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Flow of Stokesian fluid through a cellular medium

and thermal effects
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Abstract. The thermal effects of a stationary Stokesian flow through an elastic micro-porous medium are compared with the entropy

produced by Darcy’s flow. A micro-cellular elastic medium is considered as an approximation of the elastic porous medium. It is shown that

after asymptotic two-scale analysis these two approaches, one analytical, starting from Stoke’s equation and the second phenomenological,

starting from Darcy’s law give the same result. The incompressible and linearly compressible fluids are considered, and it is shown that in

micro-porous systems the seepage of both types of fluids is described by the same equations.
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1. Introduction

In more or less degree, natural solid aggregates such as rocks

and soils (in particular, travertine, pumice stones, aquifers,

petroleum reservoirs, shale gas resources), zeolites, biologi-

cal tissues (woods, cork, sponges, cartilage, bones), and artifi-

cial products such as cements and ceramics (molecular sieves,

bricks, concrete) can be considered as porous media. The con-

cept of porous media is used in many areas of applied science

and engineering: filtration, mechanics (acoustics, geomechan-

ics, soil mechanics, rock mechanics), engineering (petroleum

engineering, bio-remediation, construction engineering), geo-

physics (hydrogeology, petroleum geology), biology and bio-

physics, material science. Thus, the fluid flow through porous

media is a subject of common interest, and emerged as a sep-

arate field of science, and numerous are works related to the

field [1–8].

A special case of flow through porous medium is realised

in devices that provide liquid flow through parallel channels,

to achieve high heat dissipation rate for the needs of micro-

electronic and optical technologies, cf. [9]

It is known from the experimental evidence and from

theoretical motivation that the flow through porous medium

may be well approximated by Darcy’s law, which belongs to

large family of transport laws such as Fourier’s, Ohm’s or

Fick’s. For example, by analogy to Fourier’s law in which

the temperature gradient is the thermodynamical force which

drives the stream of heat, in Darcy’s flow it is the pres-

sure gradient which enforces the movement of fluid through

porous medium, cf. [10–12]. It would be interesting to veri-

fy whether Darcy’s law can be embedded into a framework

of Onsager’s theory, in a similar manner as other transport

equations can [13, 14].

The viscous flow is the entropy generation process, and in

its description only mechanical quantities, the velocity and the

pressure gradient are applied. To place Darcy’s flow into On-

sager’s scheme we use two ways of its description. Firstly, the

entropy production is evaluated only by the aforementioned

analogy with other processes satisfying Onsager’s theory.

On the other hand, because the flow of fluid through

porous medium is still described by Stokes’ equation of hy-

drodynamics, we calculate the entropy production in the flow

through a porous medium calculated directly from Stokesian

flow [13], and next compare the result with that obtained from

Darcy’s approach in Onsager’s theory.

To this end, we consider a flow of Stokesian fluid through a

cellular elastic medium using two scale asymptotic approach,

what can be regarded as an approximation to the process of

flow through porous material, cf. [15]. This means that we

consider a system composed of porous solid and viscous liq-

uid in flow. In a micro-scale, when the flow through separate

micro-canals is considered, it can be regarded as a micro-flow,

as it is realized in small and narrow canals of the porous medi-

um. In a macro-scale, when the individual canals are smeared

out, the flow is described by Darcy’s law

v = −K∇p, (1)

here v is the velocity of flow, K is the permeability tensor

and ∇p is the gradient of the pressure.

Darcy’s law can be derived from Stokes’ equation of vis-

cous fluid flow endowed in the appropriate boundary condi-

tions on the interface between the viscous fluid and the rigid

skeleton of the cellular material, namely, it is assumed that

the fluid velocity vanishes on the interface.

1.1. Cellular medium. The porous medium, if identified

with a cellular material, it is a bounded set Ω of three-

dimensional space (the bar denotes the closure of the set),

where Ω is a sufficiently regular domain, with the boundary

∂Ω.

