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Abstract. In this paper a fractional-order backward-difference/sum (FOBD/S) equivalent formulae are considered. From the Grünwald-

Letnikov (GL – FOBD) definition formula and its Horner equivalent form one derives the Riemann-Liouville FOBD (RL – FOBD). Also

the Caputo and polynomial-like forms are defined. All forms may be useful in real-time calculations (in the evaluation of digital control

strategies) due to the reduction of fractional orders. The investigations are illustrated by a numerical example.
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1. Introduction

In a discrete version of the Fractional Calculus the fractional-

order derivatives and integrals [1–4] are replaced by

fractional-order differences and sums [5]. As in the case of

fractional-order derivatives and integrals several equivalent

(under some assumptions) forms may be considered. The

most common in use are: Grünwald-Letnikov fractional-order

differ-integral (GL-FOD/S), FOD/S Horner form (H-FOD/S),

Riemann-Liouville FOD/S (RL-FOD/S), FOD/S Caputo form

[3, 4] and FOD/S Polynomial-Like form. The FO dynamical

systems (FOS) described by FO difference equations (FODE)

or state-space forms [6] reveal new unknown dynamical prop-

erties [7]. The FOS stability was analyzed among others pub-

lications [8, 9]. Another important property - controllability

was considered in [10]. Selected control strategies were pro-

posed in [11–15].

In practical applications of the Fractional Calculus [2] in

its discrete-time version where the fractional-order derivatives

and integrals are approximated by fractional-order differences

and sums in microprocessor calculations occurs so called “cal-

culation tail problem”. It is caused by finite system memory

and constant finite sampling time. This problem is also called

“a short memory principle” [4]. Since the problem has not yet

been satisfactorily solved, it induces attempts to find an “op-

timal” formula for fractional order backward difference/sum

real-time evaluation. The application of an “optimal FOBD/S

form”, due to a chosen optimality criterion and assumed frac-

tional order, may reduce calculation errors. The BD of the

fractional order ν may be evaluated directly or as the n-th

order classical difference of the FOBS of order n − ν or as

the FOBS of order n− ν of the n-th order difference. Here n
denotes an integer part of ν. This paper shows that the order

of operations (i.e. the chosen FOBD/S form) is important in

the calculations.

The paper is organized as follows. First, the basic equiv-

alent five definitions of the FOBD/FOBS [5] are given. In

Sec. 3 the main result – the equivalence of the introduced

forms are proved. They may serve in microprocessor fraction-

al order derivative/integral evaluation. In Sec. 4 a numerical

example is given.

1.1. Mathematical background and notation. In the pre-

sented paper, the following notations are applied. The ele-

ments of a set of non-negative integers Z+ are denoted by

Latin letters i, j, k, m, n whereas the elements of a set of

non-negative non-integers R+/Z+ are denoted by Greek let-

ters ν, µ, ξ. Discrete – variable functions of a real discrete-

variable k (sequences of real numbers) are denoted by f ,

g, h. Hence any function f is equivalently expressed as

f = f(k) = {fk0
, fk0+1, · · · , fk−1, fk}, a lower index k0

may be positive or negative.

2. Grünwald-Letnikov backward difference/sum

equivalent forms

Consider a discrete-variable bounded real function f(k) de-

fined over a discrete-time interval [k0, k]. In this Section

five equivalent (under some conditions) FOBD/S forms are

defined. One starts withe fundamental one known as the

Grünwald-Letnikov form.

Definition 2.1. (Grünwald-Letnikov fractional-order

backward-difference GL-FOBD).

A GL-FOBD of order ν ∈ R+/Z+ is defined as a finite

sum

GL
k0

∆
(ν)
k f(k) =

k
∑

i=k0

a
(ν)
i−k0

fk−i+k0
(1)

with coefficients a
(ν)
i

a
(ν)
i =











0 for i < 0

1 for i = 0

(−1)i ν(ν−1)···(ν−i+1)
i! for i = 1, 2, · · ·

. (2)
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One can easily check that substituting ν by n ∈ Z+ in (1)

one immediately gets a classical backward – differences of

order n

GL
k0

∆
(n)
k f(k) = ∆(n)f(k)

=











fk for n = 0

fk − fk−1 for n = 1

∆(n−1)f(k) − ∆(n−1)f(k − 1) for n > 1

(3)

Definition 2.2. (GL-FOBS).

