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Abstract. The possibility of the embedded automatic-control system construction for a self-adjusted regulator design on the basis of dynamic

compensation principle is observed. The description of mathematical and algorithmic apparatus of Control Object identification in a digital

form resulted in a design of the regulator. Results of natural experiments are given. An analysis of the regulator robustness properties is

carried out.
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1. Introduction

Design of Automatic Control System regulators is one of key

problems in control theory. As a rule, initial data for the design

solution are the mathematical description of Control Object

and some demands of the designed system functioning. These

demands are generally made only with respect to one or two

indices of goodness of system’s functioning. The regulator

design on such initial data is observed in [1–6]. Widespread

engineering methods of regulators design are reduced to ap-

proximation of the design equation, but not to its exact im-

plementation. Approximation is aimed at simplification of the

regulator structure. It leads to accuracy decrease and some-

times to the solution of impossibility. In addition, it is nec-

essary to develop algorithms and methods of design equation

approximation, therefore, the problem considerably becomes

complicated.

Development of approaches applicable for the embedded

control systems construction is one of the modern Control

Theory actual problems. The reason is growing demand of the

object control quality and, simultaneously, to maintenance of

their autonomy. However, the basic trouble of the application

embedded control systems is their computing resources limi-

tation. In this connection there is a necessity of the machine-

oriented approaches [7, 8]. Undoubtedly, approaches based on

digital forms of the systems representation are more prefer-

able. In this connection the approach on the basis of the dis-

crete real Laplace transform is well represented [9].

In this work the Real Interpolation Method allowing to

work with system models not only in a continuous form of-

fered in [9] but also in a digital form [3], is used as the base of

the embedded system software. Implementation of automatic

tuning regulator algorithms of the embedded control system

and its experimental researches with a direct-current motor as

Control Object are observed.

2. Statement of problem

Assume that Control Object is one-dimensional as shown in

Fig. 1.

Fig. 1. Model of Control Object

In Fig. 1 the following designations are accepted: x –

input (test) discrete signal, y – discrete response of Control

Object to input discrete affecting, Wo(z) – the Control Object

discrete transfer function.

The control system can be presented as the block diagram

shown in Fig. 2.

Fig. 2. One-loop automatic control system

In Fig. 2 the following designations are accepted: Wo(s),
Wp(s) – continuous Transfer Functions of Control Object and

Regulator accordingly; x and y – input and output signals; ε

– error signal; u – control signal.

The problem of the self-adjusted regulator’s design con-

sists in:
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1. Definition of the mathematical model of Control Object.

2. Requirements to control system elicitation.

3. The regulator design on the basis of Control Object model

and requirements to a system.

3. Real Discrete Transformation

Real Discrete Transformation is generalization of Real Inte-

grated Transformation [3] on lattice functions f(nT0), where

f(t) is the transformable time function, T0 – sampling period,

n = 1, 2, . . ..

The real image-function F ∗(δ) of original-function

f(kT0) is defined by the formula of direct transformation

F ∗(δ) =

∞∑

k=0

f(nT0)e
−δkT0 , δ ∈ [cδ, ∞) , cδ ≥ 0. (1)

A value of the parameter cδ is chosen according to a con-

dition of convergence of series. In practice the following trans-

formation is more convenient to use than the formula (1):

F (v) =

∞∑

k=0

f(kT0)v
−k, ν ∈ [cv,∞). (2)

Expression (1) is converted to expression (2) by substi-

tution ν = exp(δT0). Besides, it is necessary to provide the

convergence of series, that is to impose restriction on the low-

er bound of the variable ν change: cν ≥ 1.

Formulas (1) and (2) can be considered as special cases

of the discrete Laplace transform and z-transformation ac-

cordingly. It allows to use correspondence tables of originals

and their Laplace-images F ∗(p) and z-images handling real

images F ∗(δ) and F (ν) to find images F ∗(δ) and F (ν) on

functions F ∗(p) and F (z) by formal substitutions p → δ or

z → ν, and to solve other certain problems.

