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ESTIMATING THE SAFETY PERFORMANCE FUNCTION FOR URBAN 
UNSIGNALIZED FOUR-LEGGED ONE-WAY INTERSECTIONS IN PALERMO, 

ITALY

O. GIUFFRÈ1, A. GRANÀ2, T. GIUFFRÈ3, R. MARINO4, S. MARINO5

Starting from consideration that urban intersections are sites with promise for safety and opera-
tional improvements, the paper describes the steps taken to develop a crash predictive model for 
estimating the safety performance of urban unsignalized intersections located in Palermo, Italy. 
The focus is on unsignalized four-legged one-way intersections widespread in Italian downtowns. 
The sample considered in the study consist of 92 intersections in Palermo, Italy. For the study were 
collected crashes occurred in the sites during the years 2006-2012, geometric design and functional 
characteristics and traffi c fl ow. Results showed that data were overdispersed and NB1 distributed. 
In order to account for the correlation within responses Generalized Estimating Equations (GEE) 
were used under different working correlation matrices. 
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1. INTRODUCTION

Italian offi cial statistics report a high number of crashes occurring yearly on the national 
road network. For instance, in 2011 in Italy there were 205,638 injury crashes whereas 
the number of deaths was 3,860 and that of injured was 292,019 (Istat [1]). Compared 
to 2010, there was a decrease in the number of total crashes (-2.7%) and injury crashes 
(-3.5 %). A more substantial reduction was observed in the number of deaths (-5.6 %); 
from 2001 to 2011, the reduction in the number of deaths amounted to 45.6 %. 
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The target set by the European Union in the 2001 White Paper provided for a reduc-
tion of 50% of road deaths by 2010. Although Italy has approached the hoped reduction, 
that target has not yet reached; however, the reduction of 45.6% recorded in Italy is 
higher than the European mean value equal to 44.5%.

This important safety problem has also been observed on the urban road network 
located in and around Italian cities and towns. According to offi cial statistics (Istat [1]), 
a large percentage of crashes occur in urban areas; on Italian roads inside urban ag-
glomerations, indeed, in 2011 there were 157,023 crashes (76% of all crashes in Italy), 
leading to 213,001 injuries (73%) and 1,744 deaths (45%), whereas crashes on free-
ways accounted for 5% of the total (11,007), with 18,515 injuries (6%) and 338 deaths 
(9%). On the other rural roads, except the freeways, there were 37,608 crashes, 65,503 
injuries and 1,778 deaths. However crashes happening on urban roads are less severe, 
with the mortality index equal to 1.1 deaths/100 crashes, while this index is equal to 3.1 
deaths/100 crashes and 4.7 deaths/100 crashes on freeways and the other rural roads, 
respectively.

Urban crashes are concentrated at road junctions and intersections where the poten-
tial for vehicle–vehicle and vehicle–pedestrian confl icts is high. Italian offi cial statistics 
inform that in 2011 69.7% of deaths are drivers, 15.3% are passengers and 15.1 % 
pedestrians (Istat [1]). Moreover, in the context of improper driving behaviors, failure 
to comply with the give-way sign and/or the traffi c signals at urban intersections is the 
fi rst cause of crashes (19.6%); this doesn’t happen in rural roads where distraction and 
high speed are prevalent, with percentages of 19,7% and 18,1%, respectively. It should 
be said, however, that some forms of intersection control are more effective than others 
in reducing confl icts (Ewing and Dumbaugh [2]). 

Anyway, in many cities and towns of the national territory of Italy, a large number 
of intersections are considered sites with promise for safety and operational improve-
ments. Several studies have been carried out in many countries to establish relationships 
between crashes and fl ow and non-fl ow explanatory variables, using statistical tools 
to investigate factors critical to road safety; see Poch and Mannering [3], Lord and 
Persaud [4], Oh at al. [5], Abdel-Aty et al. [6]. 

This paper documents one component of the safety tools that are currently under 
development (HSM [7]). Indeed the paper describes the steps taken to develop a crash 
predictive model for estimating the safety performance of urban unsignalized inter-
sections located in Palermo, Italy. The focus is on four-legged one-way unsignalized 
intersections widespread in Italian downtowns. It has to be noted that there has been 
a signifi cant amount of researches done on the development and application of safe-
ty performance functions for various types of road safety analyses, with reference to 
roadway segments and (signalized or unsignalized) intersections (Rodegerdts et al. [8], 
Turner et al. [9], Cafi so and D’Agostino [10]. However, the number of studies dedicated 
to the type of unsignalized intersections here examined is to date rather limited, since 
these intersections are more common in European cities than other places around the 
world, such as in North America.
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The methodological path followed in this research allowed to handle issues associ-
ated with the estimation of a safety performance function (SPF) for this particular kind 
of unsignalized intersections. Several crash predictive models were developed using the 
NB1 and NB2 modeling framework. Both fl ow-only models and models also including 
non-fl ow covariates were estimated using crashes and other related data collected at 
a sample of 92 four-legged intersections for the years 2006–2012. 