We assume that the porous medium reveals a micro-

periodic structure, cf. [15, 16]. The basic cell Y has a form
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of cube and consists of two parts (two disjoint open sets): YS

and YL, where the subscript S and L denote the solid and

fluid parts, respectively, cf. Fig. 1. Obviously,

Y = YS ∪ YL ∪ Γ,

where Γ stands for the interface between YS and YL.

Fig. 1. Basic cell Y is composed of two simply-connected parts.

Each part, either A or B, can be solid or liquid

A small parameter ε such that (0 < ε < 1) characterizes

the microstructure of the porous medium considered. Namely,

ε =
ℓ

L , (2)

where ℓ and L are typical length scales associated with the

dimensions of micro-pores and the domain Ω, respectively.

The domain Ω is assumed to have an εY – periodic struc-

ture. The set Ω is covered with a regular mesh of size ε, each

cell being a cube Y .

In analogy to the structure of elementary cell Y , the to-

tal volume of the porous body is composed of two parts

Ω = ΩS ∪ΩL, where ΩS denotes the volume of solid (skele-

ton) and ΩL – the volume of pores (filled with the liquid).

The average over the basic cell is introduced

〈(· · · )〉 =
1

|Y |

∫

Y

(· · · )dy. (3)

The porosity is defined as

f =
|YL|
|Y | (4)

it is as the fraction of the liquid in the considered solid–

liquid composite medium. Of course, also f = ΩL/Ω, and

1 − f = |YS |/|Y | = ΩS/Ω.

1.2. Elastic skeleton. The porous solid (skeleton) is de-

scribed by the linear elasticity

σij = Cijmn

∂um

∂xn

, (5)

here σij and Cijmn denote the stress tensor and the elasticity

tensor of the skeleton, respectively, while u = u(x) is the dis-

placement vector field in the skeleton. The field depends only

on the position x and not on the time t, as we are consider-

ing stationary processes only. The micro-periodic dependence

of Cijmn on position x is admitted also. The tensor Cijmn

subdues the usual conditions of symmetry and coercivity, see

below Subsec. 1.4.

1.3. Viscous fluids. In a viscous fluid due to internal friction

irreversible processes of energy dissipation occur, which lead

to the energy dissipation, cf. [13],

Ediss = σ′

ij

∂vi

∂xj

. (6)

The viscous stress tensor σ′ depends on the space derivatives

of velocity v only,

σ′

ij = ηijmn

∂vm

∂xn

, (7)

where ηijmn is the viscosity tensor, independent of velocity.

Also, the tensor ηijmn satisfies the symmetry and coercivity

conditions, see Subsec. 1.4.

Despite the fact that Stokesian fluids belong to the class

of simple fluids and are isotropic, cf. [17], we apply here the

tensorial description of the viscosity. This is done for brevity

and compactness of the deduction, cf. lengths of the left and

right hand sides of Eq. (9).

Substituting (7) into (6) we obtain

Ediss = ηijmn

∂vm

∂xn

∂vi

∂xj

(8)

For isotropic fluid

ηijmn = η (δimδjn + δinδjm) +

(

ζ − 2

3
η

)

δmnδij (9)

and

σ′

ij = η

(

∂vi

∂xj

+
∂vj

∂xi

)

+

(

ζ − 2

3
η

)

∂vk

∂xk

δij (10)

with the scalar coefficients of viscosity, η and ζ. If the fluid

may be regarded as incompressible that is if divv = 0, only

one coefficient of viscosity, namely η is of importance, as the

second term in (10) vanishes.

1.4. The composite body with microperiodic structure. In

Subsec. 1.1 the small parameter ε > 0 was introduced, and it

was assumed that the body is made of elementary cubic cells

εY = ε[0, Y1] × [0, Y2] × [0, Y3]. This means that

(i) The functions Cijkl and ηijkl are Y – periodic, it is for

fixed ε > 0 the material functions are

Cε
ijkl(x) = Cijkl

(x

ε

)

and ηε
ijkl(x) = ηijkl

(x

ε

)

(ii) The matrices Cijkl and ηijkl are assumed to be positive

definite, what means that there exists a constant α > 0 such

that (on Y ): Cijklξijξlk > αξijξlk and ηijklξijξlk > αξijξlk

for all symmetric matrices ξij , ξij = ξji.

