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Abstract. In this paper, the effect of magnetic field on thermal convection in couple-stress fluid saturating a porous medium is considered.

By applying linear stability theory and the normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic

thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability

parameter Pl the couple-stress parameter F and the Chandrasekher number Q, satisfy the inequality

R ≤
4π2

Pl

�
1 + 2π

2
F +

PlQ

2ε

�
,

the result clearly establishes the stabilizing character of couple-stress parameter and magnetic field whereas destabilizing character of medium

permeability.
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Nomenclature

F – couple-Stress parameter,

d – depth of fluid layer (m),

Pl – dimensionless medium permeability,

v – filter velocity (m/s),

g – gravitational acceleration (m/s2),

g – gravitational acceleration vector (m/s2),

p – pressure (N/m2),

T – temperature (K),

d – thickness of fluid layer (m),

t – time coordinate (s),

Pr – thermal Prandtl number,

H – magnetic field vector (G),

Qr – magnetic Prandtl number,

h – perturbation in magnetic field,

l, m – wave numbers in x and y directions,

k – wave number of disturbance (1/m).

Greek symbols

β – adverse temperature gradient (K/m),

µc – couple-stress viscosity (kg/m/s),

η – electrical resistivity,

ρ – fluid density (kg/m3),

µ – fluid viscosity (kg/m/s),

ν – kinematic viscosity (m2/s),

µe – magnetic permeability (H/m),

ε – medium porosity,

δ – perturbation in respective physical quantity,

θ – perturbation in temperature,

η – electrical resistivity,

κ – thermal diffusitivity (m2/s),

α – thermal coefficient of expansion (1/K).

1. Introduction

The problem of thermal convection in porous media has at-

tracted considerable interest during the last few decades, be-

cause it has various applications in geophysics, food process-

ing, soil sciences, ground water hydrology and nuclear reac-

tors etc. A detailed account of the thermal instability of a

Newtonian fluid, under varying assumptions of hydrodynam-

ics and hydromagnetics has been given by Chandrasekhar [1].

Lapwood [2] has studied the convective flow in a porous medi-

um using linearized stability theory. The Rayleigh instability

of a thermal boundary layer in flow through a porous medium

has been considered by Wooding [3].

In all the above studies, the fluid is considered to be

Newtonian. Although the problem of thermal convection has

been extensively investigated for Newtonian fluids, relative-

ly little attention has been devoted to this problem with

non-Newtonian fluids. With the growing importance of non-

Newtonian fluids with magnetic field in modern technolo-

gy and industries, the investigations on such fluids are desir-

able. One such type of fluid is couple-stress fluid. The non-

Newtonian behaviour of blood is mainly due to the suspension

of red blood cells in the plasma. When neutrally buoyant cor-

puscles are contained in a fluid and there exists a velocity

gradient due to shearing stress, corpuscles have rotatory mo-

tion. Furthermore, it is observed that corpuscles have spin an-
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gular momentum, in addition to orbital angular mo-mentum.

As a result, the symmetry of stress tensor is lost in the flu-

id motion that is subjected to spin angular momentum. The

fluid that has neutrally buoyant corpuscles, when observed

macroscopically, exhibits non-Newtonian behaviour, and its

constitutive equation is expressed by Stokes [4]. Couple-stress

fluid theory developed by Stokes [4] is one among the polar

fluid theories which considers couple stresses in addition to

the classical Cauchy stress. It is the simplest generalization

of the classical theory of fluids which allows for polar effects

such as the presence of couple stresses and body couples in

the fluid medium. One of the applications of couple-stress

fluid is its use to the study of the mechanism of lubrication

of synovial joints, which has become the object of scientif-

ic research. A human joint is a dynamically loaded bearing

which has articular cartilage as the bearing and synovial flu-

id as lubricant. When fluid film is generated, squeeze film

action is capable of providing considerable protection to the

cartilage surface. The shoulder, knee, hip and ankle joints are

the loaded-bearing synovial joints of human body and these

joints have low-friction coefficient and negligible wear. Nor-

mal synovial fluid is clear or yellowish and is a viscous, non-

Newtonian fluid.

