
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 62, No. 2, 2014
DOI: 10.2478/bpasts-2014-0032

VARIA

Formal model of time point-based sequential data

for OLAP-like analysis

B. BĘBEL∗, T. MORZY, Z. KRÓLIKOWSKI, and R. WREMBEL

Institute of Computing Science, Poznan University of Technology, 3a Piotrowo St., 90-965 Poznań, Poland

Abstract. Numerous nowadays applications generate huge sets of data, whose natural feature is order, e.g,. sensor installations, RFID devices,
workflow systems, Website monitors, health care applications. By analyzing the data and their order dependencies one can acquire new
knowledge. However, nowadays commercial BI technologies and research prototypes allow to analyze mostly set oriented data, neglecting
their order (sequential) dependencies. Few approaches to analyzing data of sequential nature have been proposed so far and all of them lack
a comprehensive data model being able to represent and analyze sequential dependencies. In this paper, we propose a formal model for
time point-based sequential data. The main elements of this model include an event and a sequence of events. Measures are associated with
events and sequences. Measures are analyzed in the context set up by dimensions in an OLAP-like manner by means of the set of operations.
The operations in our model are categorized as: operations on sequences, on dimensions, general operations, and analytical functions.

Key words: OLAP, sequential data, sequential OLAP, formal model.

1. Introduction

On-line transaction processing systems (OLTP), sometimes
called production data sources, generate data that are further
analyzed by business intelligence (BI) systems [1] for the pur-
pose of decision support. A typical BI system architecture
is based on a central database that stores consolidated data
from multiple OLTP systems. This central database is called
a data warehouse (DW). Data in the DW are analyzed by
means of the so-called on-line analytical processing applica-
tions (OLAP). DW data are organized into the so-called facts
and dimensions. Facts represent data being analyzed, whereas
dimensions set up a context for an analysis. Facts have features
called measures, typically numerical, that quantify the facts.

Various DW architectures are available nowadays. In the
typical ones, a DW is located on a secondary storage (e.g.,
Oracle11g, SybaseIQ, IBM DB2, and SQL Server). For in-
creasing the performance of data analysis, main-memory (in-
memory) DWs can be applied, where all the analyzed data
reside in main memory (e.g., Targit X-bone Server, Oracle
Exadata, SAP Hana, and IBM Netezza).

Nowadays, analytical needs extend beyond traditional da-
ta analysis (character strings, dates, and numbers). A pletho-
ra of devices and applications generate streams of data by
means of RFID devices and sensors (e.g., good transporta-
tion monitoring, public transportation infrastructures, intelli-
gent buildings, crude refineries, gas delivery pipelines, remote
media consumption measurement). Such data form a stream
whose an inherent feature is ordering, typically by time. Other
types of applications that generate ordered data include for ex-
ample stock exchange quotations, workflow management sys-
tems, web server logs with clickstream, and patient treatment
records.

RFID technology is becoming widely used in supply chain
management (e.g., just-in-time delivery) as well as in optimiz-
ing product transportation routes. RFID devices generate se-
quences of records identifying their current position and thus,
allowing to be monitored on-line [2]. Some route changes
may be then made on-line. In advanced public transportation
infrastructures, e.g., Washington, Hong Kong [3–6] passen-
gers use intelligent cards. Travels are automatically detected
by various devices, generating tracking records. These records
are next used for billing the passengers. They can also be used
for analyzing the most frequently used routes and, thus, for
discovering route bottlenecks, station bottlenecks, and rush
hours in various districts. In intelligent installations, numer-
ous sensors supply their data [7–10]. Based on the chrono-
logically analyzed sensor data, one can discover fluctuation of
a temperature within a given time period, discover idle time
periods (e.g., heating in an intelligent building) or discover
unnecessary power consumption (e.g., lights turned on). In
workflow systems, objects arrive to a given task at certain
points of time, they are processed there for a certain peri-
od of time, and leave the task for another task. The order of
object movement in a workflow is important and it is part
of the definition of the workflow. Thus, being able to ana-
lyze the workflow log data and explore orders between ob-
jects processing is an important requirement. For example,
one may be interested in finding the average time an object
spends in the path which connects two tasks (e.g., from task
t1 to task t5). In Web log analysis, especially for e-commerce,
an analysts may be interested in knowing the navigation path
where a user (a potential buyer) spends the most of his/her
time. The process of disease curing has also sequential nature
represented by drug application, treatment, and the results of
a therapy. Doctors may be interested in analyzing blood pa-

∗e-mail: Bartosz.Bebel@put.poznan.pl

331

B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel

rameters [11] and correlate them with a chronological order
of drug application.

Some of the data generated by the aforementioned appli-
cations and systems have the character of events that last an
instant - a chronon [12], whereas some of them last for a giv-
en time period - an interval, but for all of them the order they
were generated in is important. With this regard, sequential
data can be categorized either as time-point based or interval

based ones [13].
The data streamed into an analysis engine can be

processed by means of traditional OLAP applications, howev-
er, by exploiting the sequential (ordering) nature of the data an
analyst could mine a valuable additional knowledge. Unfortu-
nately, traditional commercial and research BI architectures,
although very advanced ones, allow to analyze set oriented
data, but they are not capable of exploiting the existing order
among the data. The research and technological advancements
in the area of sequential data analysis have just been launched.
Some extensions to traditional OLAP functionality have been
proposed in the research literature, commonly known as Se-
quential OLAP (S-OLAP) [6, 14, 15].

The advancements, e.g., [6, 14–17] focus on analyzing
time-point based sequential data. Conversely, [2,18] focus on
interval based sequential data but only from a storage point
of view. Unfortunately, all of them lack a comprehensive da-
ta model being able to represent and analyze sequential de-
pendencies. With this respect, there is an evident need for
developing a formal model and a query language capable of
analyzing such data.