From the mathematical point of view the homogenization

means the passage with ε to zero in an appropriate meaning,

cf. [18].
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1.5. Stokes’ equation. If the fluid velocities are very slow,

the viscosities are large, or the length-scales of the flow

are very small, the substantial time derivative of velocity

can be approximated simply by the time partial derivative,

dv/dt ≡ ∂v/∂t + v∇v ≈ ∂v/∂t and the viscous flow is

described by the equation

ρ
∂vi

∂t
= − ∂p

∂xi

+
∂σ′

ij

∂xj

where σ′

ij is given by Eq. (7), ρ denotes the density and p –

the pressure. In stationary flow, when ∂vi/∂t = 0,

− ∂p

∂xi

+
∂σ′

ij

∂xj

= 0. (11)

This, stationary version of Stokes’ equation will be considered

in sequel.

1.6. Continuity equation. This equation expresses the con-

servation of the fluid material. It is of the form

∂ρ

∂t
+

∂(ρvi)

∂xi

= 0

and in the stationary process

∂(ρvi)

∂xi

= 0. (12)

For incompressible fluids, when ρ = constant, the continuity

equation becomes
∂vi

∂xi

= 0. (13)

In sequel, for compressible fluids the linear dependence be-

tween density and pressure is assumed

ρ = ρ0 + βp, (14)

where ρ0 is a constant, and β is the compressibility of the

fluid.

1.7. Entropy production in the viscous flow. The equation

of entropy density production in such a flow has the form [13],

ρT
ds

dt
= σ′

ij

∂vi

∂xj

, (15)

where s is the entropy per unit mass of the fluid. The last

equation is valuable in non-stationary as well as in stationary

flows.

After Eq. (8) we can also write

ρT
ds

dt
= ηijmn

∂vm

∂xn

∂vi

∂xj

. (16)

In stationary processes, when the right hand side of (16) is

time-independent, the growth of entropy is uniform.

1.8. Compressibility of water and solids. In thermodynam-

ics and mechanics of continuous media, compressibility is

defined as the relative volume change of a fluid or solid as a

response to a pressure (or mean stress) change.

β = − 1

V

(

∂V

∂p

)

T

.

The specification above is incomplete, because for any ob-

ject or system the magnitude of the compressibility depends

strongly on whether the process is adiabatic or isothermal.

For low velocities of flow through porous medium (seepage)

the isothermal compressibility should be applied, and above it

is defined by the subscript T which indicates that the partial

differential is to be taken at constant temperature.

Compressibility is used in the Earth sciences to quantify

the ability of a soil or rock to reduce in volume with applied

pressure. This concept is important for specific storage, when

estimating groundwater reserves in confined aquifers. The do-

main occupied by the porous materials can be considered as

composed of two volumes: one occupied by solids and sec-

ond created by voids. The void space can be filled by liquid

or gas.

The analysis of the Stokesian flow through porous medium

is commonly realised under the assumption of the incompress-

ibility of the fluid, e.g. [15–24]. However in such an analysis

it is neglected an experimental evidence that the compress-

ibility of fluid (water) is sometimes comparable with that of

the skeleton material. For example, the compressibility of the

water at 250C equal 4.6 × 10–10 Pa−1, while the compress-

ibility of the rock is of order of 3× 10–10 Pa−1, cf. the Table

of compressibility, also [25, 26].

Compressibility

material β [m2/N] or [Pa−1]

clay ≈ 1 × 10−7

dense sand, sandy gravel ≈ 1 × 10−8

rock ≤ 3 × 10−10

water at 25oC ≈ 4.6 × 10−10

Under very specific conditions the compressibility can be

negative [27, 28].

The compressibility of water can be neglected, if one con-

siders seepage through sands, but not when the flow through

a fissured rock is analysed.

