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Abstract. The problem of scheduling n tasks in a multiprocessor system with m processors to minimize the makespan is studied. Tasks are

malleable, which means that a task can be executed by several processors at a time, its processing speed depends on the number of allocated

processors, and a set of processors allocated to the same task can change over time. The processing speed of a task is a strictly increasing

function of the number of processors allocated to this task. The earlier studies considered the case n ≤ m. This paper presents results for

arbitrary n and m including characterizations of a feasible domain and an optimal solution, polynomial time algorithms for strictly increasing

convex and concave processing speed functions, and a combinatorial exponential algorithm for arbitrary strictly increasing functions.
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1. Problem formulation and literature review

A computing task is called malleable if it can be processed

on several processors at the same time, its processing speed

depends on the number of allocated processors, and the set of

processors allocated to the same task can change over time.

The following problem is studied.

There are n malleable tasks to be scheduled for processing

on m identical parallel processors. Each task j is associated

with its amount of work, pj . Let fj(r) denote the processing

speed of task j if it is allocated r processors. For the sake of

the simplicity we denote with fj(r) functions instead of its

value at r.

All fj(r) are assumed to be strictly increasing continuous

integrable functions with fj(0) = 0. A schedule specifies an

allocation of processors to the tasks over time. We limit our-

selves to schedules in which there is a finite number of time

intervals where the same number of processors is allocated to

the same task for all tasks in the same interval. The problem

is to find a schedule with the minimum makespan. A sched-

ule can be completely characterized by the number of time

intervals, L, the interval lengths, ∆1, . . . , ∆L, where the cor-

responding intervals are [0, ∆1], [∆1, ∆1 + ∆2], . . ., and the

number of processors r
(l)
j , r

(l)
j ∈ {0, 1, . . . , m}, allocated to

each task j in each interval l, j = 1, . . . , n, l = 1, . . . , L. The

makespan of the corresponding schedule is Cmax =
L
∑

l=1

∆l.

A schedule is called feasible if
n
∑

i=1

r
(l)
i ≤ m, l = 1, . . . , L, and

Cmax
∫

0

fj(rj(t))dt =
L
∑

l=1

∆lfj(r
(l)
j ) = pj , j = 1, . . . , n, where

rj(t) denote the number of processors allocated to task j at

time moment t. We denote this problem as P , and the relaxed

problem in which the numbers of allocated processors are not

required to be integers as Pcntn, where cntn is the abbrevia-

tion for continuous. For the latter problem, processors can be

viewed as a continuously divisible renewable resource, whose

amount is upper bounded by m at each time moment.

Motivation for problem P comes from the management

of large scale multiprocessor systems intended for large scale

parallel computations. This motivation is comprehensively de-

scribed in Błażewicz et al. [1], Bernard et al. [2] and Dongarra

et al. [3]. Problem Pcntn can be used as an approximate mod-

el for the problem of scheduling Multiple Instruction stream,

Multiple Data stream (MIMD) processors.

The following results are available for the moldable task

scheduling problem which differs from problem P in that

the set of processors allocated to a task cannot change. Du

and Leung [4] proved this problem to be NP-hard. Howev-

er, some special cases are polynomially solvable, see Bianco

et al. [5] and Błażewicz et al. [6]. Turek et al. [7] showed

that any λ-approximation algorithm for the two dimension-

al bin-packing problem can be polynomially transformed into

a λ-approximation algorithm for the moldable task schedul-

ing problem. Based on this result, Ludwig [8] developed a

2-approximation algorithm. Rapine et al. [9] developed a two

phase approximation algorithm with worst-case performance

guarantee
√

3 and later proposed a 3/2-approximation algo-

rithm, see [10]. Prasanna and Musicus [11] considered this

problem with precedence constraints associated with the task

set. For the case of the same processing speed functions rα,

0 < α < 1, a closed form solution for a series-parallel prece-

dence graph was derived. In [12] an approximation algorithm

with very good average behaviour has been proposed. Surveys

of the complexity and algorithms for moldable task schedul-

ing problems are given by Drozdowski [13] and Błażewicz

et al. [14].

