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A subinterval-based method for circuits
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Abstract. The paper deals with the solution of problems that concern fractional time derivatives. Specifically the author’s interest lies

in solving circuit problems with so called fractional capacitors and fractional inductors. A numerical method is proposed that involves

polynomial interpolation and the division of the entire time interval (for which computations are performed) into subintervals. Analytical

formulae are derived for the integro-differentiation according to the Caputo fractional derivative. The rules that concern the subinterval

dynamics throughout the computation are also presented in the paper. For exemplary linear circuit problems (AC and transient) involving

fractional order elements the solutions have been obtained. These solutions are compared with ones obtained by means of traditional methods.
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1. Introduction

The recently growing interest in the application of fractional

derivatives [1, 2] naturally motivates the design of analytical

and numerical methods. The author’s interest lies mostly in

the aspect of fractional derivative models in electric circuits

(i.e. for so called fractional capacitors and fractional induc-

tors).

Fractional capacitor models have been lately known to re-

flect the properties of supercapacitors [3, 4], while fractional

inductors are very useful as models of lossy coils [5].

In the case of AC analyses, the fractional models can be

substituted by their equivalent complex impedances [6]. How-

ever, for transient simulations the matter is much more diffi-

cult.

An analytical solution to a system of linear differential

equations with fractional orders is given e.g. in [7, 8]. An

analytical form naturally can provide a more exact solution

yet is sometimes difficult to obtain (especially if a greater

number of elements is considered). An alternative approach

is to use numerical methods, of which one of the main advan-

tages is that they can be extended to solve nonlinear problems.

The nowadays applied numerical methods for solving fraction-

al differential equations mostly base on existing methods for

solving systems of ordinary differential equations. Many of

these were covered in [9] for the choice of a constant integra-

tion step. These are:

• Lubich’s backward difference methods (which generally

lead to methods of order from 1 to 6);

• generalized Taylor expansion method;

• Adomian’s decomposition method.

These methods (which have been described for single

equations) can be extended for the solution of sets of frac-

tional order differential equations. Their biggest disadvantage

is that they mainly are well described for the case of constant

integration steps (i.e. equidistant nodes on the time axis).

This paper presents the application of a numerical method

that could solve a general class of linear circuit problems with

fractional order elements. The method bases on polynomial

interpolations in designated time subintervals

2. Fractional time derivative approximation

Only the case for the derivative of order 0 < α < 1 is consid-

ered in the study because such are reflected by the modeled

circuit elements. In this case the Caputo definition of the frac-

tional derivative is given by the operator [10]:

C
tc
Dα

td
x(t) =

1

Γ(1 − α)

td∫

tc

x(1)(τ)

(t − τ)α
dτ. (1)

If an m− 1 degree polynomial interpolation is performed

on the variable x in some given time interval t ∈ [ta, tb] then

it can be expressed by means of a linear combination of La-

grange basis polynomials:

∀t ∈ [ta, tb] : x(t) ≈ x̃(t−ta) =
m∑

i=1

ℓm,i(t − ta) x|t=ti
, (2)

where ℓm,i is an m − 1 degree polynomial being equal to 1

at ti and 0 at all other interpolation points tj :

ℓm,i(t − ta) =
∏

1≤j≤m+1

j 6=i

t − tj

ti − tj
. (3)

This polynomial is further on used for the approximation

of the variable x in selected time intervals. In a power series

form the locally defined Lagrange polynomial is further on

presented as:
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ℓm,i(tloc) =

m−1∑

k=0

bi,ktkloc, (4)

where

tloc = t − ta. (5)

The local approximation of x is denoted by:

x̃(tloc) =

m−1∑

k=0

aktkloc. (6)

The Caputo derivative of (6), with t ∈ [tc, td] is given by the

general formula:

C
tc
Dα

td
x̃(t − ta) =

1

Γ(1 − α)

td∫

tc

x̃(1)(τ − ta)

(t − τ)α
dτ , (7)

which in terms of (5) assumes the form:

C
0Dα

∆tloc
x̃(∆T ) =

1

Γ(1 − α)

∆tloc∫

0

x̃(1)(τloc)

(∆T − τloc)α
dτloc, (8)

where the following auxiliary notations are used:

τloc = τ − tc, (9)

∆tloc = td − tc, (10)

∆T = t − tc. (11)

Suppose that computations are performed throughout t ∈
[0, tend] concerning a fractional time derivative of the vari-

able x. At each time instance the integral (1) is dependent

on all the previous states. This dependency varies subject to

t being included in the denominator. If one wants to apply

the polynomial (2) to approximate the fractional derivative

then the definition (8) is not enough as it only applies for

the local subinterval [tc, td], which because of the polynomial

boundaries – should be contained inside [ta, tb].
Let the interval [0, tend] be divided into S subintervals