1.9. Scope of the paper. A stationary process of seepage

through the elastic porous medium is studied. Firstly, On-

sager’s theory is applied to obtain the entropy production by

flow through porous medium in description by Darcy’s law,

considered as a phenomenological law, Sec. 2. Next, we dis-

cuss the properties micro-porous body, their mathematical for-

mulation (Sec. 3) and we derive on Darcy’s law from Stokes’

equation for slow stationary flows. Next, Darcy’s law, recuper-

ated in this manner is used to verify the Onsager approach, for

incompressible flow (Sec. 4), and compressible flows (Sec. 5).

In Sec. 5 we prove that the results obtained for incompress-

ible fluid flows through micro-periodic porous media still hold

true for the compressible flows. The total entropy production

obtained from the Stokes equation via asymptotic expansions

is compared with the Onsager’s theory presented in Sec. 2.
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2. Entropy production

in Darcy’s flow after Onsager

Now, we apply Onsager’s theory to determine the entropy

production in Darcy’s flow.

Let xa = x1, x2, · · · be some quantities characterising

the state of some closed system. Their equilibrium values

are given by the condition that in statistical equilibrium, the

entropy S of the whole system must reach a maximum. If

Xa ≡ −∂S/∂xa, in equilibrium Xa = 0 for all a.

In a state near of equilibrium all the xa are very little

different from their equilibrium values and the Xa are small.

Processes will occur which tend to bring the system again

into equilibrium. The quantities xa are functions of time, and

their rate of change is given by the time derivatives ẋa. In the

linear approximation

ẋi = −
∑

b

γabXb,

where γab are called the kinetic coefficients. Onsager’s prin-

ciple for the kinetic coefficients states that the γab are sym-

metrical with respect to suffices a and b, it is γab = γba.

The rate of change of the entropy S is

Ṡ = −
∑

a

Xaẋa.

In Darcy’s flow, cf. Eq. (1),

vi = −Kij

∂p

∂xj

(17)

we identify the velocity v with ẋa, the pressure gradient ∇p
with Xa, and the permeability coefficient Kij with the kinetic

coefficient γab. Then, the total entropy production should be

given by

Ṡ = C

∫

Ω

Kij

∂p

∂xi

∂p

∂xj

dx (18)

with Ω being the volume of the porous body, and C - a con-

stant, dependent on the definition of streams and thermody-

namic forces.

3. Stationary viscous flow through

a porous medium

3.1. Rescaling of the viscosity. In order to obtain the macro-

scopic description of the medium with micro-structure we

should pass with the smallnes parameter ε to zero. This, how-

ever leads to a difficulty, as it is explained below in an example

of Hagen-Poiseuille’s flow.

For a pipe whose cross-section is an equilateral triangle

with side a, cf. Fig. 2, the volumetric discharge, it is the vol-

ume Q of incompressible fluid passing per unit time through

any cross-section of the pipe is

Q =

√
3

320η
a4 ∆p

l
,

where ∆p is the pressure difference between the ends of the

pipe and l is its length [13], and the quotient (−∆p/l) denotes

the pressure gradient. The discharge Q of the fluid is thus pro-

portional to the fourth power of the side of the triangle being

a cross-section of the pipe.

Fig. 2. Drop of the total discharge Qtot with gradual division of the

initial cross-section. If a pipe has still triangular cross-section, but

the triangle has side a/2, then the output is 16 times smaller. If the

pipe initially with side a is divided in 4 pipes with still triangular

cross-sections, everyone with side a/2 and with infinitely thin but

rigid walls, then the total discharge is 4×(1/16) = 1/4 of the initial

discharge Q, and so on

Let a pipe have still triangular cross-section, and the cor-

responding equilateral triangle has the side

an =
1

2n
a,

where n is a integer, n > 1. Then the discharge is

Qn =
1

24n
Q.

If the pipe initially with the side a is divided in 22n sub-pipes

with still triangular cross-sections but each with side a/(2n)
and every sub-pipe has infinitely thin but rigid walls, then the

total output of all sub-pipes is

Qt = Qn22n =
1

24n
22nQ =

1

22n
Q

and for n → ∞ the total discharge vanishes, Qt → 0, cf.