In Sec. 2 we prove properties of the feasible domain and

an optimal solution of the problem Pcntn with arbitrary piece-
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wise linear strictly increasing continuous functions fj(r). The

same properties were proved by Węglarz [15,16] for the case

n ≥ m. They were used in all succeeding publications on

malleable task scheduling, and the authors often implicitly

assumed that these properties hold for the general case of no

relation between n and m. However, to the best of our knowl-

edge, no formal proof of these properties existed so far for

the general case.

Section 3 justifies application of the well known gang

strategy to the case of convex functions fj(r). According to

this strategy, each task is allocated all m processors until it is

finished. No formal proof of optimality of this strategy was

given for the case n < m before.

Section 4 studies the case of concave functions fj(r). It

describes an algorithm for problems Pcntn and P . Its time

complexity is O(n(log C+ + log 1/ε)) (without taking into

account complexity of computing the revers function), where

C+ is an upper bound on the optimal makespan value and

ε > 0 is an upper bound on the absolute deviation from the

optimal value. Recently, Sanders and Speck [17] have pro-

posed the O(n + min{n, m} logm) time algorithm for the

same problem. Both algorithms are based on the same bi-

section search approach and were developed independently.

However, the algorithm of Sanders and Speck enumerates the

number of processors rather than the makespan values. Sec-

tion 4 also provides an analytical solution to the problem with

functions fj(r) = rα, j = 1, . . . , n, where 0 < α < 1, which

were introduced by Prasanna and Musicus [11].

Section 5 presents a combinatorial exponential algorithm

for problem P in the case of general functions fj(r). Jansen

and Porkolab [18] developed an optimal algorithm for this

problem, which is polynomial in n and m. This algorithm

generalizes their approach for a problem, in which the num-

ber of processors assigned to each task is given. Note that

this algorithm is pseudo-polynomial because its run time es-

timation includes m, and the problem input length is O(n).
It is based on a linear programming characterization of the

problem with a strong separation oracle to be handled by the

ellipsoid method. Due to the sophistical structure of the algo-

rithm, we are unable to establish a run time estimation of it.

The authors do not give this estimation either. We think that

our exponential algorithm can be competitive with their algo-

rithm for some classes of instances, as it is in the case of expo-

nential and polynomial algorithms for the linear programming

problem. However, we are unable to provide a computer exper-

iment with the algorithm of Jansen and Porkolab, which was

also beyond their power. Jansen [19] developed an asymptotic

fully polynomial time approximation scheme for problem P .

Section 6 summarizes the results and suggests directions

for future research.

2. Characterization of feasible domain

and optimal schedule for problem P cntn

We first prove the following theorem.

Theorem 1. Let V be a closed convex set in the n-dimensional

space of real numbers, C be a real number and u(t) =

(u1(t), u2(t), . . . , un(t)) be a vector of integrable functions

such that u(t) ∈ V for each t ∈ [0, C]. Then the point

u(C) :=





C
∫

0

u1(t)dt/C,

C
∫

0

u2(t)dt/C, . . . ,

C
∫

0

un(t)dt/C





belongs to the set V .

Proof. By the definition of the definite (Riemann) integral,

C
∫

0

uj(t)dt = lim
δmax→0

k
∑

i=1

uj(ti)δi,

where 0 = x0 ≤ t1 ≤ x1 ≤ · · · ≤ xk−1 ≤ tk ≤ xk = C is a

finite sequence, δi = xi − xi−1, and δmax = max1≤i≤k{δi}.