[ts,1, ts,ms
] where s = 1, 2, . . . , S and for s > 1 : ts−1,ms

=
ts,1; ms defines the number of nodes on the time axis in an

interval with the unique index s. Subject to integral properties

the fractional time derivative can be then expressed by means

of the sum:

C
0Dα

t x(t) =

S∑

s=1

C
ts,1

Dα
ts,ms

x(t)

≈
S∑

s=1

C
ts,1

Dα
ts,ms

x̃s(t − ts,1),

(12)

where x̃s is the local polynomial approximation in the subin-

terval Θs ⊆ [ts,1, ts,ms
]. In fact, in most cases it will be true

that Θs = [ts,1, ts,ms
], however Sec. 5 covers the cases where

it is not. To simplify the description, the following notation

is used:

dα
s x(t) = C

ts,1
Dα

ts,ms
x̃s(t − ts,1). (13)

Equation (12) clearly shows that the fractional time deriv-

ative can be computed by means of a sum of fractional deriv-

atives defined along the contiguous subintervals, hence at this

stage it is worthwhile to derive a simpler form of (8) that is

more suitable for further computations. For a single term of

the polynomial (6) the fractional derivative along a subinterval

[tc, td] is:

C
0Dα

∆tloc

(
aktkloc

)

=
ak

Γ(1 − α)

∆tloc∫

0

kτk−1
loc

(∆T − τloc)α
dτloc,

(14)

which when defining the auxiliary value θ = τloc

∆T
takes the

form:

C
0Dα

∆tloc

(
aktkloc

)
=

akk∆T k−α

Γ(1 − α)

∆tloc
∆T∫

0

θk−1

(1 − θ)α
dθ. (15)

The integral above is actually the incomplete beta func-

tion:

B∆tloc
∆T

(k, α − 1) =

∆tloc
∆T∫

0

θk−1

(1 − θ)α
dθ. (16)

Because k are positive integers – the above can be brought

to the analytical expression [11]:

B∆tloc
∆T

(k, α − 1) =
Γ(k)Γ(α − 1)

Γ(k + α − 1)

·


1 −

(
1 − ∆tloc

∆T

)α−1 k−1∑

j=0

(
∆tloc

∆T

)j

(α − 1)j

j!


 ,

(17)

where the Pochhammer function is used:

(α − 1)j =

{
(α − 1)(α − 2)...(α − j) j 6= 0,

1 j = 0.
(18)

If
∆tloc

∆T
= 1, then the integration in (15) is simplified and

leads to [12]:

C
0Dα

∆T

(
aktkloc

)
= ak

k∆T k−αΓ (k)

Γ(1 + k − α)
. (19)

This simplification can be applied for the interval ex-

pressed by the unique index s = S.

3. Fractional state equations

In this subsection formula (12) is applied so that a gener-

al system of linear fractional order state equations can be

solved by means of a matrix equation for each selected time

instance.

Suppose that one wants to obtain an implicit scheme

where only the variable values at the computed time instance

t = tnow are not known. In such a case in all subintervals

the coefficients of the polynomial (6) are known except in the
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one defined by the index s = S. There it is only possible to

obtain the coefficients of the Lagrange basis polynomials (4).

Hence dα
s x(t)|t=tnow

are known values for s = 1, 2, . . . , S−1
but dα

Sx(t)|t=tnow
needs to be considered separately at first.

However, the components of (2) can be divided into those

dependent on x|t=tnow
and those that are dependent on the

variable values at previously selected time instances. So the

polynomial in subinterval ΘS is expressed by:

x̃S(tloc S) =

mS−1∑

k=0

a′
ktkloc S

+

(
mS−1∑

k=0

bmS ,ktkloc S

)
x|t=tnow

,

(20)

where

tloc S = t − tS,1. (21)

For a circuit with fractional capacitors defined by the re-

lation:

Cα

dαuC

dtα
= iC (22)

and fractional inductors given by:

Lβ

dβiL

dtβ
= uL, (23)

a system of state equations is formulated in the following

general form:

[
dα1

dtα1
x1,

dα2

dtα2
x2, ... ,

dαn

dtαn
xn

]T

= Ax + Bv,

(24)

where x denotes the vector of state variables x1, x2 . . . , xn,

v = v(t) is the vector of autonomous source values, A is

the state matrix and B denotes a dependency on the respec-

tive sources. Subject to matrix multiplication the following

formula is obtained for a single equation of (24):

dαi

dtαi
xi =

n∑

k=1

Ai,kxk +

nv∑

k=1

Bi,kvk, (25)

where nv denotes the number of sources. Subject to the ap-

proximation (12), the above equation yields:

−dαi

S xi +

n∑

k=1

Ai,kxk = −
nB∑

k=1

Bi,kvk +

S−1∑

s=1

dαi

s xi, (26)

where the right-hand side values can be obtained at the be-

ginning of each time-step as they are dependent on either the

source values (which are known) or values of the state vari-

ables at t < tnow. Equations of the form (26) together build

the matrix equation:

Gx = g − Bv, (27)

which can be solved by a chosen numerical method.