Paper contribution. In this paper we focus on time-point
based sequential data and we substantially extend our ini-
tial proposal of a data model for analyzing sequential data,
presented in [19]. The data model that we contribute in this
paper is based on the notion of an event and a sequence of
events. Similarly as in the traditional OLAP, measures (asso-
ciated with events and sequences) are analyzed in the context

of dimensions by means of operations. The operations in our
model are categorized as: operations on sequences, on dimen-
sions, general operations, and analytical functions. Unlike the
traditional OLAP, sequences are the elements that need to be
created on demand from events. The same set of events may
form various sequence sets, depending on an analysis. More-
over, measures that are associated with sequences need to be
defined on demand as well. These features make processing
sequential data challenging.

The rest of this paper is organized as follows. Section 2 de-
fines a leading example used throughout the paper. Section 3
contributes the formal model of time point-based sequential
OLAP. Section 4 outlines approaches related to storing and
processing sequential data. Finally, Sec. 5 summarizes the pa-
per and points out the directions for future work.

2. Leading example

As an example used throughout the paper let us consider data
about cars failures and their repairs. We assume that initial-
ly the data are stored in a table composed of 8 attributes, as
shown in Table 1. For each car failure a date of the failure and
its description are stored. A car is described by its identifier,
year of production, and mileage, while a repair is character-
ized by its description, cost, and name of a car service where
the car was repaired.

In terms of data warehousing, the table stores fact data
about car failures and repairs. Attributes repair cost and car

mileage represent measures, whereas the other ones represent
dimensions. The dimensions are defined as follows:

• vehicle with the hierarchy: car identifier→model→ make,
• failure type with the hierarchy: failure description → sig-

nificance level,
• shop with the hierarchy: shop name → city,
• time with the hierarchy: failure date → month → quarter

→ year.

Table 1
Example data on cars failures and their repairs

failure car production car failure repair repair shop
date identifier year mileage description description cost name

2012.04.04 BB111 2003 145 500 F1 R11 1 500 P1

2012.06.11 BB111 2003 160 000 F2 R21 800 P1

2012.06.12 AA222 2004 184 000 F3 R31 2 100 P2

2012.06.13 CC333 2007 80 000 F2 R22 790 P2

2012.07.27 BB111 2003 179 000 F3 R32 2 200 P1

2012.12.02 AA222 2004 201 123 F4 R41 650 P3

2012.12.08 CC333 2007 120 000 F4 R42 660 P2

2012.12.13 DD444 2005 110 000 F1 R12 1 400 P2

2013.01.30 EE555 2000 190 000 F3 R32 1 900 P1

2013.02.16 DD444 2005 121 000 F2 R21 850 P2

2013.06.10 EE555 2000 194 000 F4 R42 780 P1

332 Bull. Pol. Ac.: Tech. 62(2) 2014

Formal model of time point-based sequential data for OLAP-like analysis

According to the aforementioned definitions, the data can
be organized as a logical data cube, cf. Fig. 1. The cube al-
lows to analyze repair cost and car mileage in the context of:
vehicle, failure type, shop, time.

Fig. 1. A logical data cube for car repairs

Conventional OLAP analysis of the data cube could focus
on: (1) finding the average mileage of Peugeots when trans-
mission breaks, (2) finding the percentage of cars with respect
to car models and production dates with major failures during
the first three years of usage, or (3) finding car services com-
petences, namely the top-3 failures most often repaired by a
car service.

However, if we took into account the sequential depen-
dencies between data, some new, non-typical analyses could
be performed and a valuable information could be discov-
ered. For example, we could: (1) find the percentage of cars
in which failure F1 occurs within 6 months after failure F2,
or (2) find the most common ”pattern” of failures occurring
in cars in their fifth and subsequent years of exploitation, or
(3) find an average mileage distance between failures F1 and
F2, with respect to cars models and years of production, or
(4) find ”hot spots” in car model life, i.e., mileage balance
when the probability of a given failure is the highest.

We argue that in order to perform these and many other
analyses a new data model and a query language are needed.
For this reason, we developed a formal model for analyzing
sequential data in an OLAP-like manner. The model is dis-
cussed in the next section.

3. Data model for sequential OLAP

The data model that we propose comprises data elements and
operations. Both of them are detailed in this section.

3.1. Data elements. The three fundamental data elements of
our model include an event, a sequence, and a dimension. A
sequence is created from events by clustering and ordering
them. Sequences and events have distinguished attributes –
measures that can be analyzed in an OLAP-like manner in
contexts set up by dimensions.

Event and its attributes. An event represents an elemen-
tary data item, whose duration is a chronon. Formally, event
ei ∈ E, where E is the set of events. ei is a n-tuple of attribut-
es’ values: (ai1,ai2, ...,ain), where ai j is the value of attribute
A j in event ei. A j ∈ A, where A is the set of event attributes.
Value ai j is within the domain of attribute A j: ai j ∈ dom(A j).

dom(A j)⊆ V, where V is the set of atomic values (character
string, date, number). V also contains a null value.

Attribute hierarchy. Similarly like in traditional OLAP,
event attributes may have hierarchical structures. Let L =
{L1,L2, ...,Lk} be the set of levels in the hierarchies of the
event attributes. Pair (LAi ,⊲Ai) describes the hierarchy of at-
tribute Ai ∈ A, where LAi ⊆ L and ⊲Ai is a partial order on
set LAi . The sets of levels values are subsets of V.

