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Abstract. In this paper a fractional-order backward-difference/sum (FOBD/S) equivalent formulae are considered. From the Griinwald-
Letnikov (GL — FOBD) definition formula and its Horner equivalent form one derives the Riemann-Liouville FOBD (RL — FOBD). Also
the Caputo and polynomial-like forms are defined. All forms may be useful in real-time calculations (in the evaluation of digital control
strategies) due to the reduction of fractional orders. The investigations are illustrated by a numerical example.
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1. Introduction

In a discrete version of the Fractional Calculus the fractional-
order derivatives and integrals [1-4] are replaced by
fractional-order differences and sums [5]. As in the case of
fractional-order derivatives and integrals several equivalent
(under some assumptions) forms may be considered. The
most common in use are: Griinwald-Letnikov fractional-order
differ-integral (GL-FOD/S), FOD/S Horner form (H-FOD/S),
Riemann-Liouville FOD/S (RL-FOD/S), FOD/S Caputo form
[3, 4] and FOD/S Polynomial-Like form. The FO dynamical
systems (FOS) described by FO difference equations (FODE)
or state-space forms [6] reveal new unknown dynamical prop-
erties [7]. The FOS stability was analyzed among others pub-
lications [8, 9]. Another important property - controllability
was considered in [10]. Selected control strategies were pro-
posed in [11-15].

In practical applications of the Fractional Calculus [2] in
its discrete-time version where the fractional-order derivatives
and integrals are approximated by fractional-order differences
and sums in microprocessor calculations occurs so called “cal-
culation tail problem”. It is caused by finite system memory
and constant finite sampling time. This problem is also called
“a short memory principle” [4]. Since the problem has not yet
been satisfactorily solved, it induces attempts to find an “op-
timal” formula for fractional order backward difference/sum
real-time evaluation. The application of an “optimal FOBD/S
form”, due to a chosen optimality criterion and assumed frac-
tional order, may reduce calculation errors. The BD of the
fractional order v may be evaluated directly or as the n-th
order classical difference of the FOBS of order n — v or as
the FOBS of order n — v of the n-th order difference. Here n
denotes an integer part of v. This paper shows that the order
of operations (i.e. the chosen FOBD/S form) is important in
the calculations.

The paper is organized as follows. First, the basic equiv-
alent five definitions of the FOBD/FOBS [5] are given. In
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Sec. 3 the main result — the equivalence of the introduced
forms are proved. They may serve in microprocessor fraction-
al order derivative/integral evaluation. In Sec. 4 a numerical
example is given.

1.1. Mathematical background and notation. In the pre-
sented paper, the following notations are applied. The ele-
ments of a set of non-negative integers Z, are denoted by
Latin letters 4, j, k, m, n whereas the elements of a set of
non-negative non-integers R} /Z are denoted by Greek let-
ters v, u, €. Discrete — variable functions of a real discrete-
variable k£ (sequences of real numbers) are denoted by f,
g, h. Hence any function f is equivalently expressed as

f=fk) = {fro fro+1,-+ fu-1, fu}, a lower index ko
may be positive or negative.

2. Griinwald-Letnikov backward difference/sum
equivalent forms

Consider a discrete-variable bounded real function f(k) de-
fined over a discrete-time interval [ko,k]. In this Section
five equivalent (under some conditions) FOBD/S forms are
defined. One starts withe fundamental one known as the
Griinwald-Letnikov form.

Definition 2.1.  (Griinwald-Letnikov
backward-difference GL-FOBD).

A GL-FOBD of order v € Ry /Z is defined as a finite
sum

fractional-order

k
kGOLA;V)f(k) = Z aﬁi)kofkfmo (1)
1=kgo

()

i

with coefficients a

0 for 1<0
=41 for i=0 Q)
(,UZW for i=1,2, -
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One can easily check that substituting v by n € Z in (1)

one immediately gets a classical backward — differences of

order n
CLAY F(k) = A f(k)
fr for n=0 3)
_ fr — fr_1 for n=1
A(n—l)f(k) _ A(n—l)f(k —1) for n>1

Definition 2.2. (GL-FOBS).
A GL-FOBS of order v € Ry /Z is defined as a finite
sum

GLACY) f (k) = GE5) F (k) Zat kofk itko- (@)

’Lk}o

An n-fold sum of the discrete function f(k) (integer-order
backward-sum — IOBS) is obtained by a substitution of v by
—n [16]

in—1

Y 5)

in=ko

E(n)f

-y Y

i1=Fko i2=ko

and is treated as IOBD of negative order —n < 0 [5].
One can realise that

LA f (k) = G2 f(k),
GLAM f(k) = SE2U f(R).