4. Time-step adaptation

In order to apply the method one needs to define the nodes on

the time variable axis, which are going to be considered in the

polynomial interpolation. It is easier to obtain the coefficients

bi,k if these are equidistant nodes i.e. the timestep is constant

In fact it is possible to give exact formulae for such a case (e.g.

this has been done for other methods in [9]). However, time-

step adaptation techniques are known to improve the quality

of numerical methods for systems of differential equations in

terms of both accuracy and computation time [13].

In this subsection a simple idea of a time-adaptive

predictor-corrector scheme is presented:

a) first, for a selected time instance the polynomial order

p ≥ 2 is chosen;

b) in the predictor step the equation (27) is formulated and

solved with the polynomial at ΘS of order po = p − 1;

c) in the corrector step the equation (27) is solved for a poly-

nomial of order po = p (the polynomials in the rest of the

subintervals do not change their order);

d) an error is computed;

e) if the error is greater than a given maximum value emax

then the time-step value ∆t is modified and the computa-

tions are repeated for a changed t; else the time-step value

is added and computations are performed for the next time

instance.

Taking into account a temporary assumption that the pre-

dictor and corrector give respectively the approximated and

exact solution, one can write the estimate of the local error

for the state variable x as:

e =
|xp − xc|

w
. (28)

xp is the value of the state variable computed in the predic-

tor step, while xc is the value of x obtained in the corrector

step; w is an arbitrarily chosen weight value, which could be

given e.g. by a typical positive value for the considered state

variable.

The following coefficient is used as a multiplier for the

modification of the time-step:

η = p+1

√
ectrl

ex

, (29)

where ex is the maximum taken from all error values comput-

ed by (28) for a current time instance and ectrl is an assigned

error tolerance. Note that the above formula is used in adap-

tive time-stepping of methods used in integer order differential

equations [13]. It has been chosen empirically for fractional

order equations. A computation of the coefficient η basing on

a local discretization error analysis [14] is not discussed in

this paper.

5. Algorithm of subinterval dynamics

In this section it is explained how the subintervals Θs are

being defined and modified in each time instance. In order to

distinguish the subintervals from the integral boundaries, the

latter are denoted by Ξs = [ts,1, ts,ms
].
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Firstly, in order to minimize the amount of numerical

computation being performed at each time-step – it is es-

tablished that only two of the polynomial subintervals are

modified at most – specifically ΘS−1 and ΘS. Secondly, on-

ly ΘS will be able to change both its boundaries at every

time-step.

There are four types of intervals included in the algorithm:

• sealed intervals – in these intervals it is always true that

Θs = Ξs; sealed intervals are not changed and do not

change their type,

• closed intervals – these intervals do not change, however

Ξs can take into account a smaller interval for integration;

only ΘS−1 can be this type of interval,

• built intervals – also only reserved for ΘS−1; they change

their size by taking into account time nodes after their re-

spective state vector had been obtained,

• the moving interval – this is always ΘS , it changes its size

to N − 1 for the predictor step and N for the corrector

step, where N = min(p + 1, i) with i being the number

of the current time step (where the first time step is filled

with initial values); in the case of this interval it is always

true that ΘS = ΞS .

The algorithm of how the subintervals are arranged in a

single time-step can be presented in a couple of basic actions

as depicted in Fig. 1.

Fig. 1. General scheme of the subinterval dynamics algorithm

An exemplary outline of how the intervals change in the

subsequent time-steps is displayed in Fig. 2. The exemplary

case shown in Fig. 2 is for subsequent successful predictor-

corrector steps (i.e. when ex < emax).

Fig. 2. Subinterval dynamics in the case of p = 3

6. General steps of the method

Generally the proposed method can be summarized by the fol-

lowing list of consecutive procedures executed in each time-

step:

a) the Lagrange polynomial interpolation (3) is performed,

which results in the (4) form and the coefficients bi,k are

obtained,

b) for the polynomials at Θs (s = 1, 2, . . . , S − 1) the ak

coefficients of (6) are obtained,

c) for ΘS the coefficients a′
k and bm,Sk of Eq. (20) are com-

puted,

d) for each interval Ξs the integrations are performed subject

to the analytical formulae given in Sec. 2 (i.e. (15)–(19)),

e) the subinterval dynamics are performed subject to the al-

gorithm given in Sec. 5,

f) the fractional state Eqs. (24) are computed by means of a

reduction to the matrix Eq. (27) through the formula (26),

g) if currently the corrector step is computed then an error

analysis is performed that determines the next step, where

either:

• the time-step is repeated for a changed ∆t (multiplied

by η),

• the next time step is computed with a ∆t changed

according to η).
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7. Examples

This section presents exemplary problems and their numeri-

cal solutions obtained by means of the discussed method. In

Subsec. 7.2 the letter s, unlike in previous chapters, denotes

the complex argument resulting from the Laplace transform.