Example 1. In the leading example (cf. Sec. 2), an event
represents car failure and it is stored as one row in Table 1,
i.e.,

E = {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11}

where

• e1=(2012.04.04, BB111, 2003, 145 500, F1, R11, 1 500,
P1),
• e2=(2012.06.11, BB111, 2003, 160 000, F2, R21, 800, P1),
• ...
• e11=(2013.06.10, EE555, 2000, 194 000, F4, R42, 780,

P1).

The attributes of the events are as follows:

A = {failureDate, carIdentifier, productionYear, carMileage,
failureDescription, repairDescription, repairCost, shopName}

Four attributes, namely A1, A2, A5 and A8, have the hier-
archies defined:

L = LA1 ∪LA2∪LA5∪LA8

and the structures of the hierarchies are as follows:

• LA1 = {failureDate, month, quarter, year} and ⊲A1: fail-
ureDate → month → quarter → year (example values:
26.04.2011→ April 2011 → Q2 2011 → 2011),
• LA2 = {carIdentifier, model, make} and ⊲A2: carIdentifi-

er → model → make (example values: BB111 → 308 →
peugeot, AA222 → Golf VI → volkswagen),
• LA5 = {failureDescription, seriousness} and ⊲A5: failure-

Description → seriousness (example values: F1 → major,
F4 → minor),
• LA8 = {shopName, city} and ⊲A8: shopName→ city (ex-

emplary values: P1 → Poznań, P2 → Warsaw).

Sequence and its measures. An ordered list of events that
fulfill a given condition is called a sequence. The order of
events in a sequence is defined by values of selected event
attributes. Such attributes will further be called ordering at-

tributes. A sequence is composed of the events that have the
same value of another selected attribute (or attributes). Such
attributes will further be called forming attributes. If a form-
ing attribute has a hierarchy associated, then a level selected
in the hierarchy can also be used as a forming attribute.

Formally, sequence si ∈ S, where S is the set of sequences,
is pair (Ei,⊲), where Ei ⊆ E and ⊲ is a partial order on E.

Creating a sequence. For the purpose of creating the
set of sequences from the set of events, we define operator
CreateSequence as follows:

CreateSequence(E,F,Ao, p) = S

Bull. Pol. Ac.: Tech. 62(2) 2014 333

B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel

where

• E is the set of elementary events,
• F is the set of pairs (Ai,L j), where Ai ∈ A is a forming

attribute and L j ∈ LAi is the level in the hierarchy of the
forming attribute Ai, or (Ai,φ) if attribute Ai does not have
a hierarchy,
• Ao is the set of ordering attributes, Ao ⊆ A,
• p ∈ P is a logical predicate which selects events to form

sequences,
• S is the set of sequences created by the operator.

Notice that sequences are not defined statically, but their
structure is dynamically constructed based on the features of
analyses, for which the sequences are created. Algorithm 1
describes how CreateSequence works. First, events of E are
filtered based on logical predicate p. Then, for each of the
filtered events, two vectors are created, namely: (1) vector f
that contains values of forming attributes for a given event,
and (2) vector o that contains values of ordering attributes for
a given event. Finally, the sequences are created as follows:
events with the same vectors f form one sequence, events in
the sequence are ordered by vectors o. Example 2 presents
three different sequence sets, created by CreateSequence.

Algorithm 1: CreateSequence

Input: E,F,Ao, p
Result: S

S←− φ ; C←− φ /* C – set of triples */
foreach event e ∈ E do

if p(e) is true then
f ←− φ ; /* f – |F|-element vector */
o←− φ ; /* o – |Ao|-element vector */
k←− 0; /* variable for indexing f and o */
foreach (Ai,L j) ∈ F do

k←− k +1
if L j 6= φ then

f [k]←− value of Ai in e at level L j

end

else
f [k]←− value of Ai in e

end

end

k←− 0
foreach Am ∈Ao do

k←− k +1
o[k]←− value of Am in e

end

C←− C∪{(e, f ,o)}
end

end

forall (e, f ,o) ∈ C do
put all e with the same f in order of o into one
sequence s
S←− S∪{s}

end

Example 2. For the purpose of analyzing failure history of
particular cars, all events describing failures of a given car
are included into one sequence. They are further ordered by
date when the failure occurred, as shown below.

CreateSequence(E,{(A2,carIdentifier)},{A1},null) =
{s1,s2,s3,s4,s5}

where

s1 = 〈e1,e2,e5〉, s2 = 〈e3,e6〉, s3 = 〈e4,e7〉,

s4 = 〈e8,e10〉, s5 = 〈e9,e11〉.

In order to analyze common patterns of failures with re-
spect to car makes (e.g., “what is an average mileage of
Volkswagens when transmission breaks”) one should create
sequences with events describing cars of the same make, or-
dered by mileage. In this case:

CreateSequence(E,{(A2,make)},{A4},null) = {s1,s2}

where
s1 = 〈e1,e2,e5,e3,e9,e11,e6〉,

s2 = 〈e4,e8,e7,e10〉.

In order to take into account 10 years old or younger cars,
the CreateSequence operator should be extended with a logi-
cal predicate as shown below:

fCurrentYear−productionYear >= 10

where fCurrentYear is a function that returns the current year,
and the set of sequences is as follows:

s1 = 〈e1,e2,e5,e3,e6〉, s2 = 〈e4,e8,e7,e10〉.

Fact and measure. Similarly as in traditional OLAP, se-
quences are characterized by the values of their measures.
A measure is denoted as mi and it is an element of set M that
denotes set of measures (mi ∈M). Values of a measure are
the subset of V: dom(mi) ⊆ V. A measure can be either an
attribute of an event or the property of the whole sequence.
In order to treat measures uniformly, a measure is defined
as function ComputeMeasure that associates an atomic val-
ue with a sequence, i.e., ComputeMeasure : S×M→ V. The
syntax of the function is as follows:

ComputeMeasure(s, name, p)

where

• s ∈ S is a sequence, for which the values of the measure
are computed,
• name is the name of the measure,
• p ∈ P is an expression that computes the values of the

measure for a given sequence.