Fig. 2. To overcome such situation, as we still are to describe

the real porous medium which has a finite discharge, and the

passing with ε to zero is only a mathematical method to smear

out the inhomogenity of porous medium, we have to rescale

the viscosity, and put

ηε = ε2η. (19)

In our example ε = 1/2n. This rescaling assures the finite

discharge for n → ∞, cf. also [29].

3.2. Two-scale asymptotic approach. For a fixed ε > 0 all

the relevant quantities are denoted with the superscript ε. Let

us denote by uε the displacement field in the solid part Ωε
S of

the porous medium – liquid system, and let vε be the velocity
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field and by pε the pressure in the liquid occupying Ωε
L. These

fields satisfy equations of Lamé and Stokes, respectively,

∂

∂xi

(

Cijmn

∂uε
m

∂xn

)

= 0,

−∂pε

∂xi

+ ηε
ijmn

∂2vε
m

∂xj∂xn

= 0.

(20)

According to previous subsection, cf. Eq. (17), the following

rescaling should be introduced

ηε
ijmn = ε2ηijmn. (21)

The condition imposed on the solid-liquid interface Γε are

‖σε
ij‖nj = 0 and vε = 0. (22)

Here ‖σε
ij‖nj denotes the jump of stresses, ‖σε

ij‖nj =

σLε
ij nj−σSε

ij nj , and σLε
ij and σSε

ij denote the stresses on liquid

and solid sides of the interface, respectively.

The appropriate continuity equations, depending on

whether the liquid is incompressible or compressible, should

be added.

The stress tensor is specified by

σε
ij =















Cijmn

∂uε
m

∂xn

in Ωε
S

−pδij + ε2ηijmn

∂vε
m

∂xn

in Ωε
L

(23)

Accordingly to two-scale asymptotic approach, instead of

one space variable x, we introduce two variables, macroscop-

ic x and microscopic y, where y = x/ε and instead of a

function f(x) consider the function f(x, y). Taking into ac-

count the formula for the total derivative (known as the chain

rule) we have

∂f(x,y)

∂xi

=
∂f(x,y)

∂xi

+
1

ε

∂f(x,y)

∂yi

with y =
x

ε
.

Finally, the asymptotic expansions are introduced

uε(x) = u(0)(x,y) + εu(1)(x,y) + ε2u(2)(x,y) + · · ·

pε(x) = p(0)(x,y) + εp(1)(x,y) + ε2p(2)(x,y) + · · ·

vε(x) = v(0)(x,y) + εv(1)(x,y) + ε2v(2)(x,y) + · · · ,

(24)

where functions u(i)(x,y), p(i)(x,y) and v(i)(x,y), i =
0, 1, 2, · · · are Y -periodic.

4. Incompressible flow

If the liquid is incompressible, we have the following incom-

pressibility condition

∂vε
k

∂xk

= 0. (25)

Substituting expansion (24)3 into condition (25) we obtain
(

∂

∂xk

+
1

ε

∂

∂yk

)

(

v
(0)
k + εv

(1)
k + ε2v

(2)
k + · · ·

)

= 0 (26)

which provides a chain of equations for coefficients at differ-

ent degrees of ε, for ε → 0.

In order to avoid the singularity ε−1, the coefficients at

ε−1 in Eq. (26) should vanish. Hence

∂v
(0)
k

∂yk

= 0 (27)

and at ε0

∂v
(0)
k

∂xk

+
∂v

(1)
k

∂yk

= 0. (28)

Averaging, cf. Eq. (3), the last equation over the basic cell Y
and using periodic boundary conditions gives

∂〈v(0)
k 〉

∂xk

= 0. (29)

Next, substituting expansions (24) into Eqs.(20) together with

the rescaling of viscosity (21) and comparing terms associat-

ed with the same power of ε, we arrive at the homogenized

set of equations.