Thus, u(C) is a limit of a sequence of points which are con-

vex combinations with coefficients αi = δi/C of points u(ti),
i = 1, . . . , k, each of which belongs to V . Since set V is

convex, a convex combination of its points belongs to V . Fur-

thermore, since V is closed, the limit of the above mentioned

sequence of its points, u(C), belongs to V .

It is convenient to introduce the following notations with

respect to problem Pcntn:

C0
max – the optimal solution value,

D = {r = (r1, r2, . . . , rn)|rj ≥ 0,
n
∑

j=1

rj ≤ m} – the set of

feasible resource allocations,

U = {u = (u1, u2, . . . , un)|uj = fj(rj), j = 1, . . . , n, r ∈
D} – the set of feasible transformed resource allocations,

convU – the convex hull of the set U , i.e., the set of all convex

combinations of the elements of U .

Let p = (p1, . . . , pn). We now prove a theorem which

characterizes an optimal solution of problem Pcntn. This the-

orem is illustrated in Fig. 1.

Fig. 1. An illustration of Theorem 2

Theorem 2. Let u = p/C be a straight line in the space

of transformed resource allocations given by the parametric

equations uj = pj/C, j = 1, . . . , n. Then

C0
max = min

{

C|C > 0,
p

C
∈ convU

}

.
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Proof. Since functions fj(r) are continuous and set D is

a bounded polyhedron, set U is a bounded closed set. It is

known that a convex hull of a bounded closed set is a bounded

closed set. Thus, convU is a bounded closed set.

Let a vector function r(t) = (r1(t), r2(t), . . . , rn(t)),
t ∈ [0, C∗], define an optimal resource allocation

with value C∗. Then, for each t, point f(r(t)) =
(f1(r1(t)), f2(r2(t)), . . . , fn(rn(t))) belongs to the set

convU . According to Theorem 1, point





C∗

∫

0

f1(r1(t))dt/C∗,

C∗

∫

0

f2(r2(t))dt/C∗, . . . ,

C∗

∫

0

fn(rn(t))dt/C∗



 =
( p1

C∗
,

p2

C∗
, . . . ,

pn

C∗

)

belongs to the set convU . Therefore, C0
max ≤ C∗ as required.

Let f−1
j (v) denote the reverse function of fj(r):

f−1
j (fj(r)) = r, and let f−1(v) = (f−1

1 (v1), . . . , f
−1
n (vn)).

According to Caratheodory’s theorem, point

u0 :=

(

p1

C0
max

,
p2

C0
max

, . . . ,
pn

C0
max

)

∈ convU

can be represented as a convex combination of L, L ≤ n+1,

points, v(1), . . . , v(L), of U : u0=
L
∑

l=1

λlv
(l), where

L
∑

l=1

λl=1.

Then pj = u0
jC

0
max =

L
∑

l=1

λlC
0
maxv

(l)
j , j = 1, . . . , n. We de-

duce that a schedule, in which there are L intervals of lengths

∆l = λlC
0
max and resource allocation r

(l)
j = f−1

j (v
(l)
j ),

j = 1, . . . , n, l = 1, . . . , L, is optimal, see Fig. 2.

Fig. 2. An optimal schedule with L intervals of length ∆l and

makespan C0

max

Thus, problem Pcntn can be solved by enumerating

and selecting appropriate transformed resource allocations

v(1), . . . , v(L).

The following theorem characterizes the case of strictly

increasing piecewise linear continuous functions fj(r) such

that fj(r) = a
(k)
j r + b

(k)
j , r ∈ [k, k + 1], k = 0, . . . , m − 1,

j = 1, . . . , m.

Theorem 3. If fj(r) are strictly increasing piecewise linear

continuous functions, then convU is a bounded polyhedron

with vertices from the set U .