Examples of measures being event’s attributes include: car

mileage and repair cost, whereas total cost of car repairs is
an example of a measure being the property of the whole
sequence.

334 Bull. Pol. Ac.: Tech. 62(2) 2014

Formal model of time point-based sequential data for OLAP-like analysis

Dimension. A dimension sets up the context of an analysis
and defines aggregation paths of facts. Let Di denote a di-
mension and D denote the set of dimensions, thus Di ∈ D.
A dimension can be either an event attribute or the property
of the whole sequence. The CreateContext operator associates
a dimension with either an event attribute or the whole se-
quence. It also defines a dimension hierarchy, namely the set
of levels and a partial order on this set. The syntax of the
operator is as follows:

CreateContext(nameDi ,ADi , pDi ,HDi) = Di

where

• nameDi is the name of dimension Di,
• ADi equals to A j ∈A if the dimension is an event attribute

A j or ADi = φ if the dimension is the property of the whole
sequence,
• pDi equals to predicate p∈P if the dimension is the proper-

ty of the whole sequence (p is an expression that computes
the values of the dimension) or pDi = φ if the dimension
is an event attribute (in this case values of an attribute ADi

are taken as dimension values),
• HDi is the set of hierarchies of dimension Di, composed of

pairs (LDi ,⊲Di), where LDi ⊆ L is the set of levels in the
dimension hierarchy and ⊲Di is a partial order on set LDi ;
HDi = φ if dimension Di does not have a hierarchy.

Example 3. An example of a dimension defined by means
of attributes include vehicle with hierarchy: carIdentifier →
model → make. The dimension is set up by the following
operator:

CreateContext(vehicle,A2,φ ,{({carIdentifier,model,make},
carIdentifier → model → make)})

However, in order to analyze the distribution of numbers of
cars failures, the dimension should be defined as a function
which calculates the length of a sequence describing failures
of a single car. In this case the dimension would be defined
as follows:

CreateContext(numberOfFailures,φ ,∀ sequences s ∈
S find length(s),φ)

3.2. Operations of the model. The OLAP-like analysis of
sequential data is performed in our model by the set of oper-

ations, detailed in this chapter. The operations are classified
into: (1) operations on sequences, (2) general operations, (3)
operations on dimensions, and (4) analytical functions.

Operations on sequences. Operations on sequences trans-
form the structure of one or more sequences. The operations
include:

1. First(s) – creates a new sequence from sequence s ∈ S by
removing from s all events except the first one. For exam-
ple, the analysis ”find the oldest failure of car identified by
BB111” will be expressed as First(〈e1,e2,e5〉) = 〈e1〉.

2. Last(s) – creates a new sequence from sequence s ∈ S by
removing from s all events except the last one. For exam-
ple, the analysis ”find the latest failure of car identified by
BB111” will be expressed as Last(〈e1,e2,e5〉) = 〈e5〉.

3. Subsequence(s,m,n) – creates a new sequence from se-
quence s ∈ S by removing from s all events prior to an
event at position m and all events following an event at
position n, e.g.,

Subsequence(s, length(s)−1, length(s))= 〈e2,e5〉

where s = 〈e1,e2,e5〉.
4. Split(s,expression) – creates the set of new sequences by

splitting initial sequence s∈S using a given expression. For
example, let us assume that an initial sequence describes
the failures of cars of given makes. In order to transform
it to sequences describing failures of particular cars, one
should use the following expression:

Split(〈e1,e2,e5,e3,e9,e11,e6〉, ”the same values of A1”) =
{〈e1,e2,e5〉,〈e3,e6〉,〈e9,e11〉}

In the aforementioned example each element of the origi-
nal sequence belongs to only one of the output sequences.
However, it is not a rule. In some cases (cf. Example 3.2),
the original sequence element can be shared by some out-
put sequences.

5. Combine(S) – creates a new sequence with events of all
sequences in S⊆ S, given as parameters. The events in the
new sequence are ordered by the values of ordering at-
tributes of the original sequences. For example, having an
initial set of sequences that describe failures of given cars
of a given make, the analysis of failures of a given make
as a whole would be expressed as follows:

Combine({〈e1,e2,e5〉,〈e3,e6〉,〈e9,e11〉}) =
〈e1,e2,e5,e3,e9,e11,e6〉

We assume the total order on all events from the set of
initial sequences.

Example 4. Let us assume that F1−F2−F3−F1−F2 rep-
resents the sequence of failures of a given car within one
year. In order to find out how often the ”pattern” of car fail-
ures occurred: two failures of the same element (e.g., front
brakes) within the same year separated by at least one fail-
ure of another element (e.g., transmission), one should split
F1−F2− F3−F1−F2 into two new sequences, namely:
F1−F2−F3−F1 and F2−F3−F1−F2. Notice that, sub-
sequence F2−F3 is shared by two output sequences.

General operations. General operations allow to manipu-
late sets of sequences and they include: SelectSequences,
SelectEvents, GroupBy, Join, and set operations (union,
difference, intersection).