For representation of real images in computing systems

the models in the form of Numerical Characteristics are

involved. In case of the use of the F (ν) function, a set

{F (νi)}η = {F (ν1); F (ν2); . . .; F (νη)}, defined by values

of function F (ν) on a grid c ≤ ν1 < ν2 < . . . < νη , is

a Numerical Characteristic. This Characteristic formation is

usually carried out within the limits of an analytical grid,

therefore, a definition of Interpolation Points νi is reduced to

the definition of values of the first and last knots ν1 and νη .

Others Interpolation Points can be defined due to a condition

of their uniform distribution

νi = ν1 +
νη − ν1

η − 1
(i − 1), i = 2, η − 1. (3)

In the general case it is preferable to accept the value of

the first Interpolation Point equal to unit (for stable systems).

There are two reasons for this purpose, at least. Firstly, for

the accepted class of systems at ν1 = 1 convergence of series

in (2) remains. Secondly, such option ν1 provides an equation

formation. For definition of a value of the last point νη it is

recommended to take advantage of the design formula [3]

(0.1...0.2) [F (ν1) − F (∞)] + F (∞) = F (νη) . (4)

The resulted data allow finding elements of the Numerical

Characteristic {F (νi)}η on the set in the analytic form (2)

F (νi) =

∞∑

k=0

f(kT0)ν
k
i , i = 1, 2, ..., η. (5)

Using Numerical Characteristics it is necessary to solve

not only a direct problem – formation of these Characteristics,

but also an inverse problem – obtaining the fractional-rational

expression F (ν) under Numerical Characteristics. For the in-

verse problem solution the equations system is formed

F (νi) =
bmνm

i + bm−1ν
m−1

i + ... + b1νi + b0

anνn
i + an−1ν

n−1

i + ... + a1νi + 1
,

i = 1, η,

(6)

here the number of the equations η, defined by dimension

of Numerical Characteristic, should be equal to a number of

unknown factors: η = m + n + 1.

Real Discrete Transformation and real images have prop-

erties creating some advantages in problems of the automatic

control systems calculation. The most significant merits are

the following:

• transfer to the real form is carried out much easier in com-

parison, for example, with the frequency approach;

• there is a simple interconnection between real images and

z-forms;

• mathematical models in the form of real functions and Nu-

merical Characteristics are oriented at application of nu-

merical methods;

• Numerical Characteristics reception is possible both on real

functions-images and with their originals.

Besides, it is necessary to note that Control Object iden-

tification in a digital form has a number of advantages in

relation to continuous models. Firstly, in embedded micro-

processor systems the characteristic received from the Con-

trol Object is discrete. Secondly, numerical calculation of an

identification procedure becomes simpler.

4. Control Object’s parametric identification

Let the Control Object output signal characteristic y(kT0) for

the input signal x(kT0) be set. The form of the Control Object

model is

Wo(z) =
bmzm + bm−1z

m−1 + ... + b1z + b0

anzn + an−1zn−1 + ... + a1z + 1
,

m ≤ n,

(7)

parameters m and n are known. It is required to find factors

bm, . . ., b0, an, . . ., a1, which provide performance of the set

criterion of function yM (kT 0) = Wo(z) · x(kT 0) approach

to initial function y(kT 0). For this purpose the estimation

∆y = max
|yM (kT0) − y (kT0)|

y∞
(8)

is used, where y∞ is a steady-state value of characteristic

y(kT0).
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It is important to find the solution which satisfies the con-

dition

∆y → min . (9)

For the solution of the problem the expression (7) is rep-

resented in the real-valued form

Wo(ν) =
bmνm + bm−1ν

m−1 + ... + b1ν + b0

anνn + an−1νn−1 + ... + a1ν + 1
,

m ≤ n.