Proof. The set D of feasible resource allocations can be

represented as a union of bounded elementary polyhedrons

each of which is defined by 2n + 1 half-spaces rj ≥ kj ,

rj ≤ kj +1, j = 1, . . . , n, and r1 + r2 + . . .+ rn ≤ m, where

kj ∈ {0, 1, . . . , m−1}. There are mn elementary polyhedrons

because ki and kj can take different values for different i and

j. Linear continuous functions a
(kj)
j r + b

(kj)
j , j = 1, . . . , n,

kj ∈ {0, 1, . . . , m− 1}, transform corresponding bounded el-

ementary polyhedron into the bounded polyhedron defined by

2n half-spaces uj ≥ a
(kj)
j kj+b

(kj)
j , uj ≤ a

(kj)
j (kj +1)+b

(kj)
j

and half-space
n
∑

j=1

uj−b
(kj )

j

a
(kj )

j

≤ m. Thus, U is a union of a fi-

nite number of bounded polyhedrons and convU is a bounded

polyhedron with all vertices belonging to U .

3. Convex functions fj(r)

Similar to Błażewicz et al. [1], problem Pcntn with arbitrary

n and m and convex processing speed functions admits an

optimal solution in which there are n time intervals and in

each interval one task is processed on all m processors. Below

we give a justification.

We first prove that the intersection of the line p/C
with convU lies on the hyperplane defined by the points

v(l) = (f1(0), . . . , fl−1(0), fl(m), fl+1(0), . . . , fn(0)), l =
1, . . . , n. The equality defining this hyperplane is

x1

f1(m)
+

x2

f2(m)
+ . . . +

xn

fn(m)
= 1. (1)

Consider an arbitrary feasible resource allocation

(r1, r2, . . . , rn) and the corresponding transformed resource

allocation (f1(r1), f2(r2), . . . , fn(rn)). By the convexity of

fj(r) and the equality fj(0) = 0, for λj = rj/m, we have

(1 − λj)fj(0) + λjfj(m) ≥ fj((1 − λj)0 + λjm), which

implies fj(rj) ≤ rj

m fj(m). Furthermore, by substituting

xj = fj(rj), j = 1, . . . , n, in the left hand side of (1), we

obtain

n
∑

j=1

fj(rj)

fj(m)
≤

n
∑

j=1

rj

m
fj(m)

fj(m)
≤

n
∑

j=1

rj

m
≤ 1.

Thus, all feasible transformed allocations lie on one side of

this hyperplane. Therefore, the point of intersection of the line

p/C with convU lies on this hyperplane.

We deduce that, in the case of convex processing speed

functions, an optimal schedule for both problems Pcntn and P
consists of n intervals with lengths ∆j = pj/fj(m), and all m
processors allocated to task j in the interval j, j = 1, . . . , n.

The corresponding algorithm, which is known as the gang

strategy, can be implemented to run in O(n) time if each

value fj(m) is computable in a constant time.
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4. Concave functions fj(r)

Firstly, we consider problem Pcntn and prove that the set U
of feasible transformed resource allocations is convex.

Consider two feasible transformed resource allocations,

f(r(1)) and f(r(2)). Due to the concavity, we have u :=
λf(r(1)) + (1 − λ)f(r(2)) ≤ f(λr(1) + (1 − λ)r(2)) for any

0 < λ < 1. Note that r′ := λr(1)+(1−λ)r(2) is a feasible re-

source allocation. Since functions fj(r) are strictly increasing

and continuous, it follows that f−1(u) ≤ r′ and u is a feasi-

ble transformed resource assignment. Therefore, U is convex

what implies that the point of intersection of the line p/C and

convU belongs to U .

We deduce that there exists an optimal schedule for prob-

lem Pcntn with the single time interval [0, C0
max] and the

resource allocation f−1(p/C0
max).

Note that a schedule with a single time interval [0, C]
and the resource allocation f−1(p/C) is feasible for any

C ≥ C0
max. We will use this property in the following bi-

section search algorithm for problem Pcntn with the concave

processing speed functions. The algorithm finds a feasible

schedule with the makespan C
(1)
max ≤ C0

max + ε, where ε is

any given rational number.