1. SelectSequences(S,expression) – filters sequences in S⊆ S

that fulfill a given expression. The result of the operation
is the set of sequences ⊆ S. For example, the analysis of
failures of the cars with at least four events (failures) would
be expressed as follows:

Bull. Pol. Ac.: Tech. 62(2) 2014 335

B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel

SelectSequences(S,∀s∈ S : length(s)≥ 4)

SelectSequences is explained by Algorithm 2.
2. SelectEvents(S,expression) – removes from sequences in

S⊆ S all events that do not fulfill a given expression. For
example, the analysis of failures fixed in a given shop (e.g.,
P1), would be expressed as follows:

SelectEvents(S,∀s∈ S∧e being element of s : e(A8) = P1)

SelectEvents is explained by Algorithm 3.
3. GroupBy(S,expression |Di) – assigns sequences from S⊆

S to groups according to the results of a given grouping
expression (case A) or to the values of dimension Di ∈ D

(case B). Sequences having the same value of the grouping
expression or dimension value belong to the same group.
The result of the operation is set G of pairs (value,s),
where:

• value is a given value of grouping expression

• s ∈ S is a sequence with value of a grouping expres-
sion (case A), or set of pairs (value(Di),s), where
value(Di) is the value of dimension Di (case B).

GroupBy is explained by Algorithm 4.
4. Join(Sin1,Sin2, join condition, filtering predicate) – allows

to merge events in sequences from one set (Sin1) with
events in sequences from another set (Sin2). The structures
of events in sequences from both sets can be different. The
operator creates a new set of sequences Sout . The structure
of events (set Aout of attributes) in the sequences of Sout is
a union of events attributes of sequences from both joined
sets (Ain1 ∪Ain2).
The sequences in Sout are created as follows.

• The operator takes a sequence from Sin1 (say, s1) and
adds the attributes from Ain2 to the structure of events
in s1. The values of the added attributes are null.

• Next, for each event in s1, the operator finds in se-
quences from Sin2 all events which fulfill the join con-

dition. We assume that for each event in s1 at most
one event in sequences from Sin2 should be found.
If more events in sequences from Sin2 fulfill the join

condition, they should be filtered with the filtering

predicate. If the join condition does not find events
in sequences from Sin2 , values of events attributes
of s1 corresponding to events attributes of sequences
from Sin2 are set to null.

• Finally, sequence s1 is added to Sout . The forming at-
tributes and ordering attributes for sequences in Sout

are the same as forming attributes and ordering at-
tributes for sequences in Sin1.

Join is described by Algorithm 5. Example 5 shows a pos-
sible application of the operation.

5. Set operations: union ∪, difference \, and intersection ∩ –
they are standard set operations that produce a new set of
sequences, e.g., S1∪S2.

Algorithm 2: SelectSequences

Input: Sin ⊆ S, p
Result: Sout ⊆ S

Sout ←− φ
foreach sequence s ∈ Sin do

if p(s) is true then
Sout ←− Sout ∪{s}

end

end

Algorithm 3: SelectEvents

Input: Sin ⊆ S, p
Result: Sout

Sout ←− φ
foreach sequence s ∈ Sin do

foreach event e in s do

if p(e) is false then
remove e from s

end

end

if length(s)≥ 1 then
/* s has at least one event */
Sout ←− Sout ∪{s}

end

end

Algorithm 4: GroupBy

Input: Sin ⊆ S, p or Di ∈ D

Result: G

G←− φ
foreach sequence s ∈ Sin do

if p 6= φ then
G←−G∪{(p(s),s)} /* p(s) – value of
expression p for s */

end

else if D 6= φ then
G←−G∪{(Di(s),s)} /* Di(s) – value of Di

for s */

end

336 Bull. Pol. Ac.: Tech. 62(2) 2014

Formal model of time point-based sequential data for OLAP-like analysis

Algorithm 5: Join

Input: Sin1 ⊆ Sin1, Sin2 ⊆ Sin2, join condition p,
filtering predicate f

Result: Sout

Eout ←− φ ; Aout ←− Ain1 ∪Ain2; Sout ←− φ
foreach sequence sin1 ∈ Sin1 do

create empty sequence sout

foreach event ein1 in sin1 do
create empty event eout with attributes of Aout

copy values of attributes in ein1 to
corresponding attributes in eout

Etemp←− φ
foreach ein2 in sequences from Sin2 do

if p(ein1,ein2) is true then
Etemp←− Etemp∪{ein2};

end

end

switch |Etemp| do

case 0
leave values of attributes from Ain2 in
eout empty

end

case 1
copy values of attributes from
etemp ∈ Etemp to corresponding
attributes in eout

end

otherwise
find etemp ∈ Etemp with filtering
predicate f
copy values of attributes from etemp to
corresponding attributes in eout

end

end

Eout ←− Eout ∪{eout};
Combine(sout,〈eout〉) /* add eout at the end of
sout */

end

Sout ←− Sout ∪{sout}
end

Example 5. In order to analyze correlation between cars fail-
ures and weather conditions, the structure of events describing
car failures should be merged with weather information. Let
S1 denote the set of sequences of particular cars failures lim-
ited to one sequence describing failures of car identified by
BB111 (sequence s1 in Example 2). Notice that the structure
of events in S1 is the same as in Example 1. Let S2 contain se-
quences that describe monthly weather conditions in 24-hour
intervals.

The events structure of sequences in S2 includes four
attributes, namely: date (Aw1), day average air temperature
(Aw2), day average humidity level (Aw3), and description
of precipitation (Aw4). Let’s assume that S2 contains 12
sequences that describe weather conditions in consecutive

months of 2012. For example, sequences describing weath-
er conditions in April, June, and July are as follows:

• s24 = 〈(2012.04.01,13◦,77%, light rains), . . . ,
(2012.04.04,15◦,70%,cloudy), . . .〉,
• s26 = 〈(2012.06.01,21◦,80%, sunny), . . . ,

(2012.06.11,22◦,98%,rain), . . .〉,
• s27 = 〈(2012.07.01,25◦,50%, sunny), . . . ,

(2012.07.27,21◦,98%,medium rain), . . .〉.