At last, results supply methodological insights that may be useful in the subsequent 
quantifying of benefi ts obtainable by engineering measures aimed at enhancing traffi c 
safety in built up areas. 

Next section will summarize the description of data here analyzed; then the meth-
odology for estimating the model with fl ow and non-fl ow variables; at last results will 
be presented and discussed.

2. DATA DESCRIPTION

The examined sample consists of four-legged unsignalized intersections, each of them 
with one-way approaches. The data collected included geometric design and functional 
characteristics, crash data and traffi c volumes. Except for the crashes all the data were 
obtained from on-site visits. In spite of the costs associated with the data collection 
process, the sample was limited to 92 sites. 

Fig. 1. Sample location in the Palermo road network
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Since seven years of crash data were considered as distinct observations, there were 
in total 644 observations over the period 2006–2012 for the selected four-legged inter-
sections; crash observations were considered as repeated measurements.

Crash data were collected from the offi cial crash statistics database available at the 
Municipal Police Force in Palermo and police reports. Given the scope of this study, 
only crashes classifi ed as intersection-related were considered in the development of the 
statistical models. Studies reported in literature are not unanimous in giving the exact 
defi nition of crashes intersection-related and have used different criterion (e.g. Vieira 
Gomes et al. [11]). Thus, for this study it was decided to use a radius of 20 meters from 
the center of the intersection to classify crashes as intersection-related.

Figure 1 shows the graphical representation of the Palermo road network and the 
location of the intersections used in this study. 

Traffi c data surveys were carried out during 2012. Traffi c fl ow counts at intersec-
tions were collected manually, with several operators that counted the infl ow on each 
leg. Since traffi c fl ow counts were all collected in weekdays, it was assumed that the 
values obtained represented the Average Annual Daily Traffi c (AADT). The changes in 
major-road AADT and minor-road AADT over time were estimated for each intersec-
tion and for each year in accordance with the growth of vehicle registrations from 2006 
to 2011 (Automobile Club of Italy [12]). 

Table 1 summarizes important data characteristics for crash data occurring at 
four-legged intersections. 

Table 1
Summary statistics of crash dataset

 
Crashes AADT on major road AADT on minor road

min mean max total min max min max

2006 0 0.92 7 85 6,400 30,430 3,800 18,410

2007 0 0.95 8 87 6,496 30,886 3,857 18,686

2008 0 0.98 8 90 6,593 31,350 3,915 18,966

2009 0 1.00 12 92 6,692 31,820 3,974 19,251

2010 0 1.09 15 100 6,793 32,297 4,033 19,540

2011 0 1.08 14 99 6,895 32,782 4,094 19,833

2012 0 1.02 13 94 6,998 33,273 4,155 20,130

2006-2012 0 1.00 15 647 6,400 33,273 3,800 20,130

Note: AADT values are in veh/d

Table 2 summarizes the key variable statistics of the intersections used in this study. 
The minimum and maximum AADT values on major road ranged from about 6,400 to 
little more than 33,000 vehicles per day whereas AADT values on minor road ranged 
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from about 3,800 to little more than 20,000 vehicles per day. Among the variables col-
lected, number of entering lanes per leg, average lane width, parking on road sides and 
visibility conditions on intersection approaches were included. 