At the beginning we build a feasible schedule with n in-

tervals of lengths ∆j = pj/fj(m) and all m processors al-

located to task j in interval j, j = 1, . . . , n. We perform a

bisection search in the range [0, C+], C+ = ⌈
n
∑

j=1

∆j⌉, of the

optimal makespan value C0
max. For a trial value C ∈ [A, B],

where A and B are the current lower and upper bounds for

C0
max, if the schedule with one interval [0, C] and the corre-

sponding resource allocation f−1(p/C) is feasible, then we

re-set B := C, otherwise we re-set A := C. The procedure

terminates when B ≤ A + ε.

The time complexity of this algorithm is O(n(log C+ +
log 1/ε)) multiplied by the time complexity of computing the

reverse function f−1
j (v). If functions fj(r) are piecewise lin-

ear with at most m breakpoints, as they are in Błażewicz

et al. [1], then every reverse function can be computed in

O(log m) time.

Observe that the optimality of algorithms given in

Błażewicz et al. [1, 20] for the case n ≤ m is justified by

the properties of optimal solutions established there. The re-

lation n ≤ m is used in the proofs of these properties but it is

not present in the properties themselves. We have proved that

the same properties hold for arbitrary n and m. Therefore, the

algorithms from [1, 20] can be applied for the case of arbi-

trary n and m. In particular, the case of piecewise linear con-

cave strictly increasing processing speed functions in problem

Pcntn can be handled by the O(n max{m, n log2 m}) time

algorithm in [1].

For specific concave processing speed functions problem

Pcntn can admit a faster solution algorithm. Same as Prasan-

na and Musicus [11], let us consider functions fj(r) = rα,

j = 1, . . . , n, where 0 < α < 1. In this case, an optimal

solution can be described analytically, as it is shown in the

following theorem.

Theorem 4. Let fj(r) = rα, 0 < α < 1, for each j,

1 ≤ j ≤ n. Then there exists an optimal schedule with one

processing interval [0, C0
max] for each task and corresponding

resource allocation r1, . . . , rn such that

C0
max =

√

√

√

√

√

n
∑

j=1

(pj)1/α

αv
,

rj = v
1
2α













pj

√
α

√

n
∑

j=1

(pj)1/α













1/α

, 1 ≤ j ≤ n,

where

v =
m2α















n
∑

j=1













pj
√

α
√

n
∑

j=1

(pj)1/α













1/α














2α . (2)

Proof. Since functions fj(r) = rα are concave, U=convU
and, according to Theorem 2, there exists an optimal sched-

ule with one processing interval [0, C0
max] for each task. The

value C0
max and the corresponding optimal resource alloca-

tion can be derived from the solution to the following convex

programming problem.

min C, subject to

n
∑

j=1

rj − m ≤ 0,

pj

C
− (rj)

α ≤ 0,

(r1, r2, . . . , rn, C) ∈ Q

:= {(r1, r2, . . . , rn, C)|rj > 0, 1 ≤ j ≤ n, C > 0}.
Denote

x := (r1, r2, . . . , C)

and

λ := (λ1, λ2, . . . , λn, λn+1), λ ≥ 0.

Lagrange function for this problem is

F (x, λ) = C + λn+1





n
∑

j=1

rj − m



 +

n
∑

j=1

λj

(pj

C
− (rj)

α
)

.

Since there exists a solution to the above convex pro-

gramming problem, there exists a point (x0, λ0) such that

F (x0, λ) ≤ F (x0, λ0) ≤ F (x, λ0), x ∈ Q, λ ∈ Rn+1, λ ≥ 0.

Let us make an additional assumption that λ0 > 0. We will

demonstrate the existence of the point x0 and Lagrange mul-

tipliers λ0 which satisfy these properties.