The coefficient at ε−2 appears in Eqs. (20)1 only. We must

put

∂

∂yi

(

Cijmn

∂u
(0)
m

∂yn

)

= 0. (30)

Hence, we find that u(0) can depend only on x but not on y,

u(0) = u(0)(x(0)). (31)

The coefficients at ε−1 in Eqs. (20) should vanish also

∂

∂yi

{

Cijmn

(

∂u
(0)
m

∂xn

+
∂u

(1)
m

∂yn

)}

= 0,

−∂p(0)

∂yi

= 0.

(32)

From Eq. (32)2 we find that p(0) can depend only on x

but not on y,

p(0) = p(0)(x). (33)

To satisfy Eq. (32)1 we substitute

u(1)
m (x,y) = Ampq(y)

∂u
(0)
p (x)

∂xq

+ Pm(y)p(0)(x). (34)

Here the functions Ampq(y) and Pm(y) are Y -periodic solu-

tions to the following local equations

∂

∂yj

(

Cijpq + Cijmn

∂Ampq

∂yn

)

= 0,

∂

∂yj

(

δij + Cijmn

∂Pm

∂yn

)

= 0.

(35)
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The coefficients at ε0 in Eqs. (20) yield

∂

∂xi

{

Cijmn

(

∂u
(0)
m

∂xn

+
∂u

(1)
m

∂yn

)}

+
∂

∂yi

{

Cijmn

(

∂u
(1)
m

∂xn

+
∂u

(2)
m

∂yn

)}

= 0,

−
(

∂p(0)

∂xi

+
∂p(1)

∂yi

)

+ ηijmn

∂2v
(0)
m

∂yj∂yn

= 0.

(36)

The last equality (36)2 is satisfied if

p(1) = ξj(y)
∂p(0)(x)

∂xj

(37)

and

v
(0)
i = −χik(y)

∂p(0)(x)

∂xk

, (38)

where ξ = ξ(y) and χik(y are Y – periodic functions so-

lutions to local problems, defined on the elementary cell Y ,

cf. [15].

Substituting expressions (37) and (38) into Eq. (36)1 gives

δik +
∂ξk

∂yi

+ ηijmn

∂2χmk

∂yj∂yn

= 0. (39)

As the velocity v(0) satisfies also the incompressibility

Eq. (27), we have the additional condition

∂χik

∂yk

= 0. (40)

Averaging the expression (38) over the basic cell Y , cf.

Eq. (3), gives Darcy’s law

v
(0)
i = −Kij

∂p(0)(x)

∂xj

, (41)

where

Kij = 〈χij(y)〉. (42)

Applying the asymptotic expansions (24) to the materi-

al relation (23), comparing the terms at ε0, and performing

averaging over the basic cell, we get

〈σ(0)〉 = Ch
ijmn

∂u
(0)
m

∂xn

+

(〈

Cijmn

∂Pm

∂yn

〉

− δij

)

p(0), (43)

where

Ch
ijpq =

〈

Cijpq + Cijmn

∂Ampq

∂yn

〉

. (44)

Equation (43) expresses the material law for a porous body

in which the skeleton is elastic and the fluid incompressible.

4.1. Entropy production in incompressible Darcy’s flow.

After Eq. (16) we have

ρT ε dsε

dt
= ηε

ijmn

∂vε
m

∂xn

∂vε
i

∂xj

. (45)

We expand the density of entropy s (per unit volume) and the

temperature T into the series

sε(x, t) = s(0)(x, y, t) + εs(1)(x, y, t)

+ ε2s(2)(x, y, t) + · · · ,

T ε(x, t) = T (0)(x, y, t) + εT (1)(x, y, t)

+ ε2T (2)(x, y, t) + · · ·

(46)

and substitute these expansions together with (21) and (24)

into (45) to obtain

ρ
(

T (0)(x, y, t) + εT (1)(x, y, t) + ε2T (2)(x, y, t) + · · ·
)

× d

dt

(

s(0)(x, y, t) + εs(1)(x, y, t) + ε2s(2)(x, y, t) + · · ·
)

= ε2ηijmn

{(

∂

∂xn

+
1

ε

∂

∂yn

)

(

v(0)
m + εv(1)

m + ε2v(2)
m + · · ·

)

}

×
{(

∂

∂xj

+
1

ε

∂

∂yj

)

(

v
(0)
i + εv

(1)
i + ε2v

(2)
i + · · ·

)

}

.