The structure of events that constitute sequences resulting
from the Join operator consists of 12 attributes, namely all
attributes of the events in sequences from S1 (A1 to A8) and
all attributes of the events in sequences from S2 (Aw1 to Aw4).

The events of the joined sequence sets are matched using
the following join condition: the value of A1 (from S1) is equal
to the value of Aw1 (from S2). The output set contains one
sequence only, i.e., s = 〈e1,e2,e3〉. The events of the sequence
are shown below.

• e1=(2012.04.04, BB111, 2003, 145500, . . . , 2012.04.04,
15◦,70%,cloudy),
• e2=(2012.06.11, BB111, 2003, 160000, . . . , 2012.06.11,

22◦,98%,rain),
• e3=(2012.07.27, BB111, 2003, 179000, . . . , 2012.07.27,

21◦,98%,medium rain).

Operations on dimensions. Operations on dimensions allow
to navigate in the hierarchy of a given dimension. Although
these operations look similar to the standard drill-down and
roll-up OLAP operation, their meaning is different. The op-
erations include: LevelUp and LevelDown.

1. LevelU p(Di,S) navigates one level up in the hierarchy of
dimension Di ∈ D for all sequences in S⊆ S.
An example of this operation may include changing the
level of attribute A8, being a dimension shop, from shop

name to city, namely:

LevelU p(shop,{s2}) = {s′2}, s2 = 〈e3,e6〉, s′2 = 〈e′3,e
′
6〉

where:

• e3=(2012.06.12, AA222, 2004, 184000, F3, R31, 2100, P2)
is transformed to e′3=(2012.06.12, AA222, 2004, 184000,
F3, R31, 2100, Poznań) (shop P2 is located in Poznań),

• e6=(2012.12.02,AA222,2004,201123,F4, R41, 650, P3)
is transformed to e′6=(2012.12.02,AA222,2004,201123,F4,
R41, 650, Warsaw (shop P3 is located in Warsaw).

2. LevelDown(Di,S) navigates one level down in the hierar-
chy of dimension Di ∈ D for all sequences in S⊆ S.

Algorithm 6: LevelUp

Input: Sin ⊆ S,Di ∈ D

Result: Sout

Sout ←− φ ;
foreach sequence s ∈ Sin do

change value of Di in s one level up;
Sout ←− Sout ∪{s}

end

Bull. Pol. Ac.: Tech. 62(2) 2014 337

B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel

Algorithm 7: LevelDown

Input: Sin ⊆ S,Di ∈ D

Result: Sout

Sout ←− φ ;
foreach sequence s ∈ Sin do

change a value of Di in s one level down;
Sout ←− Sout ∪{s}

end

Analytical functions. The values of measures are aggregated
along aggregations paths defined by dimensions. In our mod-
el we support standard OLAP aggregation functions, namely
Avg, Count, Max, Min, and Sum. If we aggregate measures
which are the features of whole sequences, the usage of the
functions is the same as in traditional OLAP. If, however, one
would like to aggregate a measure which is a feature of an
event rather than of a sequence, the semantics of the aggre-
gation should be provided. In our model, the semantics is
defined by an algorithm. Example 6 illustrates the concept of
aggregation semantic encoded in an algorithm.

The operator for aggregation is defined as follows:

Aggregate(F,S,m, p)

where

• F is an aggregation function, namely F ∈
{Avg,Count,Max,Min,Sum},
• S is a set of sequences, S⊆ S,
• m is a measure to aggregate, m∈M, this parameter can be

a null in case of Count function,
• p is an algorithm that defines the semantics of the aggre-

gation.

Example 6. Let us assume that: (1) the sequences being an-
alyzed describe failures of given cars, (2) attribute A4 (car
mileage) of an event represents measure m1. In order to ”find
average mileage of cars with a sequence of failures with pat-
tern F1−F2−F3”, the following steps have to be executed:

• find sequences with failure pattern F1−F2−F3,
• remove all events that are not included in the subsequences

having pattern F1-F2-F3,
• aggregate the values of mileage (measure m1) stored in the

leading events (at the first position) of the sequences.

In this example, the algorithm that defines the semantics of
function Avg retrieves the values of m1 from the first event of
every sequence.

3.3. Example application. In order to illustrate the applica-
tion of our model to sequential data analysis, let us consider
two simple analyses.

Analysis 1. Find the number of cars that broke at least
three times in 2008, and the “pattern” of failures was as fol-
lows: two failures of the same element were separated by the
failure of another element (or elements).

In our model, this analysis is implemented by sequence of
the three following operations:

1. create sequences for failures of particular cars which oc-
curred in 2008:

S = CreateSequence(E,{(A2,carIdentifier)},{A1},∀ei ∈
E : ai1≥ 2008.01.01∧

ai1≤ 2008.12.31) where ai1 denotes the value of A1 in
event ei,

2. select sequences with at least three failures, two of them
concern the same part, and their occurrences are separated
by the occurrence of another failure:

S′ = SelectSequences(S,∃ei,e j,ek being elements of s ∈
S : ai1 < a j1 < ak1∧ai5 6= a j5∧ai5 = ak5∧a j5 6= ak5)

3. compute result: Aggregate(Count,S′,null,null)

Analysis 2. Find the percentage of cars in which failure
F1 follows within 6 months the occurrence of failure F2.

