired polynomial (12) de-

termined using the arithmetic operations on intervals [11, 12]:

Ps(z) =

n+m
∏

f=1

(

z −
[

z−f , z+
f

]

s

)

= z [ps] , (12)

where z = [zn+m, zn+m−1, ..., 1], and [ps] is an interval vec-

tor of desired characteristic equation coefficients:

[ps] = [[1, 1], [pn+m−1]s, [pn+m−2]s, ..., [p0]s]
T . (13)

Hence, the rs vector of controller’s parameters can be deter-

mined for the midpoints mid([ps]) of the interval vector (13)

based on the equations system (14) derived from the interval

Diophantine equation:

Ssrs = mid([ps]) (14)

where Ss is an eliminant matrix (see the Appendix).

Assuming the S(w) and r(w) consist of closed-loop sys-

tem parameters interpolated using a P1-TS system within

wi ∈ [αi,j , αi,j+1] (where i = 1, 2, ..., r), the control scheme

satisfies the expected performances if the condition

S(w)r(w) ∈ [ps], (15)

is not violated for at least one interval vector [ps] (where

s = 1, 2, ..., 2r) associated with the rule which has been acti-

vated to interpolate the controller’s parameters r(w) with the

firing strength factor τs(w) > 0.

The objective function (15) can be used in the iterative

procedure of designing the zero-order P1-TS fuzzy system.

The control scheme synthesis involves to identify the model’s

parameters (1) at the nominal operating points correspond-

ing to the bounds of the scheduling variables intervals (3)

resulting in the P1-TS system with ni = 1 intervals, denoted

[αi,ni
, αi,ni+1] = [w−

i , w+
i ] specified for each input variable

wi (i = 1, 2, ..., r). Assuming the desired intervals of stable

poles (11) for the nominal operating points (9), and deriv-

ing the controller’s parameters from (14), the P1-TS system

is used to interpolate the model and controller parameters at

a given operating point wi ∈ [wi] to determine according Al-

gorithm 1 the number of nominal points αi,j (j = 2, ..., ni)
lying between αi,1 = w−

i and αi,ni+1 = w+
i . Incrementing

i from 1 to r, the interval [w−

i , w+
i ] of currently considered

input variable is divided into the nl number of subintervals

to obtain l = 1, 2, ..., nl + 1 sample points. Starting to incre-

ment l from 1 to nl +1, the current number of intervals [αi,j ,

αi,j+1], specified for wi variable, is incremented ni = ni +1,

and each sample point wi,l is temporally considered as the

upper bound of the interval [αi,ni−1, αi,ni
]. The desired in-

tervals of closed-loop system characteristic polynomial coef-

ficients (13) are calculated for nominal operating points (9)

associating with the considered sample point αi,ni
= wi,l, and

the parameters of controller are derived from (14). The con-

dition (15) is tested for the most hazardous operating points

{wi} (16) and (17) corresponding to the all possible combi-

nations of the intervals [αi,j , αi,j+1] midpoints determined

for previously and currently considered inputs and the upper

and lower bounds of intervals specified for input variables wi

(i = c + 1, c + 2, ..., r, where c is the number of currently

considered input) which have been not considered yet:

wi =































(αi,j+1−αi,j)/2, for i=1, 2, ..., c−1,

j=1, 2, ..., ni

{(αi,j+1−αi,j)/2, αi,j+1}, for i=c, j=ni−1

{αi,j , αi,j+1}, for i=c+1, c+2, ..., r,

j=ni

,

(16)

wi =











{αi,j , αi,j+1}, for i=1, 2, ..., c−1, j=1, 2, ..., ni

(αi,j+1 − αi,j)/2, for i=c, j=ni−1

{αi,j , αi,j+1}, for i=c+1, c+2, ..., r, j=ni

,

(17)

If the condition (15) is satisfied for all operating points (16)

and (17) the next sample point αi,ni
= wi,l+1 is consid-

ered as the upper bound of the interval [αi,ni−1, αi,ni
]. If

the condition (15) is violated, the upper bound of the inter-

val [αi,ni−1, αi,ni
] is set to the sample point αi,ni

= wi,l−1

which has been tested successfully in the previous iteration.

However, if the condition (15) is violated at the first sample

point l = 2, the number of sample points should be double

increased nl = 2nl.