According to the theory of Stokes [4], couple-stresses are

found to appear in noticeable magnitude in fluids. Since the

long chain hylauronic acid molecules are found as additives in

synovial fluid. Walicki and Walicka [5] modeled synovial flu-

id as couple-stress fluid in human joints. Sharma and Thakur

[6] have studied the couple-stress fluid heated from below

in hydromagnetics. The investigation in porous media has

been started with the simple Darcy model and gradually it

was extended to Darcy-Brinkman model. A good account of

convection problems in a porous medium is given by Vafai

and Hadim [7], Ingham and Pop [8] and Nield and Bejan

[9]. Sharma and Rana [10] have studied thermal instability

of a incompressible Walters’ (model B′) elastico-viscous in

the presence of variable gravity field and rotation in porous

medium whereas stability of incompressible Rivlin-Ericksen

elastico-viscous superposed fluids in the presence of uniform

horizontal magnetic field in porous medium studied by Rana

et al. [11]. Recently, Kumar [12] has studied stability of strat-

ified couple-stress dusty fluid in the presence of magnetic

field through porous medium whereas Rana and Sharma [13]

studied the hydromagnetic thermosolutal instability of com-

pressible Walters’ (model B′) rotating fluid permeated with

suspended particles in a porous medium and found that mag-

netic field completely stabilizes the system.

Keeping in mind the importance in various applications

aforementioned, our main aim in the present paper is to study

the effect of magnetic field on thermal convection in couple-

stress elastico-viscous fluid in a porous medium.

2. Mathematical model and perturbation

equations

Here, we consider an infinite, horizontal, incompressible

couple-stress viscoelastic fluid of the depth d, bounded by

the planes z = 0 and z = d in an isotropic and homogeneous

medium of porosity and permeability k1, which is acted upon

by gravity g(0, 0,−g) and the uniform vertical magnetic field

H (0, 0, H) as shown below in the schematic sketch of a phys-

ical situation. This layer is heated from below in such a way

that the steady adverse temperature gradient β =

(∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

)

is maintained (Fig. 1). The character of equilibrium of this

initial static state is determined by supposing that the system

is slightly disturbed and then following its further evolution.

Fig. 1. Schematic sketch of physical situation
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Let v(u, v, w), ρ, ν, µc, µe, p, ε, T, α and H(0, 0, H)
denote respectively, the velocity, density, kinematic viscos-

ity, couple-stress viscosity, magnetic permeability, pressure,

medium porosity, temperature, thermal coefficient of expan-

sion, magnetic field...

The equations expressing the conservation of momentum,

mass, temperature and Maxwell’s equations for couple-stress

fluid in a porous medium (Chandrasekhar [1], Sharma and

Thakur [6], Kumar [12]) are

1

ε

[

∂v

∂t
+

1

ε
(v.∇)v

]

= −
1

ρ0

∇p + g

(

1 +
δρ

ρ0

)

−
1

k1

(

ν −
µc

ρ0

∇2

)

v +
µe

4πρ0

(∇× H) × H,

(1)

∇.v = 0, (2)

E
∂T

∂t
+ (v.∇)T = κ∇2T, (3)

∇.H = 0, (4)

ε
∂H

∂t
= ∇× (v × H) + εη∇2H, (5)

where E = ε + (1 − ε)

(

ρscs

ρ0cf

)

, which is constant, κ is the

thermal diffusivity, η is the electrical resistivity, ρs, cs; ρ0, cf

denote the density and heat capacity of solid (porous) matrix

and fluid, respectively.

The equation of state is

ρ = ρ0 [1 − α (T − T0)] , (6)

where the suffix zero refers to values at the reference level

z = 0.