A GL-FOBS of order ν ∈ R+/Z+ is defined as a finite

sum

GL
k0

∆
(−ν)
k f(k) = GL

k0
Σ

(ν)
k f(k) =

k
∑

i=k0

a
(−ν)
i−k0

fk−i+k0
. (4)

An n-fold sum of the discrete function f(k) (integer-order

backward-sum – IOBS) is obtained by a substitution of ν by

−n [16]

GL
k0

Σ
(n)
k f(k) =

k
∑

i1=k0

i1
∑

i2=k0

· · ·

in−1
∑

in=k0

fin
(5)

and is treated as IOBD of negative order −n < 0 [5].

One can realise that

GL
k0

∆
(−ν)
k f(k) = GL

k0
Σ

(ν)
k f(k),

GL
k0

∆
(ν)
k f(k) = GL

k0
Σ

(−ν)
k f(k).

(6)

To simplify the notation, in the IOBD/S formulae subscripts

defining an operation range are omitted. Hence

GL
k0

∆
(n)
k f(k) = GL

k−n∆
(n)
k f(k) = ∆(n)f(k). (7)

Also a simplified notation will be used

∆(n)f(k)
∣

∣

∣

k=l
= ∆(n)fl. (8)

It is worth to mention that the Grünwald-Letnikov FOBD/S is

naturally related to the Grünwald-Letnikov fractional – order

left – sided derivative/integral. One considers a continuous-

time function f(t) defined over interval [t0, t].

Definition 2.3. (Grünwald-Letnikov fractional – order left –

sided derivative).

For a positive integer k and a real number h satisfying

equality hk = t − t0 the Grünwald-Letnikov fractional-order

(left) derivative of a function f(t) is defined by the infinite

sum

GL
t0

D
(ν)
t f(t) = lim

h → 0+

k =
[

t−t0
h

]

{

1

hν
k0

∆
(ν)
k f(kh)

}

= lim
h → 0+

k =
[

t−t0
h

]

{

1

hν

k
∑

i=k0

a
(ν)
i−k0

fk−i+k0

}

,

(9)

where [x] denotes an integer part of x.

Definition 2.4. (H-FOB/D).

The Horner form of the FOBD is expressed as

H
0 ∆

(ν)
k y(k)

c
(ν)
0 [y(k) + c

(ν)
1 [y(k − 1) + c

(ν)
2 [y(k − 2) + . . .

+ c(k − 2)(ν)[y(2) + c(k − 1)(ν)[y(1)] + c
(ν)
k y(0)] . . .]]]

(10)

with coefficients

c
(ν)
i =















1 for i = 0

i − 1 − ν

i

for i = 1, 2, 3, . . .
(11)

Up to now the Horner’s form of the GL-FOBD/S doesn’t have

its counterpart of the continuous operators: derivative and in-

tegral.

Definition 2.5. (Riemann-Liouville fractional – order back-

ward difference (RL-FOBD)).

A RL-FOBD of order ν ∈ R+/Z+ is defined as a finite

sum
RL
k0

∆
(ν)
k f(k) = ∆(n)

[

GL
k0

Σ
(n−ν)
k f(k)

]

= ∆(n)
[

GL
k0

∆
(ν−n)
k f(k)

]

.
(12)

As in the Grünwald-Letnikov fractional-order left-hand deriv-

ative the RL-FOBD has its continuous equivalent known as

the Riemann-Liouville fractional – order left – sided deriva-

tive of a continuous-time function f(t) defined over interval

[t0, t].

Definition 2.6. (Riemann-Liouville fractional – order left –

sided derivative).

For a positive integer n satisfying equality 0 ≤ n − 1 <
ν < n the Reimann-Liouville fractional-order (left) deriva-

tive of a function f(t) is defined as an n-th order (classical)

derivative of the fractional integral of order n − ν

RL
t0

D
(ν)
t f(t)

=

(

d

dt

)n





1

Γ(n − ν)

t
∫

t0

f(x)

(t − x)ν−n+1
dx



.
(13)

The next form is known as the Caputo FOBD/S.