(47)

At ε0 we obtain

ρT (0) ds(0)

dt
= ηijmn

∂v
(0)
m

∂yn

∂v
(0)
i

∂yj

(48)

or, after using (38)

ρT (0) ds(0)

dt
= ηijmn

∂χmq

∂yn

∂χik

∂yj

∂p(0)

∂xq

∂p(0)

∂xk

. (49)

We remember that p(0) depend on x only, cf. Eq. (33). Inte-

grating by parts over the basic cell Y we have

ρT (0) ds(0)

dt
=

1

|Y |

∫

Y

dy

{

∂

∂yj

(

ηijmn

∂χmq

∂yn

χik

)

− ηijmn

∂2χmq

∂yj∂yn

χik

}

∂p(0)

∂xq

∂p(0)

∂xk

and after taking into account periodic boundary conditions

ρT (0) ds(0)

dt
= − 1

|Y |

∫

Y

dy

{

ηijmn

∂2χmq

∂yj∂yn

χik

}

∂p(0)

∂xq

∂p(0)

∂xk

or, after using Eq. (39)

ρT (0) ds(0)

dt
=

1

|Y |

∫

Y

(

δiq +
∂ξq

∂yi

)

χikdy
∂p(0)

∂xq

∂p(0)

∂xk

The second term in parentheses written according to the re-

lation
∂ξq

∂yi

χik =
∂

∂yi

(ξqχik) − ξq

∂χik

∂yi

vanishes after integration: the first terms because of the pe-

riodic boundary conditions, and the second after Eq. (40).

Hence
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ρT (0) ds(0)

dt
= Kiq

∂p(0)

∂xq

∂p(0)

∂xk

, (50)

where Kiq is given by (42).

After integration over the whole volume Ω we get

ρT
dS(0)

dt
=

∫

Ω

Kjm

∂p(0)

∂xj

∂p(0)

∂xm

dx (51)

and this is an analog of the result for the total entropy pro-

duction (18).

5. Compressible flow

The general scheme of homogenization in this case is the

same as in the case of incompressible flow. Only the equation

of continuity is different, and this fact can lead to another

definition of the local function χij . However, we show below

that what concerns the micro-periodic porous medium, the

results obtained for incompressible fluid still hold true for the

compressible one.

The continuity equation reads now

∂

∂xi

(ρεvε
i ) = 0 (52)

and it is assumed that the liquid is described by a linear state

equation expressing the density ρ by the pressure p,

ρε = ρ0 + βpε (53)

where ρ0 and β are constant.

Additionally to previous expansions, the density ρ is also

expanded

ρε(x) = ρ(0)(x, y) + ερ(1)(x, y) + ε2ρ(2)(x, y) + · · · . (54)

The continuity equation takes the form
(

∂

∂xi

+
1

ε

∂

∂yi

)

{(

ρ(0) + ερ(1) + ε2ρ(2) + · · ·
)

(

v
(0)
i + εv

(1)
i + ε2v

(2)
i + · · ·

)}

= 0.

(55)

The state equation
(

ρ(0) + ερ(1) + ε2ρ(2) + · · ·
)

= ρ0 + β
(

p(0) + εp(1) + ε2p(2) + · · ·
)

(56)

at ε → 0 reduces to the form

ρ(0) = ρ0 + βp(0). (57)

The continuity Eq. (55) yields at ε−1

∂

∂yi

(

ρ(0)v
(0)
i

)

= 0 (58)

and at ε0

∂

∂xi

(

ρ(0)v
(0)
i

)

+
∂

∂yi

(

ρ(0)v
(1)
i + ρ(1)v

(0)
i

)

= 0. (59)

But from Eq. (33) we know that p(0) does not depend on y.

Hence from (57) we deduce that

ρ(0) = ρ(0)(x). (60)

We observe Eq. (58) for linearly compressible fluid is the same

as Eq. (27) of incompressible fluid. Hence all discussion on

the entropy production in compressible Darcy’s flow can be

repeated after the discussion of the incompressible flow, and

leads to the same results.