(10)

It is necessary to obtain values of factors in expression

(10). Preliminary, it is necessary to define dimensions of Nu-

merical Characteristics quantity η and values of Interpolation

Points νi, i = 1, 2, . . ., η. For definition of dimensions of a

quantity η the design formula is used: η = m+n+1. In case

if stable Control Object is observed, it is possible to accept

ν ∈ [1, ∞) and to define value of the first Interpolation Point

as ν1 = 1 [3]. Interpolation Point νη is evaluated according

to expression (4) and values of the others Points are defined

by formula (3).

Calculation of elements Wo(νi) is a final operation. The

design formula results from expression (2) and it has a form of

Wo(νi) =

∞∑
k=0

y (kT0) ν−k
i

∞∑
k=0

x (kT0) ν−k
i

∼=

N∑
k=0

y (kT0) ν−k
i

N∑
k=0

x (kT0) ν−k
i

,

νi = 1, η.

(11)

Here a parameter N defines a time of the transient process

termination.

Then, it is necessary to find transfer function factors under

the Numerical Characteristic {Wo(νi)}. This problem is re-

duced to the solution of the linear algebraic equations system.

System of the equations has a form of

Wo(νi) =
bmνm

i + bm−1ν
m−1

i + ... + b1νi + b0

anνn
i + an−1ν

n−1

i + ... + a1νi + 1
,

i = 1, 2, ..., η = m + n + 1.

(12)

Existence and uniqueness of the equations system solu-

tion are ensured by the choice of Points νi and the expression

form (10).

The factors of the Transfer Function (10) obtained as a

result of the solution are at the same time factors of z-form

Wo(z). It allows to generate Transfer Function Wo(z) and to

find reaction of the Control Object model yM (kT0) on input

signal x(kT0). It is possible to assume that it will not precisely

coincide with the initial characteristic y(kT0).

The parametric identification problem solution comes to

the end with check of the solution accuracy via estimation (8).

If the error is intolerably large, it can be reduced by a dis-

placement of the Point νη , which in turn defines proportional

changes of other Interpolation Points.

5. Structure-parametrical identification

The structure-parametric identification problem is to find a

structure and parameters of Control Object’s discrete Transfer

Function in a fractional-rational form

Wo(z) =
bmzm + bm−1z

m−1 + ... + b1z + b0

anzn + an−1zn−1 + ... + a1z + a0

=

m∑
i=0

biz
i

n∑
i=0

aizi

.

(13)

Assume that degree of polynomials is equal in a numera-

tor and a denominator. This assumption allows to reduce the

computation cost.

The problem of structure-parametric identification is as

follows: for Object model in form of

Wo(z) =
bmzm + bm−1z

m−1 + ... + b1z + b0

amzm + am−1zm−1 + ... + a1z + 1
(14)

it is required to find parameter m and factors bm, . . ., b0,

am, . . ., a1, providing performance of the function yM (kT 0)
set approach criterion to initial function y(kT 0). The estima-

tion (8) is an indicator of identification success.

The first identification stage is based on simple search of

model structures, i.e. m = 1, 2, . . ., M , where M is the maxi-

mum observed order of model. Then, parametric identification

is made for each value m. If there is the best solution the ob-

tained model is checked on stability. If the model is stable the

solution is remembered. Stability of the model is estimated

on an arrangement of the characteristic equation roots on the

complex plane. The result of identification is that model of

stable Object for which the condition (9) is satisfied.

6. Regulator design

For the stationary systems the design problem can be divided

into two stages [1]:

• The choice of a standard transfer function of the system

satisfying technical requirements.

• The definition of the control system elements parameters

on the basis of a closeness condition between standard and

real transfer functions.

The regulator design problem is solved in the field of

continuous transfer functions and it consists in an automatic

definition of the embedded control system regulator transfer

function Wp(s).
For the system shown in Fig. 2 the problem consists in

formulation and the solution of the design equation

Wd(s) ∼=
Wp(s)Wo(s)

1 + Wp(s)Wo(s)
, (15)

here Wd(s) is the desired transfer function of a closed loop

control system. The equation is generated on the basis of

equality between the desired transfer function and the de-

signed system model.
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For the solution it is necessary to have the Control Object

transfer function Wo(s) and the close loop systems desired

transfer function Wd(s). The first function is known or can

be found on the base of Control Object information. The sec-

ond transfer function should be defined on the basis of the

technical requirements.