The initial state of the system is taken to be quiescent lay-

er (no settling) with a uniform particle distribution number.

The initial state is

v = (0, 0, 0) , T = −βz + T0,

ρ = ρ0 (1 + αβz) .
(7)

is an exact solution to the governing equations.

Let v(u, v, w), h(hx, hy, hz)θ, δp and δρ denote, respec-

tively, the perturbations in fluid velocity v(0, 0, 0), magnetic

field H(0, 0, H), temperature T, pressure p and density ρ.

The change in density δρ caused by perturbation θ in tem-

perature is given by

δρ = −αρ0θ.. (8)

The linearized perturbation equations governing the motion

of fluid are

1

ε

∂v

∂t
= −

1

ρ0

∇δp − gαθ −
1

k1

(

ν −
µc

ρ0

∇2

)

v

+
µe

4πρ0

(∇× h) × H,

(9)

∇.v = 0, (10)

E
∂θ

∂t
= βw + κ∇2θ, (11)

∇.h = 0, (12)

ε
∂h

∂t
= ∇× (v × H) + εη∇2h. (13)

3. Normal mode analysis

Following the normal mode analyses, we assume that the per-

turbation quantities have x, y and t dependence of the form

[w, θ, γ] = [W (z), Θ(z), K(z)] exp (ilx + imy + nt) , (14)

where l and m are the wave numbers in the x and y directions,

k =
(

l2 + m2
)1/2

is the resultant wave number and n is the

frequency of the harmonic disturbance, which is, in general,

a complex constant.

Using expression (14) in Eqs. (9), (11) and (13) the fol-

lowing is obtained

n

ε

(

d2

dz2
− k2

)

W = −
1

k1

(

ν −
µc

ρ0

∇2

) (

d2

dz2
− k2

)

W

− gk2αθ +
µeH

4πρ0

d

dz

(

d2

dz2
− k2

)

K,

(15)

εnK = H
dW

dz
+ εη

(

d2

dz2
− k2

)

K, (16)

E
∂Θ

∂t
= βW + κ

(

d2

dz2
− k2

)

Θ. (17)

Equations (15) and (17) in non-dimensional form, become
[

σ

ε
+

1 − F
(

D2 − a2
)

Pl

]

(

D2 − a2
)

W

= −
gαa2d2Θ

ν
+

µeHd

4πνρ0

(

D2 − a2
)

DK,

(18)

(

D2 − a2 − Qrσ
)

K = −

(

Hd

εη

)

DW, (19)

(

D2 − a2 − EPrσ
)

Θ = −
βd2

κ′
W, (20)

where we have put a = kd, σ =
nd2

ν
and Pl =

k1

d2
, is the

dimensionless medium permeability, Pr =
ν

κ
, is the thermal

Prandtl number, Qr =
ν

η
, is the magnetic Prandtl number,

F =
µc

µd2
, is the couple-stress parameter and D′ = d

d

dz
=

dD and dropping ‘dash’ for convenience.

Substituting W = W ′, K =

(

Hd

εη

)

K ′ and Θ =
βd2

κ
Θ′

in Eqs. (18)–(20) and dropping ‘dash’ for convenience, we

obtain
[

σ

ε
+

1 − F
(

D2 − a2
)

Pl

]

(

D2 − a2
)

W

= −Ra2Θ +
Q

ε

(

D2 − a2
)

DK,

(21)

(

D2 − a2 − Qrσ
)

K = −DW, (22)

(

D2 − a2 − EPrσ
)

Θ = −W, (23)

Bull. Pol. Ac.: Tech. 62(2) 2014 359



Gian C. Rana

where R =
gαβd4

νκ
, is the thermal Rayleigh number and

Q =
µeH

2d2

4πνρ0η
, is the Chandrasekhar number.