Firstly, point x0 must be stationary, that is, equalities
∂F

∂C
= 0 and

∂F

∂rj
= 0, j = 1, . . . , n, must be satisfied.
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Equality
∂F

∂C
= 0 is equivalent to

C =

√

√

√

√

n
∑

j=1

λjpj (3)

and equality
∂F

∂rj
= 0, 1 ≤ j ≤ n, is equivalent to

rj =

(

λj

λn+1α

)
1

1−α

. (4)

Furthermore, x0 = (r1, r2, . . . , C) with rj and C defined

in (3) and (4) is a global minimum for F (x, λ), x ∈ Q, be-

cause this minimum exists.

Equality
∂F

∂λn+1
= 0 is equivalent to

n
∑

j=1

rj − m = 0 (5)

and equality
∂F

∂λj
= 0 is equivalent to

rj =
(pj

C

)1/α

. (6)

Furthermore, if (5) and (6) hold, then any λ0 > 0 is a

global maximum for F (x, λ).
In order to satisfy (3), (4) and (6), λ must be chosen such

that

pj
√

n
∑

j=1

λjpj

=

(

λjα

λn+1

)α/(1−α)

.

This formula holds if we define λj , 1 ≤ j ≤ n + 1, as

λj =
1

αv
(pj)

1
α
−1, 1 ≤ j ≤ n, (7)

λn+1 =





1

α

n
∑

j=1

(pj)
1
α





1−α
2α

v−
1−α
2α

−1, (8)

where v is a positive number.

Re-write (3) and (4) using (7) and (8):

C0
max =

√

√

√

√

1

αv

n
∑

j=1

(pj)
1
α , (9)

rj = v
1
2α













pj
√

α
√

n
∑

j=1

(pj)
1
α













1
α

, 1 ≤ j ≤ n. (10)

Now define v by (2) so that formula (5) holds.

Formulas (3)–(5) and (6) are true. Therefore, for the point

(x0, λ0) the following relations are satisfied: F (x0, λ) ≤
F (x0, λ0) ≤ F (x, λ0) for x ∈ Q, λ ∈ Rn+1, λ ≥ 0. Thus,

an optimal solution of problem Pcntn has been determined.

Note that the above formulas suggest only an approximate

solution to the problem because the rational power of a num-

ber cannot be calculated precisely. Assuming that the rational

power is calculated precisely in a constant time, the problem

with functions fj(r) = rα, j = 1, . . . , n, 0 < α < 1, is

solvable in O(n) time.

Finally, solutions of the continuous problems studied in

this section can be transformed into solutions of the corre-

sponding discrete problem P with the same makespan values

in O(n) time by the approach in Błażewicz et al. [20].

5. Arbitrary functions fj(r)

Here we assume that fj(r) are piecewise linear strictly in-

creasing continuous functions with fj(0) = 0. In this case

we propose a combinatorial exponential algorithm to solve

problems Pcntn and P .

It is shown in Theorem 3 that D is a union of ele-

mentary polyhedrons each being an intersection of a unit n-

dimensional cube and the half-space r1+. . .+rn ≤ m. Given

kj ∈ Z , 1 ≤ kj ≤ m, j = 1, . . . , n, we call (k1, . . . , kn)-cube

the cube whose points (r1, . . . , rn) satisfy kj − 1 ≤ rj ≤ kj ,

j = 1, . . . , n.

Theorem 5. If (k1, . . . , kn)-cube intersects with hyperplane

r1 + . . . + rn = m in at least two points, then m + 1 ≤
k1 + . . . + kn ≤ m + n − 1.

Proof. Let k1 + . . .+ kn > m + n− 1. Then k1 + . . .+ kn ≥
m + n and any point (r1, . . . , rn) of the (k1, . . . , kn)-cube

satisfies r1 + . . . + rn ≥ m. Furthermore, there is at most

one such point where this relation is a strict equality. Simi-

larly, if k1 + . . . + kn < m + 1, then k1 + . . . + kn ≤ m.