Table 2
Summary statistics of the dataset

Variable Description min max mean std. dev. frequency

F1 AADT on major [10^3 veh/d] 6.40 33.27 16.05 4.06 92

F2 AADT on minor [10^3 veh/d] 3.80 20.13 11.17 3.34 92

FT F1+F2 [10^3 veh/d] 10.20 53.40 27.22 6.50 92

FR F2/FT [10^3 veh/d] 0.25 0.50 0.41 0.06 92

FQ F2/F1 [10^3 veh/d] 0.34 0.99 0.71 0.18 92

NL1 number of entering lanes on 
major > 1

1 – yes - - - - 13.04 %

0 – no - - - - 86.96 %

NL2 number of lanes on minor >1
1 – yes - - - - 1.09 %

0 – no - - - - 98.91%

LW1 average lane width on major [m] 3.50 10.50 4.89 1.39 92

LW2 average lane width on minor [m] 3.00 7.00 4.05 0.74 92

P1
parking on both sides of 

major road
1 – yes - - - - 91.30 %

0 – no - - - - 8.70 %

P2
parking on both sides of 

minor road
1 – yes - - - - 91.30 %

0 – no - - - - 8.70 %

V1
good visibility on major road 

approach 
1 – yes - - - - 35.87 %

0 – no - - - - 64.13 %

V2
good visibility on minor road 

approach 
1 – yes - - - - 38.04 %

0 – no - - - - 61.96 %

3. MODEL SELECTION

The fi rst step to develop a Safety Performance Function (SPF) is to select which explan-
atory variables should be used and to set the model form; these tasks were discussed in 
previous papers (Giuffrè et. al, [13]; Giuffrè et. al, [14]; Giuffrè at al [15]). Covariates 
explored in the current study are listed in Table 3; they were selected looking at safety 
performance function for urban unsignalized intersections referred in literature over last 
10 years (e.g. Bauer and Harwood, [16]; McGee, Taori, Persaud [17]) and considering 
the statistical signifi cance of each variable. 
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First column in Table 3 reports all the variables collected for each site and consid-
ered in the study; in the third column are marked the variables that were found to be 
signifi cant at the 15% confi dence level; in the right column the variables included in the 
model specifi cation.

Table 3
Variables explored and selected

Variables Abbreviation Signifi cant 
variables

Selected 
variables

Annual Average Daily Traffi c on major-road F1 

Annual Average Daily Traffi c on minor-road F2

Sum of Annual Average Daily Traffi c on major and 
minor-road (FT) F1 + F2  

 Ratio between Annual Average Daily Traffi c on minor-road 
and Total Annual Average Daily Traffi c entering 
in intersection

F2 / (FT) 

Ratio between Annual Average Daily Traffi c on minor and 
major-road F2 / F1 

Major-road number of lanes NL1  

Minor-road number of lanes NL2

Major-road lane width LW1 

Minor-road lane width LW2

Parking on major-roadside (0 if it is permitted only on one 
side, 1 otherwise) P1

Parking on minor-roadside (0 if it is permitted only on one 
side, 1 otherwise) P2

Visibility on major-road approaching intersection (0 if it is 
insuffi cient, 1 otherwise) V1

Visibility on minor-road approaching intersection (0 if it is 
insuffi cient, 1 otherwise) V2

 signifi cant at the 15% confi dence level

Different model forms (see Table 4) were investigated considering the combi-
nations of all the variables listed in Table 3. The results of this exploratory analysis 
revealed that the best functional relationship between crashes and the signifi cant co-
variates was the power function for the variable F1  +  F2 and the exponential function 
for the variable NL1.
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Table 4
Model forms investigated

Name Model form

Power function y = β0Xβ

Exponential function y = β0eβX

Gamma function y = β0XβeβX

It has to be noted that F1, F2 / FT and F2 / F1 were excluded from the model for two 
reasons: i) they were partially accounted in the variable F1  +  F2; ii) their introduction in 
the model either in the power or in the exponential function produced no appreciable 
benefi ts on the model performance.

Then the fi nal selected model had the form:

(3.1) j121
NL

ij210ij eFFy

where:
yij = expected number of crashes for the year i and the intersection j;
(F1+F2)ij = sum of Annual Average Daily Traffi c on major and minor-road for the 

year i and the intersection j;
NL1j = major-road number of lanes at the intersection j
β0, β1, β2, = parameters to be estimated.

4. DEVELOPMENT OF SAFETY PERFORMANCE FUNCTION

The relationship between crash frequency and traffi c/geometric variables for roadway 
segments and intersections has been the subject of study for many years. A wide number 
of research efforts have examined this relationship with the purpose of determining 
the effect of road and intersection design on the frequency of crashes. Technique of 
Generalized Linear Models (GLMs) has been recognized able to offer a soundly-based 
approach for analyzing this kind of data and fi tting predictive crash models. Due to the 
nature of crashes occurrence, the assumption of a Poisson distribution for the crash fre-
quency in a given time period at any one site has proven to be a good choice to model 
the process (Maher, Summersgill, [18]). Assuming the Poisson model, the functional 
forms of relationships can be estimated using the technique of Generalized Linear Mod-
els (GLMs) (McCullagh, Nelder [19]). However, crash data characteristics and method-
ological-technical issues may impair the effi cient use of the Poisson model, which thus 
could produce considerable bias in parameters estimates and possible erroneous infer-
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ences (Lord, Mannering [20]; Poch, Mannering, [3]). The use of Poisson assumes that 
the mean and the variance of the distribution are equal, but this assumption is often too 
much restrictive for crash data. Evidence suggests that crash data counts may be overd-
ispersed (the variance exceeds the mean of the crash counts on road entities), otherwise 
in few cases the data may be underdispersed (the mean is greater than the variance). The 
Poisson model, indeed, cannot take account of overdispersion (and underdispersion); in 
order to relax the Poisson assumption of equidispersion, quasi-likelihood methods rep-
resent a potential solution. Several authors have addressed the overdispersion issue by 
using the Negative Binominal regression model; see e.g. Poch, Mannering, [3] Miaou 
[21]. Properties of the traditional NB models have been illustrated by Cameron and 
Trivedi [22].