Thus, in formula (15) transfer functions Wd(s) and Wo(s)
are known, therefore, calculation of operator Wp(s) which is

reduced to definition of regulator structure and numerical val-

ues of its parameters, is possible:

Wp(s) =
Wd(s)

Wo(s)(1 − Wd(s))
. (16)

In the paper, an observed approach is applied to full neu-

tralization of Control Object dynamic characteristics impact

on the operator of the closed system. It is based on a principle

of dynamic compensation [1, 5]. The principle is not wide-

spread because of computational troubles for an automatic

control system with a complex structure. However, rapid de-

velopment of electronics and microprocessor techniques has

allowed to remove the computing restrictions at implementa-

tion of complex control algorithms also based on a princi-

ple of dynamic compensation. Algorithms of desired transfer

functions, applied in an embedded control system, are based

on the Konovalov-Orurk method [11].

7. Results of experiments

System functional diagram is shown in Fig. 3.

Fig. 3. System functional diagram

The following designations are accepted here: M is a di-

rect current motor (Control Object); TG – tachogenerator (ve-

locity sensor); USART – the interface of communication of

the microcontroller and the computer ; DIR – signal defin-

ing a direction of engine drive shaft; PDM – pulse-duration

modulation (the operating signal setting speed of rotation).

Regulator device is the controller STM32F103 [10], Dynamo

Sliven PIVT6-25/3A with the built-in tachogenerator is used

as a motor and microcircuit chip Pololu High-Power Motor

Driver 18v15 is used as a motor driver.

On the basis of aforementioned algorithms the software

realized on computing platform STM32F103 is developed.

The procedure of the Automatic Control System regulator

design consists in the following:

1. The test signal is given by the Control Object.

2. Arrays of input and output values of Control Object are

formed.

3. Structure-parametrical identification of Control Object is

realized on the basis of the gained files with help of the

Real Interpolation Method in the discrete transfer function

form.

4. On the basis of the bilinear transformation the transfer from

discrete Object model to its continuous model is performed.

5. Desired transfer function of the system is formed with help

of the Konovalov-Orurk method on the basis of the given

quality rating.

6. Regulator structure and regulator parameters are defined

on the basis of expression (16).

At the moment the device starts the test step signal with

level equal to 50% of maximum (PDM duty factor is 50%,

and motor armature voltage average value is 15V) is formed.

The device remembers an output speed values array generated

as a result of the test signal supply. On the basis of the ob-

tained input and output data arrays and algorithm of structure-

parametric identification the mathematical description of the

Object is formed.

As a result of an input’s test step signal the system’s re-

sponse (see Fig. 4, curve Object) is obtained. Considering a

monotonous character of the response signal, assume that it

is possible to describe an object’s model as the first order

transfer function.

In consequence of the Real Interpolation Method identi-

fication procedure the following model of Control Object is

obtained

Wo1(s) =
5.054 · 10−2

2.773 · 10−2s + 1
.

Step responses of Control Object and its model are shown

in Fig. 4.

Fig. 4. Step responses of Control Object and its model
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Table 1

Requirements to systems

No tc, c σ, % Desired transfer function Regulator’s transfer functions

1 0.2 0
6.67 · 10−2

s + 1

4.44 · 10−3s2 + 1.33 · 10−1s + 1

1.85 · 10−3
s
2 + 9.44 · 10−2

s + 1

2.25 · 10−4s2 + 3.37 · 10−3s

2 0.2 20
1.38 · 10−2

s + 1

9.24 · 10−4s2 + 2.77 · 10−2s + 1

3.84 · 10−4
s
2 + 4.16 · 10−2

s + 1

4.67 · 10−5s2 + 7.01 · 10−4s

3 4.0 0
1.33s + 1

1.78s2 + 2.67s + 1

8.28 · 10−2
s
3 + 1.57s

2 + 2.46s + 1

7.68 · 10−3s3 + 9.69 · 10−2s2 + 6.84 · 10−2s

4 4.0 20
2.77 · 10−1

s + 1

3.70 · 10−1s2 + 5.54 · 10−1s + 1

1.72 · 10−2
s
3 + 3.75 · 10−1

s
2 + 1.41s + 1

1.60 · 10−3s3 + 2.01 · 10−2s2 + 1.42 · 10−2s

here tc – desired control time; σ – desired overshoot.