7.1. AC analysis for circuits with fractional order ele-

ments. For an AC analysis the circuit can be solved by a

traditional approach using complex numbers. The subinterval-

based method will treat the problem in the same way as it

would a transient one and (if working properly) after a suffi-

cient amount of periods – should assume the same result as

the AC solution The above fact is used in this subsection to

check the correctness of the proposed numerical method.

An exemplary circuit that has been considered is presented

in Fig. 3.

Fig. 3. Exemplary electric circuit with fractional order elements and

an AC voltage source

The fractional capacitor voltage and inductor current are

computed. The state equations for the studied circuit are:

[
dαuC

dtα
dβiL

dtβ

]T

= A

[
uC

iL

]
+




1

CR1

0


E(t), (30)

where

A=




−(R1+R2+R3)

CR1(R2+R3)

−R3

C(R2+R3)

R3

L(R2+R3)

− (R3R4+R2(R3+R4))

L(R2+R3)



, (31)

is the system matrix.

For an AC approach Eq. (30) yields:

[
uC

iL

]
=
(
diag

(
ωαej π

2
α,ωβej π

2
β
)
− A

)−1




1

CR1

0


. (32)

The comparison between the transient solution (obtained

with the subinterval-based method) and the AC solution are

presented as time dependent plots in Fig. 4.

Fig. 4. Comparison of the AC analysis result and the transient nu-

merical solution for six periods of the sinusoidal voltage source E(t)

A very good resemblance of the steady-state can be ob-

served in the result. For the subinterval method the polynomial

order p = 4 has been chosen and the designated maximum

error value emax = 0.1%.

7.2. Unit step response of a fractional RLC circuit. In or-

der to observe a comparison with a transient analytical solu-

tion, a simple problem concerning a unit-step voltage source

supplying a series RLC circuit is considered (Fig. 5).

Fig. 5. Exemplary transient problem of an electric circuit supplied

by a unit-step source

When applying the Laplace transform, the current is de-

termined by the equation:

I(s) =
1

s
(
R + sαL + s−α 1

C

) , (33)

while the capacitor voltage in the s-domain is:

UC(s) =
1

s(CRsα + s2αCL + 1)
. (34)

The above s-domain formulae yield respectively the following

analytical results (according to equations given in [15]):

L−1 (I(s)) = i(t) =

=
1

L(λ1 − λ2)
tα (λ1Eα,α+1 (λ1t

α) − λ2Eα,α+1 (λ2t
α))

(35)
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and

L−1 (UC(s)) = uC(t) =

=
1

2LC
√

∆
tα (Eα,α+1 (λ1t

α) − Eα,α+1 (λ2t
α)) ,

(36)

where E is the Mittag-Leffler function. ∆, λ1 and λ2 are the

following auxiliary values:

∆ = − R2

4L2
− 1

LC
, (37)

λ1 = − R2

4L2
+
√

∆, λ2 = − R2

4L2
−
√

∆. (38)

A comparison of the results obtained by the Mittag Leffler

function in (35), (36) and by means of the subinterval-based

method is presented in Fig. 6.

Fig. 6. Comparison of the numerical results for the transient problem

The same parameters for the subinterval-based method

have been used as for the example in Subsec. 6.1. Once more

the result obtained with the proposed method exhibits a very

close similarity to the analytical solution.

8. Summary

A method based on a polynomial approximation and a subin-

terval dynamics algorithm has been presented.

A general advantage of the presented method is the

subinterval dynamics algorithm, which allows to separate the

fractional derivative computations. Additionally, as has been

shown in Sec. 2 – it is possible to derive analytical formulae

for the Caputo fractional derivative for polynomials of arbi-

trary order defined on the subintervals. The adaptive time-

stepping procedure additionally can influence the accuracy of

the result especially in cases when it is difficult to initially

ascertain the variable changes in time.

In order to ascertain the applicability of the subinterval-

based method – a comparison has been performed for the

solutions obtained by this method with those obtained by tra-

ditional methods. This has been done for an AC problem

and one that deals with a transient fractional order circuit

response.

In both cases the solution obtained by the subinterval-

based method closely reflects the referential method, which

proves its proper functioning and its usefulness.
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