Then any point (r1, . . . , rn) of the (k1, . . . , kn)-cube satisfies

r1 + . . .+ rn ≤ m, and there is at most one such point where

this relation is a strict equality.

Theorem 6. If (k1, . . . , kn)-cube and hyperplane r1 + . . . +
rn = m, m ∈ Z , intersect in at least two points, then the

intersection of this cube and the halfspace r1 + . . . + rn ≤ m
is a polyhedron. Furthermore, all vertices of this polyhedron

belong to the set of vertices of this cube.

Proof. Each vertex of the resulting polyhedron is defined by

the intersection of n hyperplanes among which there are facets

of the cube and the hyperplane r1 + . . .+ rn = m. If a vertex

is defined only by the facets of the cube, then it is clearly a

vertex of the cube. If it is defined by n hyperplanes including

the hyperplane r1 + . . .+rn = m, then, since m is an integer,

all its coordinates are integer. Therefore, it is a vertex of the

cube as well.

The number of (k1, . . . , kn)-cubes intersecting with the

hyperplane r1 + . . . + rn = m in at least two points is
m+n−1

∑

r=max{m+1,n}

Cn−1
r−1 , where Ck

n is the number of combina-

tions of k elements out of n. Since Ck−1
n−1 ≤ Ck

n for k ≤ n,

we have
m+n−1

∑

r=max{m+1,n}

Cn−1
r−1 ≤

n+m−2
∑

r=0
Cr

n+m−2 = 2n+m−2.
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Then the total number of vertices of the considered cubes is

O(22n+m−2).
The algorithm we propose consists of two stages. In Stage

1 it finds all vertices of the (k1, . . . , kn)-cubes that intersect

with the hyperplane, and their transformations by functions

fj(r). Vertices of the polyhedron convU belong to the set

U . By Theorems 5 and 6 and the fact that functions fj(r)
are continuous and piecewise linear, we deduce that vertices

of the polyhedron convU are among the above mentioned

O(22n+m−2) transformed vertices.

In Stage 2 the algorithm enumerates all hyperplanes each

of which is defined by n base points among those found in

Stage 1 and such that all the remaining points are on the

same side of this hyperplane in the space Rn as the point

(0, . . . , 0). It is clear that all the hyperplanes that define facets

of the polyhedron convU are among these hyperplanes. Cal-

culate the intersection point of the line p/C with each such

hyperplane and find the hyperplane with the maximum val-

ue of C, which is equal to C0
max. Denote this intersection

point as u0. Let v(1), . . . , v(n) be the base points for the hy-

perplane corresponding to C0
max. We solve a system of linear

equalities
n
∑

l=1

λlv
(l)
i = u0

i , i = 1, . . . , n, and
n
∑

l=1

λl = 1 for

λl ≥ 0, l = 1, . . . , n. Let the solution contain L+ ≤ n pos-

itive values λ1, . . . , λL+ . Then an optimal schedule contains

L+ intervals. Interval l, 1 ≤ l ≤ L+, has length λlC
0
max and

resource allocation vector r(l) corresponding to the point v(l).

Recall that the resource allocations r(l), l = 1, . . . , L+, have

integer components according to Theorem 6. Therefore, the

corresponding solution is optimal for both problems Pcntn

and P .

A formal description of the algorithm, which we denote

as Enum, is given below.

Algorithm Enum

Stage 1 Set U1 = ∅, C0
max = 0 and u0 = (0, . . . , 0). Consid-

er (k1, k2, . . . , kn)-cubes such that m+1 ≤ k1+. . .+kn ≤
m + n − 1. For each such cube consider its vertices

r = (r1, . . . , rn), ri ∈ {ki − 1, ki}, i = 1, . . . , n. For each

such vertex, in O(n) time find its transformed resource al-

location u = (f1(r1), . . . , fn(rn)) and add it to the set U1.