To simplify the notation, in the IOBD/S formulae subscripts
defining an operation range are omitted. Hence

SEAM F(k) = §1, ALY f(k) = A (k). @)

Also a simplified notation will be used

A (k)

(6)

=AM f. ®)
It is worth to mention that the Griinwald-Letnikov FOBD/S is
naturally related to the Griinwald-Letnikov fractional — order
left — sided derivative/integral. One considers a continuous-
time function f(t) defined over interval [to, ¢].

Definition 2.3. (Griinwald-Letnikov fractional — order left —
sided derivative).

For a positive integer k£ and a real number A satisfying
equality hk = t — o the Griinwald-Letnikov fractional-order
(left) derivative of a function f(¢) is defined by the infinite
sum

v . 1 v
CEDY ()= lim {ﬁ Af ’f(kh)}
h — 0t ko
e
L& )
= lim {F Z aﬁi)kofmmo} ;
h/ — O+ i=ko

= 52

where [x] denotes an integer part of x.
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Definition 2.4. (H-FOB/D).
The Horner form of the FOBD is expressed as

HAY (k)
e Tyk) + e [y(k = 1) + ¢ [y(k — 2) + (10)
+ek —2)y(2) + ek — D@ [y(1)] + ¢y (0)] . ]
with coefficients
1 for 1=0
W = (11)

i—1—p for i=1,2,3,...

i
Up to now the Horner’s form of the GL-FOBD/S doesn’t have
its counterpart of the continuous operators: derivative and in-

tegral.

Definition 2.5. (Riemann-Liouville fractional — order back-
ward difference (RL-FOBD)).
A RL-FOBD of order v € Ry /Z, is defined as a finite
sum
REAL f(k) = AW [GE2(r=) £ ()]
(12)
NG {kGOLAECV*")f(k)} )

As in the Griinwald-Letnikov fractional-order left-hand deriv-
ative the RL-FOBD has its continuous equivalent known as
the Riemann-Liouville fractional — order left — sided deriva-
tive of a continuous-time function f(¢) defined over interval
[to, t].

Definition 2.6. (Riemann-Liouville fractional — order left —
sided derivative).

For a positive integer n satisfying equality 0 < n — 1 <
v < n the Reimann-Liouville fractional-order (left) deriva-
tive of a function f(¢) is defined as an n-th order (classical)
derivative of the fractional integral of order n — v

WD ()
t
== x| .
dt Fn—v) ) (t—ax)p—ntl
to
The next form is known as the Caputo FOBD/S.
Definition 2.7. (Caputo fractional-order = backward-

difference/sum C-FOBD).

Let [ko k| be a finite interval of a discrete variable and
let (IfLA;V)f(k) exists. For n = |v] 4+ 1 the Caputo FOBD/S
gA;”)f(k) is defined as

CAY ) = EEafT [AM ()]

For the continuous function the Caputo derivative is defined
as the fractional-order integral of the classical n-the order
derivative.

(14)

Definition 2.8. (Caputo fractional — order left — sided deriv-
ative).
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For a positive integer n satisfying equality 0 < n — 1 <
v < n the Caputo fractional-order (left) derivative of a func-
tion f(t) is defined as the fractional-order n — v integral of
n-th order (classical) derivative

5 1 f) (z
RLDW f(t) = T =) / (tx)leﬂda:. (15)
to

The final fifth form of the FOBD/S may be expressed as the
FOBD/S polynomial-like form. The nomenclature of the form
presented below origins the linear time-invariant system poly-
nomial description [7]. Formula (1) for £y = 0 can be ex-
pressed in a form

GLAW f, — {aglfofk, (16)
where
W' 0w @ W
bal’] =[a o e o ] an
i
Jr—1
ofk = : (18)
fi
Jo
It is valid for consecutive time instants k, k — 1,---,1,0.

A collection of expressions (16) evaluated for mentioned ear-
lier time instants in a vector-matrix form yields

PAY of, = oAV oty (19)
where
o -
joa)”
T
[035:_)1]
T
@) [oa;(f_)g}
()Ak =
T
joai”|
T
oad”] (20)
'aé”) agy) a;v) az(gli)l a](;,) A
0 aéy) agy) a](;:)2 agcli)1
o0 e oy a”,
o 0 0 - a &
0o 0 0 - 0 a) |

isa (k+1) x (k4 1) matrix. Matrix (19) belongs to a very
important class of matrices. It is the upper triangular band
matrix. Coeflicient aé”) # so the matrix is always invertible.
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Definition 2.7. (PL-FOBD/S).
Polynomial-like FOBD/S £ A" ofy, is defined by formu-
la (19).

3. Equivalence of the FOBD forms

The equivalence of the defined in Sec. 2 forms will be pre-
sented in forms of the following theorems.