1. create sequences for particular cars:

S = CreateSequence(E,{(A2,carIdentifier)},{A1},φ)

2. eliminate events that do not describe failure F1 or F2:

S′ = SelectEvents(S,∀ei being elements of s ∈ S : ai5 =
F1∨ai5 = F2)

3. select sequences, in which F1 and F2 occur and time dis-
tance between them 6 months or less:

S′′ = SelectSequences(S′,∃ei,e j being elements of s ∈ S′ :
ai5 = F2∧a j5 = F1∧ai1+6 month <= a j1)

4. compute result: Aggregate(Count,S′′,null,null)/Aggregate
(Count,S,null,null)

4. Related work

The research and technological areas related to processing
sequential data include: (1) complex event processing (CEP)
over data streams, (2) OLAP, and (3) sequential pattern min-
ing.

The CEP technology has been developed for the purpose
of continuous analysis of data streams to detect patterns, out-
liers, and generate alerts [20–23]. This technology has been
developed for the analysis of current data and is unable to
perform OLAP analysis. On the contrary, the OLAP tech-
nology [1] has been developed for the purpose of analyzing
huge amounts of data organized in relations but it is unable
to exploit the sequential nature of data.

With this respect, Stream Cube [24] has been developed
in order to provide tools for OLAP analysis of stream da-
ta. [17] presents more advanced concept, called E-Cube al-
lowing to execute OLAP queries on data streams. E-Cube

includes a query language allowing to query events of a giv-
en pattern, a concept hierarchy allowing to compute coarser
aggregates based on finer ones, hierarchical storage with data
sharing, and a query optimizer.

338 Bull. Pol. Ac.: Tech. 62(2) 2014

Formal model of time point-based sequential data for OLAP-like analysis

Sequential data analysis has been researched since several
years with respect to storage, e.g., [25–28]. In [27] sequences
are modeled by an enhanced abstract data type, in an object-
relational model, whereas in [25] sequences are modeled as
sorted relations. The query languages proposed in [26,28] al-
low typical OLTP selects on sequences and do not support
OLAP analyzes.

Further extension towards sequence storage and analysis
have been made in [29] that proposes a general concept of
a RFID warehouse. Unfortunately, no in-dept discussion on
RFID data storage and analysis is provided.

[6,14–16] focus on analyzing time-point based sequential
data. [6, 15, 16] focus on storage and analysis of event based
sequences. [6] propose the set of operators for a query lan-
guage for the purpose of analyzing patterns. [15,16] focus on
an algorithm for supporting ranking pattern-based aggregate
queries and graphical user interface. The drawback of these
approaches is that they are based on relational data model and
storage for sequential data. Conversely, [14] proposes a for-
mal model for event based sequences and the set of operators
for processing and analyzing sequences. The main drawback
of this approach is that it does not provide strict meaning of
operations defined for a model.

[2, 18] focuses on interval based sequential data, gener-
ated by RFID devices. The authors propose a few techniques
for reducing the size of sequential data, propose techniques
for constructing RFID cuboids and computing higher level
cuboids from lower level ones. They focus on relational im-
plementation and propose three tables, called Info, Stay, and
Map, for storing RFID data and their sequential orders. The
proposed approach lacks a formal data model and a query
language for analyzing sequences.

Substantial research efforts focused on mining sequen-
tial patterns either on data stored in a data warehouse, e.g.,
[30–32] or on data streams, e.g., [33–35]. The developed al-
gorithms are able to discover patterns of time point based se-
quences but they do not support typical OLAP-like analyses of
sequential data. Therefore, the approaches cover application
areas other than the approach proposed in this paper.

5. Summary

In this paper, we presented a formal model suitable for
processing time point-based sequential data in an OLAP-like
manner. To this end, as data elements, the model uses an
event and a sequence. The values of measures (either event’s
or sequence’s) are analyzed in the context of dimensions, by
means of operations. The model supports four classes of op-
erations, namely: on sequences, general, on dimensions, and
analytical functions. The unique feature of the model is that
both measures and dimensions are created dynamically and
may be associated with events or the whole sequences.

Currently we are implementing a prototype system based
on our model. Future work will focus on indexing sequences
and query optimization.

Acknowledgements. This work was supported from
the Polish National Science Center (NCN), the grant
No. 2011/01/B/ST6/05169.

REFERENCES

[1] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview of
business intelligence technology”, Communications ACM 54
(8), 88–98 (2011).

[2] H. Gonzalez, J. Han, and X. Li, “FlowCube: constructing RFID
flowcubes for multi-dimensional analysis of commodity flows”,
Proc. Int. Conf. on Very Large Data Bases (VLDB) 1, 834–845
(2006).

[3] “Smart card alliance latin america & the caribbean”,
http://latinamerica.smartcardalliance.org/ (2012).

[4] “Smart card alliance”, http://www.smartcardalliance.org
(2012).

[5] “Octopus card”, http://hong-kong-travel.org/Octopus/(2012).
[6] E. Lo, B. Kao, W.-S. Ho, S.D. Lee, C.K. Chui, and D.W.

Cheung, “OLAP on sequence data”, Proc. ACM SIGMOD Int.

Conf. on Management Data 1, 649–660 (2008).
[7] M. Gorawski, P. Marks, and M. Gorawski, “Collecting data

streams from a distributed radio-based measurement system”,
Lecture Notes in Computer Science 4947, 702–705 (2008).

[8] M. Gorawski, “Multiversion spatio-temporal telemetric data
warehouse”, ADBIS Workshops 1, 63–70 (2009).

[9] M. Gorawski, “Extended cascaded star schema and ECOLAP
operations for spatial data warehouse”, Lecture Notes in Com-

puter Science 5788, 251–259 (2009).
[10] S. Szczepański, M. Wójcikowski, B. Pankiewicz, M. Kłosows-

ki, and R. Żaglewski, “FPGA and ASIC implementation of the
algorithm for traffic monitoring in urban areas”, Bull. Pol. Ac.:

Tech. 59 (2), 137–140 (2011).
[11] Z. Opilski, G. Konieczny, T. Pustelny, A. Gacek, R. Kus-

tosz, and M. Gawlikowski, “Noninvasive acoustic blood vol-
ume measurement system for the POLVAD prosthesis”, Bull.