Because crash counts often consist of observations over several time periods it is 
also necessary to take into account the question of temporal correlation in the data. 
However considering correlation in the data, the likelihood function becomes very com-
plicated to solve (Cameron and Trivedi [22]; Cafi so and D’Agostino [10]), but Gener-
alized Estimating Equations (GEEs) overcome this problem (Liang and Zeger [23]). 
The failure of the independence hypothesis for the response variate is a serious issue 
in safety modeling, that is why elusion of the correlation within responses can lead to 
misleading conclusions in model interpretation on the basis of incorrect estimates of the 
variances and of an ineffi cient or biased estimate of the regression coeffi cients (Giuffrè 
et. al [13]; Diggle et al. 2002 [24]).

Starting from these considerations, the purpose of the study was to calibrate 
a Safety Performance Function for urban four-legged one-way intersections and to 
improve parameters estimates effi ciency taking into account either dispersion and 
temporal correlation in the data. First in this section it is addressed the problem of 
dispersion in the data using quasi-likelihood methods in GLM context. In order to 
select the best model different goodness-of-fi t methods have been used to evaluate 
predictive performance of models and to fi nd the model that best explains the data 
among all estimated models. Second it is addressed the problem of temporal correlation 
in the data; therefore the model selected in GLM context has been recalibrated using 
Generalized Estimating Equations (GEEs) under different correlation structures of the 
data; again different goodness-of-fi t methods have been used to evaluate predictive 
performance of the model. 

4.1. GOODNES OF FIT

Technical literature suggests different goodness-of-fi t methods to evaluate predictive 
performance of models and to fi nd the model that best explains the data among all 
estimated models. The methods used in this paper include the following (where the 
subscript “i” denotes the generic observation at year t and at site j): 
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Mean Prediction Bias (MPB)
MPB gives a measure of the magnitude and direction of the average model bias (Oh 
et al. [5]). If the MPB is positive then the model over-predicts crashes and if the MPB 
is negative then the model under-predicts crashes. It is computed using the following 
equation:

(4.1) )yŷ(
N
1MPB i

N

1i
i

where N is the sample size, ŷi and yi are the predicted and observed crashes at site 
i respectively.

Mean Absolute Deviance (MAD)
MAD gives a measure of the average mis-prediction of the model (Oh et al. [5]). The 
model that provides MAD closer to zero is considered to be the best among all the 
available models. It is computed using the following equation:

(4.2) i

N

1i
i

yŷ
N
1MAD

Mean Squared Predictive Error (MSPE)
MSPE is typically used to assess the error associated with a validation or external data 
set (Oh et al. [5]). The model that provides MSPE closer to zero is considered to be the 
best among all the available models. It can be computed using the following equation:

(4.3) 
2N

1i
ii yŷ

N
1MSPE

Akaike Information Criterion (AIC)
The AIC (Akaike [25]) is a measure of the goodness-of-fi t of an estimated statistical 
model and is defi ned as:

(4.4) AIC = −2 log L + 2 p

where:
L = the maximized value of the likelihood function for the estimated model;
p = the number of parameters in the statistical model. 
The AIC methodology is used to fi nd the model that best explains the data with 
a minimum of free parameters, penalizing models with a large number of parameters. 
The model with the lowest AIC is considered to be the best model among all available 
models.

Unauthenticated | 89.73.89.243
Download Date | 5/3/14 11:52 AM



O. GIUFFRÈ, A. GRANÀ, T. GIUFFRÈ, R. MARINO, S. MARINO50

Quasilikelihood under the Independence model Criterion (QIC)
As above referred, since the GEE method is a quasi-likelihood based method, an exten-
sion of the Akaike’s information criterion is needed to compare covariance matrices un-
der GEE models to the covariance matrix generated under the independence hypothesis. 
So AIC statistic is replaced by the QIC statistic, defi ned as (Pan [26]): 

(4.5) QIC = -2 Q + 2 p

where Q is the quasi-likelihood function (Q = L/ϕ) and p is the number of parameters in 
the statistical model. The model with the lowest QIC is considered to be the best model 
among all available models.