Theorem 3.1. The GL-VOBD/S is equivalent to the H-
FOBD/S.

Proof. A substitution of coefficients (2) by (11) in formula
(1) after simple rearrangements gives formula (10).
For v € R4 one defines n € Z,

fi Z
n— v or ve/ly . @1)
[vV]+1 for ve¢Zy
This is equivalent to the following non-equalities
0<n—-1<v<n. (22)

Lemma 3.1. The classical backward differences of consecu-
tive integer orders f(k)i = 1,2, ... of the discrete — variable
function f(k) and its shifted values are related by the follow-
ing vector — matrix relation

A f(k) Tr
AW f(k) Jr—1
A@ f(k) Jr—2
A®fE) | =D, | fr-s |, (23)
AW f(k) Jrk—a
AB) f(k) Jr—5
where
(1 0 o0 0 0 0 0]

1 -1 0 0 0 0 O
1 -2 1 0 0 0 O

D,=|1 -3 3 -1 0 0 0 (24)
1 -4 6 —4 1 0 0
1 -5 10 -10 5 -1 0

Formula (23) may be derived from formula (3) by putting

n=20,1,2,.... Itis also valid for k = ky. Hence
[ AO f(k) T [ A© f(ko) T [ e |
AW f(k) AW £ (ko) Sro—1
A® f(k) A®) (ko) Sro—2
A® £ (k) — | A®f(ko) | = Dy | fro—s
AW £ (k) AW f(kg) Sro—a
A®) f(k) A®) f(kg) fro—s
L : A le=r, L : - L
(25)
273



I

www.czasopisma.pan.pl P N www.journals.pan.pl

P. Ostalczyk

Simple calculations of a product D, Dy, reveal that

D, = [Dy] ', (26)
and ) _ ~ _
fro AO £ (k)
fro—1 Amf(]fo?f)
fro—2 A® f (ko)
fro—s | =Dy | A® f(ko) 27)
fro—a A® £ (ko)
Sfro—5 A®) f (ko)

One can also comment the meaning of the result (27). Though,

by assumption the function f(k) = 0 for k < kg its non-zero
values f(ko), f(ko —1),... should be treated as initial con-
ditions. In accordance of the above definitions one may state
a following theorem.

Theorem 3.1. Let v € Ry /Z; and n = [v] + 1 where [.] de-
notes an integer part. If A f(k) exists, then the RL-FOBD
can be represented in the form

BEAL f(k) = GEm ™ [AT) £k

(28)
+ Zd” YA fky — 1).

Proof. The three terms in formula (28) will be denoted as
L, Ry, Ry respectively. By definition 2.5 and formula (26) L
may be expressed as

L=FEAL f(k) = A [GEALT™ f(k)

GLA(V*”)f(k,)
kGOLA(V n)f(k' _ 1)

[ o e o] :
GLAYV™M f(k—n+ 1)
GLAL (k= n)
_ £ _
aél/ n) a(lu—n) E;/_ln) aslu—n) a](;/ kz) fk—l
0 ag " ay ) al a3,
= agn) a§") a(n)l aS{”} Jr—n+1
(29)
I . St o | B
0 0 0 ay™ al "
Tro
_ f -
fre—1
:[a(()y) agy) ag/)ko 1 al(cl/)ko} Je—nt1
fk—n
L fre ]
274 Bull. Pol. Ac.: Tech. 62(2) 2014
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The first term of the right — hand side of (29) equals

_ aéufn)
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Ry = GEs ™ [ 1 (k)]

kALY F(R)
k—n—lA](:i)lf (k - 1)

= [ o el e |
ko—n+1A§£)+1f(ko +1)
ho-n AL f (ko)
_ agn agn N (O 0 0 0 0
0 al” a™, eV 0 0 0
o
0 0 0 0 aé”) o™ 0
00 0 0 0 a™, ol
a™ ol 0 0 | Tk
( ) fk‘—l
0 a 0 0 .
= [ aél/—n) a](:__kz) } fk—n+1
n n f —n
0 0 OO -
(n) ’
i 0 0 0 ay |  fe
0 0 0 0
0 0 0 0
( ) fk‘o—l
n’ 0 0 0
+|: aél/—n) agcy—kn) } a fk0—2
IR IR 0 0 :
fko—n
agn) agn) a,(zn) 0
IRR R
T
fr—1
=[a o .. a}g@ko_l az(:_ko Fronit
fkfn
L fko |

fr
fr—1

fko
Sro—1

L fko—no i

(30)a
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()

a)

+ éz/ n)

+ [ a(()”_n)
agcy)ko 1

= a(()”) ag")