Pol. Ac.: Tech. 59 (4), 429–433 (2011).
[12] C. Dyreson, F. Grandi, W. Käfer, N. Kline, N. Lorentzos,

Y. Mitsopoulos, A. Montanari, D. Nonen, E. Peressi, B. Per-
nici, J.F. Roddick, N.L. Sarda, M.R. Scalas, A. Segev, R.T.
Snodgrass, M.D. Soo, A. Tansel, P. Tiberio, and G. Wieder-
hold, “A consensus glossary of temporal database concepts”,
SIGMOD Record 23 (1), 52–64 (1994).

[13] F. Mörchen, “Unsupervised pattern mining from symbolic tem-
poral data”, SIGKDD Explor. Newsl. 9 (1), 41–55 (2007).

[14] B. Bębel, P. Krzyżagórski, M. Kujawa, M. Morzy, and
T. Morzy, “Formal model for sequential OLAP”, Information

Technology and its Applications 1, 1–11, ISBN 978-83-89529-
82-4 (2011).

[15] C.K. Chui, B. Kao, E. Lo, and D. Cheung, “S-OLAP: an OLAP
system for analyzing sequence data”, Proc. ACM SIGMOD Int.

Conf. on Management of Data 1, 1131–1134 (2010).
[16] C.K. Chui, E. Lo, B. Kao, and W.-S. Ho, “Supporting rank-

ing pattern-based aggregate queries in sequence data cubes”,
Proc. ACM Conf. on Information and Knowledge Management

(CIKM) 1, 997–1006 (2009).
[17] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang,

I. Ari, and A. Mehta, “E-cube: multi-dimensional event se-
quence analysis using hierarchical pattern query sharing”,
Proc. ACM SIGMOD Int. Conf. on Management of Data 1,
889–900 (2011).

Bull. Pol. Ac.: Tech. 62(2) 2014 339

B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel

[18] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing and
analyzing massive RFID data sets”, Proc. Int. Conf. on Data

Engineering (ICDE) 1, 83–92 (006).
[19] B. Bebel, M. Morzy, T. Morzy, Z. Królikowski, and R. Wrem-

bel, “OLAP-Like analysis of time point-based sequential data”,
ER Workshops Lecture Notes in Computer Science 7518, 153–
161 (2012).

[20] A.P. Buchmann and B. Koldehofe, “Complex event process-
ing”, Information Technology 51 (5), 241–242 (2009).

[21] M. K. Chandy, “Event-driven applications: costs, benefits and
design approaches”,
http://www.infospheres.caltech.edu/node/38 (2012).

[22] A.J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma,
and W.M. White, “Cayuga: a general purpose event monitoring
system”, CIDR 1, 412–422 (2007).

[23] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex
event processing over streams”, Proc. ACM SIGMOD Int. Conf.

on Management of Data 1, 407–418 (2006).
[24] J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang, and

Y.D. Cai, “Stream cube: an architecture for multi-dimensional
analysis of data streams”, Distributed and Parallel Databases

18 (2), 173–197 (2005).
[25] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K.S. Bey-

er, and M. Krishnaprasad, “SRQL: Sorted Relational Query
Language”, Proc. Int. Conf. on Scientific and Statistical Data-

base Management (SSDBM) 1, 84–95 (1998).
[26] P. Seshadri, M. Livny, and R. Ramakrishnan, “Sequence query

processing”, SIGMOD Record 23 (2), 430–441 (1994).
[27] P. Seshadri, M. Livny, and R. Ramakrishnan, “The design

and implementation of a sequence database system”, Proc. Int.

Conf. on Very Large Data Bases (VLDB) 1, 99–110 (1996).
[28] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “Optimiza-

tion of sequence queries in database systems”, Proc. ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Data-

base Systems (PODS) 1, 71–81(2001).
[29] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran, and

S. Sarma, “Managing RFID data”, Proc. Int. Conf. on Very

Large Data Bases (VLDB) 1, 1189–1195 (2004).
[30] J.-W. Han, J. Pei, and X.-F. Yan, “From sequential pattern min-

ing to structured pattern mining: a pattern-growth approach”,
J. Comput. Sci. Technol. 19 (3), 257–279 (2004).

[31] N.R. Mabroukeh and C.I. Ezeife, “A taxonomy of sequential
pattern mining algorithms”, ACM Comput. Surv. 43 (1), 3:1–
3:41 (2010).

[32] F. Masseglia, M. Teisseire, and P. Poncelet, “Sequential pattern
mining”, in Encyclopedia of Data Warehousing and Mining,
pp. 1800–1805, IGI Global, London, 2009.

[33] A. Marascu and F. Masseglia, “Mining sequential patterns from
data streams: a centroid approach”, J. Intell. Inf. Syst. 27 (3),
291–307 (2006).

[34] L.F. Mendes, B. Ding, and J. Han, “Stream sequential pattern
mining with precise error bounds”, Proc. IEEE Int. Conf. on

Data Mining (ICDM) 1, 941–946 (2008).
[35] Q. Zheng, K. Xu, and S. Ma, “When to update the sequen-

tial patterns of stream data?”, Proc. Pacific-Asia Conf. on Ad-

vances in Knowledge Discovery and Data Mining (PAKDD) 1,
545–550 (2003).

340 Bull. Pol. Ac.: Tech. 62(2) 2014