4.2. DEVELOPMENT OF SPF CONSIDERING DISPERSION IN THE DATA

In order to relax the Poisson assumption of equidispersion model regression coeffi cients 
and the associate standard errors were estimated in GLM context assuming Negative 
Binomial distributions (NB1 and NB2); in both cases GenStat software was used. These 
distributions are an effective tool to address problem of dispersion and to increase es-
timates effi ciency (Lord [27]); these models take into account for overdispersion by 
means of a parameter called overdispersion parameter α (with α > 1); wider considera-
tions are reported in the cited papers Giuffrè et. al [15]; Lord [27]).

Table 5 shows coeffi cient estimates and goodness-of-fi t for the model selected.

Table 5
Coeffi cients Estimates and Goodness-of-Fit in GLM context

Model form jNL
tjij eFFy 121

210

NB1 NB2

Variables est s.e. t est s.e. t

Constant (β0) -3.46 0.873 -3.96 -2.1 0.898 -2.34

F1+F2 (β1) 0.978 0.266 3.68 0.562 0.276 2.04

NL1 (β2) 0.935 0.137 6.82 1.04 0.167 6.25

α 1.72 0.443 3.88 1.07 0.180 5.94

MPB 0.00 -0.007

MAD 0.9931 1.00

MSPE 2.26 2.31

AIC 1.077 1.764
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From results showed in Table 5 it can be seen that the NB1 model fi ts the data better 
than the NB2 one as h ighlighted by standard errors that are lower for NB1 model. Also 
the goodness-of-fi t indicators show that the NB1 model performs data better than the 
NB2:
–  MPB values for both the model are almost the same and next to zero, denoting that 

the models have good prediction accuracy:
–  there are slight differences in MAD and MSPE values for the two models; values 

closer to zero of both indicators for NB1 model show that the latter performs data 
better than NB2;

–  the lowest AIC value clearly indicates that the NB1 model has to be considered the 
best between the two models.

4.3. DEVELOPMENT OF SPF CONSIDERING TEMPORAL CORRELATION IN THE DATA

In order to account for the correlation within responses NB1 model was fi tted again in 
GEE context considering different working correlation matrices, that is, assuming that 
repeated observations were correlated in different ways. Again GenStat software was 
used for this purpose. Four forms of correlation were explored starting from the sim-
plest one (independence structure) for which observations are thought (unrealistically) 
to be uncorrelated. In contrast to the hypothesis of independence was also assumed the 
unstructured structure to allow the free estimates on the within-site correlation from the 
data, the exchangeable structure that supposes no logical ordering for within-entity ob-
servations and a correlation structure of a stationary (n-1)-dependent process. The GEE 
regression results under the four named working correlation matrices are summarized 
in Table 6, in which are shown also the goodness of fi t indicators.

The results in Table 6 show that unstructured working correlation matrix fi ts the 
data better than the other structures. MPB, MAD and MSPE values are slightly dif-
ferent, however they show a better performance of the model with unstructured corre-
lation. Pan statistic, conversely, allows the best correlation structure to be determined 
clearly, in fact it can easily be seen that the best performance is supplied by assuming 
the unstructured hypothesis. 

5. CONCLUSION

The paper describes methods applied to develop a SPF for urban unsignalized four-leg-
ged one-way intersections. The sample considered in the study consist of 92 intersec-
tions in Palermo, Italy. For the study were collected crashes occurred in the sites during 
the years 2006-2012, geometric design and functional characteristics and traffi c fl ow. 
The fi st step in developing the SPFs involved the selection of explanatory variables to 
be used and how variables could enter into the model to choice the best model form. 
Two covariates were selected: F1 + F2 and NL1. With regards to the functional model 
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form, the power function seemed appropriate for the covariate F1 + F2 and the exponen-
tial function for covariate NL1. In order to relax the Poisson assumption of equidisper-
sion Negative Binomial models (NB1 and NB2) were implemented in GLM context. 
Results showed that data were overdispersed and that the NB1 model performed better 
than the NB2. In order to account for the correlation within responses NB1 model was 
fi tted again in GEE context considering different working correlation matrices (inde-
pendence, unstructured, exchangeable and 6-dependence). Results showed that the un-
structured working correlation matrix fi tted the data better than the other structures; Pan 
statistic allowed to choose the best correlation structure for the data better than the other 
goodness of fi t indicators used.
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