Definition 2.7. (Caputo fractional-order backward-

difference/sum C-FOBD).

Let [k0 k] be a finite interval of a discrete variable and

let RL
0 ∆

(ν)
k f(k) exists. For n = ⌊ν⌋+ 1 the Caputo FOBD/S

C
0 ∆

(ν)
k f(k) is defined as

C
k0

∆
(ν)
k f(k) = GL

k0
∆

(ν−n)
k

[

∆(n)f(k)
]

. (14)

For the continuous function the Caputo derivative is defined

as the fractional-order integral of the classical n-the order

derivative.

Definition 2.8. (Caputo fractional – order left – sided deriv-

ative).
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For a positive integer n satisfying equality 0 ≤ n − 1 <
ν < n the Caputo fractional-order (left) derivative of a func-

tion f(t) is defined as the fractional-order n − ν integral of

n-th order (classical) derivative

RL
t0

D
(ν)
t f(t) =

1

Γ(n − ν)

t
∫

t0

f (n)(x)

(t − x)ν−n+1
dx. (15)

The final fifth form of the FOBD/S may be expressed as the

FOBD/S polynomial-like form. The nomenclature of the form

presented below origins the linear time-invariant system poly-

nomial description [7]. Formula (1) for k0 = 0 can be ex-

pressed in a form

GL
0 ∆

(ν)
k fk =

[

a
(ν)
k+1

]T

0fk, (16)

where
[

0a
(ν)
k

]T

=
[

a
(ν)
0 a

(ν)
1 . . . a

(ν)
k−1 a

(ν)
k

]

, (17)

0fk =

















fk

fk−1

...

f1

f0

















. (18)

It is valid for consecutive time instants k, k − 1, · · · , 1, 0.

A collection of expressions (16) evaluated for mentioned ear-

lier time instants in a vector-matrix form yields

P
0 ∆

(ν)
k 0fk = 0A

(ν)
k 0fk, (19)

where

0A
(ν)
k =









































[

0a
(ν)
k

]T

[

0a
(ν)
k−1

]T

[

0a
(ν)
k−2

]T

...

[

0a
(ν)
1

]T

[

0a
(ν)
0

]T









































=





























a
(ν)
0 a

(ν)
1 a

(ν)
2 · · · a

(ν)
k−1 a

(ν)
k

0 a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−2 a

(ν)
k−1

0 0 a
(ν)
0 · · · a

(ν)
k−3 a

(ν)
k−2

...
...

...
...

...

0 0 0 · · · a
(ν)
0 a

(ν)
1

0 0 0 · · · 0 a
(ν
0 )





























(20)

is a (k + 1) × (k + 1) matrix. Matrix (19) belongs to a very

important class of matrices. It is the upper triangular band

matrix. Coefficient a
(ν)
0 6= so the matrix is always invertible.

Definition 2.7. (PL-FOBD/S).

Polynomial-like FOBD/S P
0 ∆

(ν)
k 0fk is defined by formu-

la (19).

3. Equivalence of the FOBD forms

The equivalence of the defined in Sec. 2 forms will be pre-

sented in forms of the following theorems.

Theorem 3.1. The GL-VOBD/S is equivalent to the H-

FOBD/S.

Proof. A substitution of coefficients (2) by (11) in formula

(1) after simple rearrangements gives formula (10).

For ν ∈ R+ one defines n ∈ Z+

n =

{

ν for ν ∈ Z+

[ν] + 1 for ν /∈ Z+
. (21)

This is equivalent to the following non-equalities

0 ≤ n − 1 < ν < n. (22)

Lemma 3.1. The classical backward differences of consecu-

tive integer orders f(k)i = 1, 2, . . . of the discrete – variable

function f(k) and its shifted values are related by the follow-

ing vector – matrix relation



























∆(0)f(k)

∆(1)f(k)

∆(2)f(k)

∆(3)f(k)

∆(4)f(k)

∆(5)f(k)
...



