The P1-TS fuzzy design process is two-stage procedure,

which in the first step results in determining the nominal op-

erating points for which the parameters of a system’s model

should be identified. In the next step, the iterative procedure

(Algorithm 1) should be repeated for initial number of inter-

vals ni determined in the previous step to validate a control

system with reduced interpolation errors.
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4. Case study and experimental results

In this section the proposed method is addressed to the anti-

sway crane control problem. Reduction of the vibration is

a serious concern for industrial cranes which are extensive-

ly used for shifting goods in building sites, shipping yards,

container terminals and many manufacturing segments [33–

35]. The system under consideration is the laboratory scaled

overhead traveling crane with lifting capacity of 150 kg and

motion mechanisms driven by DC motors. The experimental

setup is presented in Fig. 3. The measurement equipment is

based mainly on the incremental encoders used in the open-

loop identification experiments and control for sensing the

crane position and speed, rope length and payload deviation.

Also, the vision based measurement techniques implemented

on the laboratory stand are detailed described in [36, 37].

The identification experiments were conducted using a PC

with I/O board (control-measurement card) and Matlab/RTW

software. The model of controlled system was identified using

output error (OE) method with sample time Ts = 0.1 s. The

control scheme was designed in Matlab program and next the

control algorithm was implemented using structured text (ST)

on the RX3i programmable automation controller (PAC) and

tested on the laboratory object. The control system (Fig. 4)

developed and tested on the laboratory stand was based on the

linear controllers used in the feedbacks of crane position and

speed, and sensorless feedback of payload deviation estimated

by the pendulum model assumed in the form of discrete-time

transfer function (19). The P1-TS fuzzy system was used to

approximate the parameters of controllers and pendulum mod-

el based on the two scheduling variables, rope length l and

mass of a payload m.

Fig. 3. The control-measurement equipment used on the laboratory

stand

Fig. 4. Control scheme with sensorless feedback of payload deviation

and P1-TS fuzzy system used to interpolate the parameters of crane

dynamic model and controllers

The planar model of a crane (Fig. 5) transferring a pay-

load, which is assumed to be a point-mass suspended at the

end of a massless rigid cable, is simplified to the first and

second-order discrete-time transfer functions, which describe

the relation between crane speed and input function (18), and

sway angle of a payload and crane speed (19), where model’s

parameters vary in relation to the rope length l and mass of

a payload m.

G1(z, l, m) =
Ẋ(z, l, m)

U(z, l, m)
=

d0(l, m)

z + c0(l, m)
. (18)

G2(z, l, m) =
ϕ(z, l, m)

Ẋ(z, l, m))
=

b1(l, m)z + b0(l, m)

z2 + a1(l, m)z + a0(l, m)
.

(19)
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Fig. 5. Planar model of a crane, where m, l, u and ϕ are, respective-

ly, mass of a payload, rope length, controlling signal corresponding

to control force acting on a crane, and sway angle of a payload

The closed-loop control scheme (Fig. 6) is assumed as a

set of linear controllers for crane position, speed and first-

order discrete-time controller of payload sway angle with pa-

rameters denoted k1, k2, q0, q1 and s0. Hence, the transfer

function of a closed-loop control system can be presented in

the following form:

ϕ(z, l, m)

Xr(z)
=

k1(l, m)k2(l, m)d0(l, m)







b1(l, m)z2

+(b1(l, m)s0 + b0(l, m))z

+b0(l, m)s0







z5 + zS(l, m)r(l, m)
,

(20)

where

S =



















































(

a1+

c0 − 1

) (

a0 − a1+

c0(a1 − 1)

) (

c0(a0 − a1)

−a0

)

−a0c0 0

d0 d0(a1 − 1) d0(a0 − a1) −d0a0 0

0 0 −d0b1 d0(b1 − b0) −d0b0

0 −d0b1 d0(b1 − b0) d0b0 0

1 a1 + c0 − 1

(

a0 − a1+

c0(a1 − 1)

) (

c0(a0 − a1)

−a0

)

−a0c0

Tsd0 Tsd0a1 Tsd0a0 0 0

0 d0 d0(a1 − 1) d0(a0 − a1) d0a0

0 Tsd0 Tsd0a1 Tsd0a0 0



















































T

,

z = [z4, z3, z2, z1, z0],

r = [1, k2, q0, q1, s0, k1k2, k2s0, k1k2s0]
T .