Let U1 = {u(1), . . . , u(K)}.

Stage 2 Consider all n-element subsets of the set U1. For

each such subset {u(i1), . . . , u(in)}, find a hyperplane H
that goes through the points of this subset in the space Rn.

Let u(ij) = (u
(ij)
1 , . . . , u

(ij)
n ), j = 1, . . . , n, and let the hy-

perplane H be defined by an equation a1u1 + . . .+anun +
b = 0. Its coefficients are a solution of the following system

of linear equations:

a1u
(i1)
1 + . . . + anu(i1)

n + b = 0,

a1u
(i2)
1 + . . . + anu(i2)

n + b = 0,

. . .

a1u
(in)
1 + . . . + anu(in)

n + b = 0,

which can be solved in O(n3) time.

For each hyperplane H , check if all points of the set

U1 are on the same side of this hyperplane as the point

(0, 0, . . . , 0): if a1u
(l)
1 + . . . + anu

(l)
n has the same sign as

b, then the point u(l) ∈ U1 is on the same side of H as the

zero point. If all points of U1 are on the same side of the

hyperplane H as the zero point, then call this hyperplane

feasible.

For each feasible hyperplane H calculate its intersec-

tion point uH with line p/C: uH = (p1/C, . . . , pn/C)
where a1p1/C + . . . + anpn/C + b = 0. We have

C = −a1p1/b . . . − anpn/b. If C > C0
max, then re-set

C0
max := C and u0 := uH .

Let {v(1), . . . , v(n)} be a subset of the set U1 correspond-

ing to the point u0 with the maximum value C0
max. In

O(n3) time solve a system of n + 1 linear equalities
n
∑

l=1

λlv
(l)
i = u0

i , i = 1, . . . , n, and
n
∑

l=1

λl = 1 for λl ≥ 0,

l = 1, . . . , n. Let the solution contain L+ ≤ n positive

values λ1, . . . , λL+ . Then an optimal schedule contains L+

intervals. Interval l, 1 ≤ l ≤ L+, has length λlC
0
max and

resource allocation vector r(l) corresponding to the trans-

formed resource allocation v(l).

Algorithm Enum can be implemented to run in

O(n32(2n+m−2)n) time.

Example: There are three processors and two tasks with

p1 = 10, p2 = 25, f1(r) = r for all r, and f2(r) = 2r
on the interval [0,1], f2(r) = 2 in the interval [1,2], and

f2(r) = r in the interval [2,3]. Firstly, we obtain transformed

points v1 = (0, 3), v2 = (0, 2), v3 = (1, 2), v4 = (1, 2),
v5 = (2, 2), v6 = (2, 0), v7 = (3, 0). After this we find point

u0 = (1, 2.5). This point lies on the line (v1, v5) and line p/C

when C = 10 (see Fig. 3). Then we establish
1

2
v1+

1

2
v5 = u0.

Thus, an optimal schedule consists of two intervals, each of

five time units length, with resource allocations r(1) = (0, 3)
and r(2) = (2, 1).

Fig. 3. The polyhedron conv U and intersection point of line p/C
with set convU
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6. Conclusions

The earlier studies of malleable task scheduling problems

were based on the properties proved for the case m ≥ n.

In this paper we present a formal proof of these properties for

the general case. Furthermore, we suggest a bisection search

O(n(log C+ + log 1/ε)) time algorithm for the problem with

arbitrary concave processing speed functions and an analyt-

ical O(n) time solution approach for the problem with the

earlier studied functions fj(r) = rα, j = 1, . . . , n, where

0 < α < 1. For the case of general functions fj(r), we pre-

sented a combinatorial exponential algorithm with run time

O(n32(2n+m−2)n).
For future research it is interesting to find formulas and

efficient exact and approximate solution algorithms for other

practically motivated types of processing speed functions.

Also more general models of tasks, as these studied e.g.

in [21] could be considered.
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