= Dk



























fk

fk−1

fk−2

fk−3

fk−4

fk−5

...



























, (23)

where

Dk =



























1 0 0 0 0 0 0

1 −1 0 0 0 0 0

1 −2 1 0 0 0 0

1 −3 3 −1 0 0 0

1 −4 6 −4 1 0 0

1 −5 10 −10 5 −1 0
...

...
...

...
...

...
...



























. (24)

Formula (23) may be derived from formula (3) by putting

n = 0, 1, 2, . . .. It is also valid for k = k0. Hence



























∆(0)f(k)

∆(1)f(k)

∆(2)f(k)

∆(3)f(k)

∆(4)f(k)

∆(5)f(k)
...



























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k=k0

=



























∆(0)f(k0)

∆(1)f(k0)

∆(2)f(k0)

∆(3)f(k0)

∆(4)f(k0)

∆(5)f(k0)
...



























= Dk



























fk0

fk0−1

fk0−2

fk0−3

fk0−4

fk0−5

...



























.

(25)
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Simple calculations of a product DkDk reveal that

Dk = [Dk]
−1

, (26)

and






































fk0

fk0−1

fk0−2

fk0−3

fk0−4

fk0−5

...







































= Dk







































∆(0)f(k0)

∆(1)f(k0t)

∆(2)f(k0)

∆(3)f(k0)

∆(4)f(k0)

∆(5)f(k0)

...







































. (27)

One can also comment the meaning of the result (27). Though,

by assumption the function f(k) = 0 for k < k0 its non-zero

values f(k0), f(k0 − 1), . . . should be treated as initial con-

ditions. In accordance of the above definitions one may state

a following theorem.

Theorem 3.1. Let ν ∈ R+/Z+ and n = [ν] + 1 where [.] de-

notes an integer part. If ∆(n)f(k) exists, then the RL-FOBD

can be represented in the form

RL
k0

∆
(ν)
k f(k) = GL

k0
Σ

(n−ν)
k

[

∆(n)f(k)
]

+

n−1
∑

i=0

a
(ν−1−i)
k−k0

∆(i)f(k0 − 1).

(28)

Proof. The three terms in formula (28) will be denoted as

L, R1, R2 respectively. By definition 2.5 and formula (26) L
may be expressed as

L = RL
k0

∆
(ν)
k f(k) = ∆(n)

[

GL
k0

∆
(ν−n)
k f(k)

]

=
[

a
(n)
0 a

(n)
1 · · · a

(n)
n−1 a

(n)
n

]























GL
k0

∆
(ν−n)
k f(k)

GL
k0

∆
(ν−n)
k−1 f(k − 1)

...
GL
k0

∆
(ν−n)
k−n+1f(k − n + 1)

GL
k0

∆
(ν−n)
k−n f(k − n)























=
[

a
(n)
0 a

(n)
1 · · · a

(n)
n−1 a

(n)
n

]



























a
(ν−n)
0 a

(ν−n)
1 · · · a

(ν−n)
n−1 a

(ν−n)
n · · · a

(ν−n)
k−k0

0 a
(ν−n)
0 · · · a

(ν−n)
n−2 a

(ν−n)
n−1 a

(ν−n)
k−1−k0

...
...

...
...

...

0 0 · · · a
(ν−n)
0 a

(ν−n)
1 · · · a

(ν−n)
k−n+1−k0

0 0 · · · 0 a
(ν−n)
0 · · · a

(ν−n)
k−n−k0





































































fk

fk−1

...

fk−n+1

fk−n

...

fk0











































=
[

a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−k0−1 a

(ν)
k−k0

]









































fk

fk−1

...

fk−n+1

fk−n

...

fk0









































.