Fig. 6. Discrete-time closed-loop control system
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The P1-TS fuzzy system used to approximate the closed-

loop system’s parameters based on the two scheduling vari-

ables w1 = l and w2 = m was designed through apply-

ing the iterative algorithm described in section 3. The ob-

jective of closed-loop system synthesis was to select the

number and width of subintervals [αi,j , αi,j+1] (i = 1, 2)

within the scheduling variables ranges l ∈ [1.0, 2.2] m and

m ∈ [10, 90] kg, which satisfy the condition (15) for desired

regions of closed-loop stable poles assumed in the form of

the real number intervals

[zf ]s = [exp((−ωn ∓ ξωn)Ts]s, f = 1, 2, ..., 5, (21)

specified at the nominal operating points (9), where ωn is

the natural not dumped pulsation of a system, and parame-

ter ξ determines the acceptable range of closed-loop system

polynomial coefficients deviation from a nominal point. The

parameters of a dynamic model (18-19) were identified using

OE method in the open-loop experiments carried out for op-

erating points corresponding to the bounds of intervals [w1]

and [w2], that resulted in creating the P1-TS fuzzy system

which has been used to interpolate the system’s parameters

between nominal operating points: {1.0 m, 10 kg}, {1.0 m,

90 kg}, {2.2 m, 10 kg} and {2.2 m, 90 kg}.

The iterative procedure (Algorithm 1) implemented in

Matlab program was employed to design P1-TS fuzzy interpo-

lator for desired regions of closed-loop poles (21) determined

for the parameters ξx = 0.1 and ξy = 0.25. In both exper-

iments the scheduling variables [w1] and [w2] were divided

into 12 and 8 subintervals, respectively. The first experiment,

carried out for ξx = 0.1, resulted in determining the new

nominal point l = 1.6 m required to satisfy the condition (15)

for the considered interval system. Thus, after identification

of model’s parameters at operating points {1.6 m, 10 kg}
and {1.6 m, 90 kg}, the P1-TS fuzzy interpolator was de-

signed with intervals [α1,1, α1,2] = [1.0, 1.6] m, [α1,2, α1,3]

= [1.6, 2.2] m and [α2,1, α2,2] = [10, 90] kg specified for

input variable w1 = l and w2 = m respectively. In the second

experiment, conducted for ξy = 0.25, the condition (15) was

satisfied at each considered sample point of intervals [w1] and

[w2], that resulted in designing the P1-TS fuzzy interpolator

with one interval specified for each input variable [α1,1, α1,2]

= [1.0, 2.2] m and [α2,1, α2,2] = [10, 90] kg, respectively

(Fig. 7).

The control algorithm was implemented using structured

text on the PAC system and tested on the laboratory object for

operating points lying within the scheduling variables inter-

vals [αi,j , αi,j+1]. The examples of experiments conducted

for P1-TS fuzzy system interpolating the closed-loop system

parameters within intervals [α1,1, α1,2] = [1.0, 1.6] m, [α1,2,

α1,3] = [1.6, 2.2] m and [α2,1, α2,2] = [10, 90] kg (Fig. 7a)

are presented in the form of unit-step responses of a sys-

tem (Figs. 8, 9), where the payload deflection measured using

incremental encoder (solid line) is compared with the sig-

nal estimated by the model (19) and used as a feedback in

the sensorless control system (Fig. 4). The similarity of the

object and model responses in the transient states confirms

assumptions which were applied for object modeling.

The objective of the control was positioning a crane and

reducing the payload deflection with tolerance ± 0.02 m.

Figure 8 presents the results of experiments carried out for

l = {1.0, 1.6, 2.2} m and m = 50 kg, while Fig. 9 depicts

results obtained for l = {1.3, 1.9} and m = 50 kg. For operat-

ing points lying within intervals [1.0, 2.2] m and [10, 90] kg,

in the experiments realized with using P1-TS fuzzy interpo-

lator designed for ξx = 0.1 (Fig. 7a), the settle time, was in

the interval [5.5, 6.7] s, while for control system designed for

ξy = 0.25 the settle time was [5.5, 7.5] s, that is illustrated

a)

b)

Fig. 7. Membership functions specified for the intervals of input variables w1 = l and w2 = m determined in experiments carried out for

a) ξx = 0.1, b) ξy = 0.25
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Fig. 8. Crane position and payload deflection – experiments at oper-

ating points l = {1.0, 1.6, 2.2} m and m = 50 kg

in Fig. 10 presenting the comparison of control system per-

formances at operating point {1.6 m, 50 kg}. Interpolation

within intervals [1.0, 1.6] m and [1.6, 2.2] m (Fig. 7a) re-

sults in settle time about 6.1 s, while using the P1-TS system

designed for ξy = 0.25 (Fig. 7b) it was 7.5 s, however the

payload deviation is reduced to the expected range ±0.02 m

about 2 seconds later.