Here we assume that the temperature at the boundaries is

kept fixed, the fluid layer is confined between two boundaries

and adjoining medium is electrically non-conducting. The

boundary conditions appropriate to the problem are (Chan-

drasekhar, [1])

W = D2W = Θ = 0 at z = 0 and 1 (24)

and the components of h are continuous. Since the compo-

nents of the magnetic field are continuous and the tangential

components are zero outside the fluid, we have

DK = 0, (25)

on the boundaries.

Then, we prove the following theorem:

Theorem. If R > 0, F > 0, Q > 0 and σ = 0, then the

necessary condition for the existence of non-trivial solution

(W, K, Θ) of Eqs. (21)–(23) together with the boundary con-

ditions (24) and (25) is that

R ≤
4π2

Pl

(

1 + 2π2F +
PlQ

2ε

)

.

Proof. If the instability sets in stationary convection and ‘prin-

ciple of exchange of stability’ is valid, the neutral or marginal

state will be characterized by σ = 0. Thus the relevant gov-

erning Eqs. (21)–(23) reduces to
[

1 − F
(

D2 − a2
)

Pl

]

(

D2 − a2
)

W

= −Ra2Θ +
Q

ε

(

D2 − a2
)

DK,

(26)

(

D2 − a2
)

K = −DW, (27)

(

D2 − a2
)

Θ = −W, (28)

together with the boundary conditions (24) and (25).

Multiplying Eq. (26) by W ∗ (the complex conjugate of

W ) throughout and integrating the resulting equation over the

vertical range of z, we get

1

Pl

1
∫

0

W ∗
(

D2 − a2
)

Wdz

−
F

Pl

1
∫

0

W ∗
(

D2 − a2
)2

Wdz

= −Ra2

∫

1

0

W ∗Θdz +
Q

ε

1
∫

0

W ∗
(

D2 − a2
)

DKdz.

(29)

Taking complex conjugate on both sides of Eq. (28), we get
(

D2 − a2
)

Θ∗ = −W ∗. (30)

Therefore,

1
∫

0

W ∗Θdz = −

∫ 1

0

Θ
(

D2 − a2
)

Θ∗dz. (31)

Now, taking complex conjugate on both sides of Eq. (27), we

get
(

D2 − a2
)

K∗ = −DW ∗. (32)

Therefore,

1
∫

0

W ∗
(

D2 − a2
)

DKdz

= −

1
∫

0

DW ∗
(

D2 − a2
)

Kdz.

(33)

Using Eqs. (31) and (33) in the right hand side of Eq. (29),

we obtain

1

Pl

1
∫

0

W ∗
(

D2 − a2
)

Wdz

−
F

Pl

1
∫

0

W ∗
(

D2 − a2
)2

Wdz

= Ra2

1
∫

0

Θ∗
(

D2 − a2
)

Θdz

−
Q

ε

1
∫

0

DW ∗
(

D2 − a2
)

Kdz.

(34)

Integrating term by term on both sides of Eq. (34) for an

appropriate number of times by making use of boundary con-

ditions (24) and (25), we obtain

1

Pl

1
∫

0

(

|DW |
2

+ a2 |W |
2

)

dz

+
F

Pl

1
∫

0

(

∣

∣D2W
∣

∣

2

+ 2a2 |DW |2 + a4 |W |2
)

dz

=
Ra2

B

1
∫

0

(

|DΘ|2 + a2 |Θ|2
)

dz +
Q

ε

1
∫

0

(

|DW |2
)

dz.