(29)
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The first term of the right – hand side of (29) equals

R1 = GL
k0

Σ
(n−ν)
k

[

∆(n)f(k)
]

=
[

a
(ν−n)
0 a

(ν−n)
1 · · · a

(ν−n)
k−k0−1 a

(ν−n)
k−k0

]



























k−n∆
(n)
k f(k)

k−n−1∆
(n)
k−1f (k − 1)

...

k0−n+1∆
(n)
k0+1f(k0 + 1)

k0−n∆
(n)
k0

f(k0)



























=
[

a
(ν−n)
0 · · · a

(ν−n)
k−k0

]



























a
(n)
0 a

(n)
1 · · · a

(n)
n 0 · · · 0 · · · 0 0

0 a
(n)
0 · · · a

(n)
n−1 a

(n)
n · · · 0 · · · 0 0

...
...

...
...

...
...

...

0 0 · · · 0 0 · · · a
(n)
0 · · · a

(n)
n 0

0 0 · · · 0 0 · · · 0 · · · a
(n)
n−1 a

(n)
n























































fk

fk−1

...

fk0

fk0−1

...

fk0−n0





























=
[

a
(ν−n)
0 · · · a

(ν−n)
k−k0

]



























a
(n)
0 a

(n)
1 · · · 0 0

0 a
(n)
0 · · · 0 0

...
...

...
...

0 0 · · · a
(n)
0 a

(n)
1

0 0 · · · 0 a
(n)
0























































fk

fk−1

...

fk−n+1

fk−n

...

fk0





























+
[

a
(ν−n)
0 · · · a

(ν−n)
k−k0

]















































0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0

a
(n)
n 0 · · · 0 0

a
(n)
n−1 a

(n)
n · · · 0 0

...
...

...
...

a
(n)
2 a

(n)
3 · · · a

(n)
n 0

a
(n)
1 a

(n)
2 · · · a

(n)
n−1 a

(n)
n



























































fk0−1

fk0−2

...

fk0−n













=
[

a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−k0−1 a

(ν)
k−k0

]





























fk

fk−1

...

fk−n+1

fk−n

...

fk0





























(30)a
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+
[

a
(ν−n)
0 · · · a

(ν−n)
k−k0

]



































0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

a
(n)
n 0 · · · 0 0

a
(n)
n−1 a

(n)
n · · · 0 0

...
...

...
...

a
(n)
2 a

(n)
3 · · · a

(n)
n 0

a
(n)
1 a

(n)
2 · · · a

(n)
n−1 a

(n)
n



































Dk0−1Dk0−1













fk0−1

fk0−2

...

fk0−n













=
[

a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−k0−1 a

(ν)
k−k0

]





























fk

fk−1

...

fk−n+1

fk−n

...

fk0





























+
[

a
(ν−n)
0 · · · a

(ν−n)
k−k0

]



































0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

a
(n)
n 0 · · · 0 0

a
(n)
n−1 a

(n)
n · · · 0 0

...
...

...
...

a
(n)
2 a

(n)
3 · · · a

(n)
n 0

a
(n)
1 a

(n)
2 · · · a

(n)
n−1 a

(n)
n



































Dk0−1

















∆(0)f(k0 − 1)

∆(1)f(k0 − 1)
...

∆(n−2)f(k0 − 1)

∆(n−1)f(k0 − 1)

















+
[

a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−k0−1 a

(ν)
k−k0

]





























fk

fk−1

...

fk−n+1

fk−n

...

fk0





























−
[

a
(ν−1t)
k−k0

a
(ν−2)
k−k0

· · · a
(ν−n+1)
k−k0

a
(ν−n)
k−k0

]

















∆(0)f(k0 − 1)

∆(1)f(k0 − 1)
...

∆(n−2t)f(k0 − 1)

∆(n−1)f(k0 − 1)

















=
[

a
(ν)
0 a

(ν)
1 · · · a

(ν)
k−k0−1 a

(ν)
k−k0

]





























fk

fk−1

...

fk−n+1

fk−n

...

fk0





























−
n−1
∑

i=0

a
(ν−i)
k−k0

∆(i)f(k0 − 1) = L − R2.

(30)b
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Thus it was proved that R1 = L−R2 what ends the proof.

One should realize that the GL-FOBD formula (30) is

similar to the well-known form of the Riemann-Liouville

fractional-order derivative [4]

RL
t0

D
(ν)
t f(t) =

1

Γ(n − ν)

t
∫

t0

(t − τ )n−1−νf (n)(τ)dτ

+

n−1
∑

i=0

(t − t0)
i−ν

Γ(i + 1 − ν)
f (i)(t0).