Fig. 9. Crane position and payload deflection – experiments at oper-

ating points l = {1.3, 1.9} m and m = 50 kg

The interval of acceptable deviation from a nominal oper-

ating point determines the width of intervals [αi,j , αi,j+1]

and interpolation errors, that obviously has influence on

the closed-loop system performances deterioration especial-

ly at the midpoints of the intervals [αi,j , αi,j+1]. Figure 11

presents the relative errors between natural not dumped pul-

sation of the pendulum model (19), identified in the series of

experiments carried out at sample points specified within the

interval [w1] = [1.0, 2.2] m and for the midpoint of the inter-

val mid([w2]) = 50 kg, and the natural pulsation of a model

with parameters interpolated using the P1-TS fuzzy system.

The maximum relative errors correspond to the midpoints of

intervals specified for input variables of fuzzy interpolator.

In the considered example, the midpoint of the interval [1.0,

2.2] m simultaneously corresponds to the nominal point de-

termined by the iterative algorithm for ξx = 0.1. Thus, iden-

tification of model’s parameters at operating points {1.6 m,

10 kg} and {1.6 m, 90 kg} results in decreasing the interpola-

tion errors, and verify the condition (15) for the midpoints of

intervals [1.0, 1.6] and [1.6, 2.2] m, at which the closed-loop
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system polynomial coefficients are close to the bounds of a

desired interval determined for ξx = 0.1.

Fig. 10. Crane position and payload deflection – comparison of ex-

periments carried out at operating point l = 1.6 m and m = 50 kg

with P1-TS system interpolating the system’s parameters within the

intervals [1.0, 1.6] m and [1.6, 2.2] m, and within the interval [1.0,

2.2] m

Fig. 11. Interpolation errors for P1-TS systems used to interpolate

the model’s parameters within intervals [1.0, 1.6] m and [1.6, 2.2]

m (dotted line), and between the interval [1.0, 2.2] m (solid line)

5. Conclusions

The effectiveness of fuzzy scheduling control schemes is con-

firmed in a wide range of applications described in the liter-

ature. However, the less attention is focused on the problem

of selecting the appropriate number of intervals within the

scheduling variable ranges, especially for the general prob-

lem of multi input fuzzy interpolator design. In this paper,

this problem is addressed using the LPV discrete-time model

based iterative procedure based on the local pole placement

and interval analysis of closed-loop system polynomial coeffi-

cients. The reduction of computational complexity of a fuzzy

scheduler design and improvement of hardware implementa-

tion feasibility can be obtained utilizing the P1-TS theory-

based fundamental matrix method and a recursive procedure

used for fuzzy rule-based interpretation. The usability of the

proposed method was verified on the laboratory scaled over-

head crane. The fuzzy interpolator with two input variables

was designed for two different assumptions for a desired re-

gion of closed-loop stable poles. The control algorithm was

implemented using ST on the PAC system and successfully

tested on the laboratory stand. The future challenge is the im-

plementation of this method for design the control system of

a large scale material handling device.

Appendix

Considering, that the coefficients of a desired characteristic

polynomial of the closed-loop system (Fig. 1) are the nomi-

nal points of an interval vector (13), the Diophantine equation

(zn + an−1z
n−1 +...+ a0)(z

m + cm−1z
m−1 +...+ c0)

+(bn−1z
n−1 + bn−2z

n−2 + ... + b0)

·(dm−1z
m−1 + dm−2z

m−2 + ... + d0)

= z · mid([ps]),

(22)

can be presented as follows

z ·

























1 0 0 · · · 0 0 0

an−1 1 0 · · · 0 0 0

an−2 an−1 1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · a0 a1 a2
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0 0 0 · · · 0 0 a0
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(23)
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where z = [zn+m, zn+m−1, ..., 1]. Hence, the equations sys-

tem (14) is given



























1 0 · · · 0 0 0 0 · · · 0 0

an−1 1 · · · 0 0 0 0 · · · 0 0

an−2 an−1 · · · 0 0 bn−1 0 · · · 0 0

an−3 an−2 · · · 0 0 bn−2 bn−1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · a1 a2 0 0 · · · b1 b2
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(24)

Removing the first equation (1 = 1), the system of Eqs. (24)

can be rewritten as






















1 · · · 0 0 0 0 · · · 0 0

an−1 · · · 0 0 bn−1 0 · · · 0 0

an−2 · · · 0 0 bn−2 bn−1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · a1 a2 0 0 · · · b1 b2
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