Here the identification error according to the set criterion

is equal to 8.04% and normal control time is 0.081 sec.

The next step is formation of a desirable model of the de-

signed system by direct quality rating (control time and over-

shoot). In Table 1 two sets of requirements to the system are

given. Desirable transfer functions of systems and regulators

are calculated on their base.

Then transfer from a regulator continuous model to a dis-

crete model on the basis of the bilinear transformation is car-

ried out. It is caused by specificity of the microcontroller’s

functioning. Therefore, formation of a control signal of the

microcontroller is realized by the discrete regulator.

Reactions of systems’ models No 1 and No 2 on step af-

fecting are shown in Figs. 5 and 6.

Fig. 5. Step response of System No 1

Fig. 6. Step response of System No 2

Graphs show that used algorithms of initial autotuning

on the basis of the dynamic compensation method give

satisfactory results for the Control Object. The designed

regulator can provide not only the stability of the sys-

tem, but also the satisfactory quality rating of the transient

process.

However, there is possibility to create the system, which

does not possess robustness property at regulator design

process besides of regulator’s complex structure. Experiments

with the designed control system are made to estimate such

properties. For change of Control Object parameters the vari-

able load (metal disks) on the motor shaft is used. Moment

of inertia of one disk makes 0.458 · 10−3 kg·m2. For robust-

ness properties estimation the identification experiment was

performed for “nominally loaded” object, where the total mo-

ment of inertia makes 2.068 · 10−3 kg·m2. As a result of

the identification the following model of the Object is ob-

tained:

Wo2(s) =
4.321 · 10−3s + 5.126 · 10−2

6.206 · 10−2s2 + 1.130s + 1
.

The results of identification are shown in Fig. 7.

Here the identification error by the set criterion (9) is

equal to 2.44% and estimated control time is 3.431 sec.

For the robustness analysis of the realized embedded con-

trol system 2 sets of requirements to a system presented in

the table (systems’ models ą3 and ą4) are set within the ex-

periment. On the basis of these demands desirable systems’

Transfer Functions are generated and regulators are calculat-

ed. Then, the reaction of a system to a step signal is given

to the calculated regulator. These steps are carried out au-

tomatically at each start of a system in the controller that

leads to realization of a complete system’s self-adjustment

procedure. Further, the moment of inertia on the motor shaft

is increased and decreased for 44% concerning “nominally

loaded” Object’s moment of inertia and the system transient

response is obtained. Responses of systems’ models No 3 and

No 4 (see Table 1) to step excitation are shown in Figs. 8

and 9.
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Fig. 7. Results of the “nominally loaded” Object’s identification

Fig. 8. Results of the designed regulator of system’s model No 3 work

Fig. 9. Results of the designed regulator of system’s model No 4 work

The analysis of schedules (Figs. 8 and 9) has shown that

the developed system and the underlying algorithms are capa-

ble of solving not only the problem of systems’ initial auto-

tuning, but also the control problem of Objects with variable

parameters.

The developed embedded control system with function of

the initial autotuning implementing the dynamic compensa-

tion principle can be successfully applied to the wide class of

technical systems control.

8. Conclusions

As a result of a series of natural experiments with the control

system, where the direct-current motor is the Control Object,

it is possible to conclude that the regulator realized on the

basis of the microcontroller, is able to solve successfully a

problem of dynamic properties stabilization in systems with

constant and variable parameters of Control Objects. These

parameters can vary in a wide range of values (±44% of

nominal).
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