(35)

Since W , K and θ satisfy W (0) = 0 = W (1), θ(0) = 0 =
θ(1), K(0) = 0 = K(1), we have by Rayleigh-Ritz inequali-

ties
1

∫

0

|DW |2 dz ≥ π2

1
∫

0

|W |2dz, (36)

1
∫

0

|DΘ|
2
dz ≥ π2

1
∫

0

|Θ|
2
dz (37)
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and

1
∫

0

∣

∣D2W
∣

∣

2

dz ≥ π4

1
∫

0

|W |
2
dz. (38)

Further, multiplying Eq. (28) by θ∗ (the complex conjugate of

θ), integrating by parts each term of resulting equation on the

right hand side for an appropriate boundary condition, namely

Θ(0) = 0 = Θ(1), it follows that

1
∫

0

(

|DΘ|
2

+ a2 |Θ|
2

)

dz

= Real part of





1
∫

0

Θ∗Wdz





≤

∣

∣

∣

∣

∣

∣

1
∫

0

Θ∗Wdz

∣

∣

∣

∣

∣

∣

,

≤

1
∫

0

|Θ∗W | dz,

≤

1
∫

0

|Θ∗| |W |dz,

≤

1
∫

0

|Θ| |W |dz,

≤





1
∫

0

|Θ|
2
dz





1/2 



1
∫

0

|W |
2
dz





1/2

(by using Cauchy-Schwartz inequality).

(39)

Thus, inequalities (39) can be written as

(

π2 + a2
)





1
∫

0

|Θ|
2
dz





1/2

≤





1
∫

0

|W |
2
dz





1/2

. (40)

Combining inequalities (36) and (37), we obtain

1
∫

0

(

|DΘ|
2

+ a2 |Θ|
2

)

dz ≤
B

π2 + a2

1
∫

0

|W |
2
dz. (41)

Thus, if R > 0, F > 0, Q > 0, using the inequalities (36),

(38) and (41), Eq. (35) becomes

[

1

Pl

(

π2 + a2
)

+
F

Pl

(

π2 + a2
)2

−
Ra2

(π2 + a2)
+

Q

ε
π2

]

·

1
∫

0

|W |
2
dz < 0.

(42)

Therefore, we must have

R >

(

π2 + a2
)2

Pla2

[

1 + F
(

π2 + a2
)

+
QPlπ

2

ε (π2 + a2)

]

·

1
∫

0

|W |2 dz < 0.

Since the minimum value of
π2

(

π2 + a2
)

a2
is 4π4 at a2 =

π2 > 0, hence, we necessarily have

R >
4π2

Pl

(

1 + 2π2F +
PlQ

2ε

)

, (43)

which completes the proof of the theorem.

From physical point of view, the above theorem states

that the onset of instability at marginal state in a couple-

stress fluid heated from below in hydromagnetics saturating

a porous medium cannot manifest as stationary convection, if

the thermal Rayleigh number R, the couple-stress parameter

F , medium permeability and the Chandrasekhar number Q,

satisfy the inequality

R ≤
4π2

Pl

(

1 + 2π2F +
PlQ

2ε

)

. (44)

4. Conclusions

The effect of magnetic field on thermal convection in couple-

stress fluid in a porous medium has been investigated. From

the above theorem, the main conclusions are as follows:

(i) The necessary condition for the onset of instability as sta-

tionary convection for couple-stress elastico-viscous fluid

is

R >
4π2

Pl

(

1 + 2π2F +
PlQ

2ε

)

.

(ii) The sufficient condition for non-existence of stationary

convection at a marginal state is

R ≤
4π2

Pl

(

1 + 2π2F +
PlQ

2ε

)

.

(iii) In the inequality (43), the thermal Rayleigh number

R > 0, is directly proportional to the couple-stress pa-

rameter F . Thus, couple-stress parameter has stabilizing

effect on the system which is identical with the results

derived by Sharma and Thakur [6] and Kumar [12].

(iv) In the inequality (43), the thermal Rayleigh number

R > 0, is directly proportional to the Chandrasekhar

number Q, which mathematically established the stabi-

lizing effect of magnetic field on the system as derived

by Sharma and Thakur [6], Kumar [12] and Rana and

Sharma [13].

(v) The medium permeability has a destabilizing effect on

the system as can be seen from inequality (43), which is

an agreement with the earlier work of Sharma and Thakur

[6], Rana et al. [11], Kumar [12] and Rana and Sharma

[13].
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