(31)

A comparison of formulae (14) and (28) yields

C
k0

∆
(ν)
k f(k) = RL

k0
∆

(ν)
k f(k)

−

n−1
∑

i=0

a
(ν−1−i)
k−k0

∆(i)f(k0 − 1).
(32)

Assuming that ∆(i)f(k0 − 1) = 0 for i = 0, 1, 2, . . . , n − 1
one may state that

RL
k0

∆
(ν)
k f(k) = GL

k0
∆

(ν)
k f(k)

= H
k0

∆
(ν)
k f(k) = C

k0
∆

(ν)
k f(k).

(33)

The numerical example confirms different FOBD eval-

uation accuracy due to the application of formulae consid-

ered above. Two forms are compared: the GL-FOBD and

RL-FOBD. The FOBD of the discrete Dirac pulse [16] is

calculated.

4. Numerical example

Firstly, one evaluates some FOBDs of a discrete Dirac pulse

δ(k) =

{

1 for k = 0

0 for k 6= 0
(34)

Immediate calculations show that by Definition 2.1

0∆
(−1)
k δ(k) =

k
∑

i=0

a
(−1)
i δk−i = a

(−1)
k

= 1(k) =

{

0 for k < 0

1 for k ≥ 0

(35)

0∆
(−2)
k δ(k) =

k
∑

i=0

a
(−2)
i δk−i = a

(−2)
k

= (−1)k (−2)(−3) · · · (−k)(−k − 1)

1 · 2 · · · (k − 1)k
1(k)

=
(k + 1)

1
1(k),

(36)

0∆
(−3)
k δ(k) = a

(−3)
k

= (−1)k (−3)(−4) · · · (−k − 1)(−k − 2)

1 · 2 · · · (k − 1)k
1(k)

=
(k + 1)(k + 2)

1 · 2
1(k).

(37)

Continuing this procedure one derives a general formula

0∆
(−n)
k δ(k) = a

(−n)
k

=
1

n!

n
∏

i=1

(k + i)1(k) for n = 1, 2, · · ·
(38)

The coefficients defined by formula (2) may be also treated

as discrete – variable functions a(ν)(k). One can easily prove

that

GL
k0

∆
(µ)
k

[

a(ν)(k)
]

=

k
∑

i=k0

a
(µ)
i−k0

a
(ν)
k−i+k0

=
[

a
(µ)
0 a

(µ)
1 · · · a

(µ)
k−1−k0

a
(µ)
k−k0

]



















a
(ν)
k

a
(ν)
k−1
...

a
(ν)
k0+1

a
(ν)
k0



















= a
(µ+ν)
k−k0

.

(39)

For different orders ν satisfying n = [ν]+1 one evaluates

a performance index

I (ν) = 20 log10

[

max k∈[0,2000]e (k, ν)
]

(40)

defined for an error function

e(k, ν) =
GL
0 ∆

(ν)
k δ(k) − RL

0 ∆
(ν)
k δ(k)

GL
0 ∆

(ν)
k δ(k)

100. (41)

The performance index is plotted in Fig. 1. The plot reveals

which of the proposed forms: GL-FOBD, RL-FOBD or C-

FOBD should be applied to minimize the calculation errors

assuming the same number representation in the computing

device.

Fig. 1. The performance index vs. order
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5. Conclusions

The aforementioned example shows that by applying two

equivalent forms of the FOBD with the same calculation pre-

cision one obtains slightly different results which increase due

to the deterioration of numbers representation. The values

of the coefficients a
(ν)
i are crucial in the FOBD calculation

process. For 0 < ν < 1 the coefficients (2) tend sharply to

zero whereas the coefficients (11) tend to 1. The precision

of a
(ν)
i and c

(ν)
i evaluation depends on the order ν. An ap-

propriate change of a
(ν)
i via the proposed equivalent forms

may diminish errors in a real-time calculation of FOBD. One

should also realize that in the FOBD/Ss concatenation opera-

tions one may mix proposed forms (bearing in mind the initial

conditions).
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