6. Final remarks

6.1. Results. We have derived expressions characterizing

the seepage through micro-periodic porous media for com-

pressible fluid. In particular, we have found that the result

for the entropy production can be included into Onsager’s

scheme.

We have shown also that what concerns the micro-periodic

porous medium, the results obtained for incompressible fluid

still hold true for the compressible one.

The entropy growth in flow through micro-porous medi-

um was analysed using two formulations. The Stokes equation

and Darcy’s law, and it was shown that the entropy rate of

growth in both approaches is the same. It means that the both

descriptions satisfy a requirement of thermodynamic consis-

tency, cf. [30].

Our result once more affirms opinion that Onsager’s recip-

rocal relations can be regarded as a universal natural law, the

scope and importance of which becomes clear only after being

put in a proper relation to complicated questions in border ar-

eas between physics and chemistry. For his discovery of these

reciprocal relations, Lars Onsager was awarded the 1968 No-

bel Prize in Chemistry. The presentation speech referred to

the three laws of thermodynamics and then added “It can be

said that Onsager’s reciprocal relations represent a further law

making a thermodynamic study of irreversible processes pos-

sible”, cf. [31]. Some authors have even described Onsager’s

relations as the “Fourth law of thermodynamics”.

6.2. Viscosity tensor. The viscosity of the fluid is important

characteristic, as the starting point of the above analysis is

Stokes’ equation.

There were two reasons to use the tensor description of

viscosity. First, as it was explained, it gives more compact no-

tation. Second reason, it is a hope that such, a more general

description can find an application after a possible discovery

of new kinds of fluids. For an analogy, in the theory of liquid

crystals a second rank symmetric traceless tensor order para-

meter is used to describe the orientational order of nematics.

On the other hand, A. Cemal Eringen considers linear con-

stitutive equations of anisotropic micropolar fluids [32], cf.

also [33].

The molecular theory of the elastic constants of simple

liquids has been given a firm foundation by Zwanzig and

Mountain [34]. The elastic constants of liquids are high-

frequency limits of the corresponding generalized viscosi-

ties.
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6.3. Positives and negatives of the used model. We consid-

ered a two-component cellular structure as a model of porous

medium. The structure is made up from an elastic skeleton

and of a viscous fluid (incompressible or compressible one).

The walls of canals in the skeleton are supposed to be im-

permeable for the fluid, and the accepted boundary condi-

tions at the solid-liquid interface were actually the same as

would be accepted for the walls of any macroscopic canal.

It is an obvious idealisation, however it represents the main

features of the real porosity. In limit passage ε → 0 it as-

sures, at least qualitatively Darcy’s flow, and as it was shown

above the irreversible thermodynamics relation on the entropy

growth.

Properly speaking, the fluid flows through canals are for-

mally macro-canals, as its walls are impermeable (they are

made of continuous solid and do not demonstrate any granu-

lar or molecular structure). Only after homogenisation, ε → 0,

the macro-canals become micro-canals and Darcy’s flow is re-

gained, and only then the cellular structure can be considered

as a porous medium (for which, among others, Darcy’s law is

valid). The discussed flow is a creeping, also known as Stokes’

flow, in which inertial forces are small compared with viscous

forces, the fluid velocities are low, the viscosities are large,

and hence Reynolds’ number is low. The argumentation itself

is patterned on Sanchez-Palencia derivation [15], to which an

explanation of scaling of the viscosity by the ε2 factor was

added.

More accurate, but also more cumbersome description of

the seepage can be realised by analysing the double scale

porosity solid, cf. [35]. We did not use this model, as the

one scale porosity has revealed to be sufficient to verify the

entropy growth property of the flow.

As a result of the fluid pressure the elastic skeleton is

subject to a displacement field, constant in the time. For un-

steady flows the inertia forces appear and the homogenisation

leads to an extended Darcy’s law (with time convolutions),

cf. [21, 22]. Thermodynamics of such flows needs further in-

vestigation.
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