I
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[0 0 - 0 0 |
0 0 e 0 0 fk()*l
(n) 7
(v—n) Qn 0 0 0 D D ko—2
Ap_k, } aﬁfl)l aa(zn) 0 0 ko—1%ko—1
: : : fro—n
aé”) agn) e a%n) 0
L agn) agn) afznjl ay” i
[ S
Jr—1
al) al” a,(:)ko ! an’kO Jk—n+1
fk—n
L fko
[0 0 0 0 ]
: . . ’ AO fko — 1)
(On) o 00 AW (ko — 1)
(v—n) Gn 0 s 0 0 )
gy } a™ g 0 0 Diy-1 :
A2 f(ky — 1)
: : : : A=) f(ly — 1)
aé”) aén) aS{” 0
I agn) aé”) ‘17(21 o™ |
T
fk—l A(O)f(ko . 1)
: AW f (ko — 1)
v v—1t v—2 v—n+1 v—m .
al(c )ko frnt1 | = |:a’l(c ko) agcfko) I(c ko ) chko) } :
Jin A= f(ky — 1)
: AT (kg — 1)
L fko |
T
fr—1
al(cu)ko 1 a,(;’)ko Jh—nt1 Z A(’)f ko—1) =L — Ro.
fkfn i=
L fko ]
(30)y
Bull. Pol. Ac.: Tech. 62(2) 2014



I

www.czasopisma.pan.pl P N www.journals.pan.pl

Remarks on five equivalent forms of the fractional — order backward — difference

Thus it was proved that R = L — Ry what ends the proof.

One should realize that the GL-FOBD formula (30) is

similar to the well-known form of the Riemann-Liouville
fractional-order derivative [4]
t

v 1 n—1—v g(n
%Dwﬂwﬁ;:;/@ﬂ 1y 100 () dr
to (€28
n—1
(t=to)"
+Z z+171/ (to)-

A comparison of formulae (14) and (28) yields
QA P00 = EF AL f(R)
(32)

n—1

= al T AD f (kg — 1),

=0

Assuming that AW f(kg —1) = 0 fori = 0,1,2,...,n — 1
one may state that
RAY F (k) = GEAL 1 (k)
(33)

=AY f(k) =5 A0 f (k).

The numerical example confirms different FOBD eval-
uation accuracy due to the application of formulae consid-
ered above. Two forms are compared: the GL-FOBD and
RL-FOBD. The FOBD of the discrete Dirac pulse [16] is
calculated.

4. Numerical example
Firstly, one evaluates some FOBDs of a discrete Dirac pulse
k=0
i(k) =
k#0

Immediate calculations show that by Definition 2.1

Za( 1)5k ;=

1=0

1@){

Za( 2)5k ;=

1=0

1 for

34
0 for (4

()A( 1)5

(35)
0 for
1 for

k<0
k>0

()A( 2)5

(36)

/\

k(_3)(_4)"'(
1-2- (k: )k

(k1) (E+2)
N 1-2

(37)

Bull. Pol. Ac.: Tech. 62(2) 2014

Continuing this procedure one derives a general formula

AT (k) =

nilf[ (k+4)1

The coefficients defined by formula (2) may be also treated
as discrete — variable functions a(*) (k). One can easily prove
that

al(c—n)

(38)
) forn=1,2,-

GLA( [ } Zagu)kga’k i+ko
1= ko
(V)
(V)
a1
(39)
= { ag” agm agi)kkg a;’fi)k‘g } :
(v)
Tk
L ako i
(p+v)
= aku—kg

For different orders v satisfying n = [v] 4 1 one evaluates
a performance index

I (v) = 20log, [max k€[0,2000]€ (k, V)} (40)
defined for an error function
GLA(U)(S k) — RLA(V)(S k
e(k,v) =2 —k ( )( )0 kO )100. 41)
AV (D)

The performance index is plotted in Fig. 1. The plot reveals
which of the proposed forms: GL-FOBD, RL-FOBD or C-
FOBD should be applied to minimize the calculation errors
assuming the same number representation in the computing
device.

250

150

I(v)

100

501

Fig. 1. The performance index vs. order
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5. Conclusions

The aforementioned example shows that by applying two
equivalent forms of the FOBD with the same calculation pre-
cision one obtains slightly different results which increase due
to the deterioration of numbers representation. The values
of the coefficients az(-”) are crucial in the FOBD calculation
process. For 0 < v < 1 the coefficients (2) tend sharply to
zero whereas the coefficients (11) tend to 1. The precision
) )

of a;”’ and ¢;”’ evaluation depends on the order v. An ap-

propriate change of a§”> via the proposed equivalent forms
may diminish errors in a real-time calculation of FOBD. One
should also realize that in the FOBD/Ss concatenation opera-
tions one may mix proposed forms (bearing in mind the initial

conditions).
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