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Design of the oscillatory systems

with the extremal dynamic properties

H. GÓRECKI and M. ZACZYK∗

AGH University of Science and Technology, Department of Automatics and Biomedical Engineering,
30 Mickiewicza Ave., 30-059 Kraków, Poland

Abstract. In this article the problem of determination of such coefficients a1, a2, ..., an and eigenvalues s1, s2, ..., sn of the characteristic
equation which yield required extremal values of the solution x(t) at the extremal value τ of time is solved. The extremal values of x(τ )
and τ are treated as functions of the roots s1, s2, ..., sn. The analytical formulae enable us to design the systems with prescribed dynamic
properties. For solution of the problem the properties of symmetrical equations are used. The method is illustrated by an example of the
equation of 4-th degree. The regions of the different kinds of the roots: real, with one pair of complex and two pairs of complex roots are
illustrated. A practical problem is shown.
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1. Introduction

The oscillations can be observed both in the mechanical and
in the electrical systems. These oscillations are caused mainly
by the exchange of the kinetic and potential energy in the sys-
tem. Great oscillations of the suspension of the car can lead
to its destruction.

In the article an analytic method is proposed, which en-
ables the design of the system with prescribed values of the
amplitude and period of the oscillations.

2. Statement of the problem

Calculation of conditions and extremum of the extreme value
of the dynamic error [1].
Case 1

Let us consider the differential equation determining the
dynamic error in a linear control system of n-th order with
lumped and constant parameters:

dnx

dtn
+ a1

dn−1x

dtn−1
+ ... + an−1

dx

dt
+ anx = 0. (1)

The initial conditions are determined by the force function
and the system’s parameters.

Let us assume in general, that

x(i)(0) = ci+1 6= 0 for i = 0, 1, ....., n− 1.

We assume further that the characteristic equation of Eq. (1)
has m different real roots and 2p different complex roots.

It is evident that

m + 2p = n.

We denote by sk real roots and

αk + jωk = rk, αk − jωk = r̂k, (k = 1, 2, ...., p).

The solution of Eq. (1) takes the form

x(t) =

m∑

k=1

Akeskt +

p∑

k=1

[Bk cos(ωkt) + Ck sin(ωkt)] eαkt,

(2)
where Ak, Bk, Ck, sk, αk, ωk are real numbers.

The necessary conditions for the dynamic error x(t) to
attain an extreme value at t = τ is given by the relation:

dx

dt
=

m∑

k=1

Akskeskt+

p∑

k=1

[(−Bk sin ωkτ + Ck cosωkτ)ωk

+(Bk cosωkτ + Ck sin ωkτ)αk] eαkτ = 0.

(3)

The constants are determined from

x(i)(0) = ci+1 =

m∑

k=1

Aksi
k

+

p∑

k=1

[
BkRe(ri

k) + CkIm(ri
k)

]
,

(i = 0, 1, ..., n − 1).

(4)

The extreme value of the dynamic error is

x(τ) =

m∑

k=1

Akeskτ

+

p∑

k=1

[Bk cos (ωkτ ) + Ck sin (ωkτ )] eαkτ .

(5)

The extremum of extreme value of the dynamic error given
by Eq. (5), computed with regard to the parameters sk, αk,
ωk, is obtained by putting the respective partial derivatives of
x(τ) equal to zero.
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Denoting by
(

∂x(τ)

∂sk

)
∗

,

(
∂x(τ)

∂αk

)
∗

,

(
∂x(τ)

∂ωk

)
∗

the partial derivatives of expression (5) for the constant τ we
may write

∂x(τ)
∂sk

=

(
∂x(τ)

∂sk

)
∗

+
∂x(τ)

∂τ

∂τ

∂sk

∂x(τ)
∂αk

=

(
∂x(τ)

∂αk

)
∗

+
∂x(τ)

∂τ

∂τ

∂αk

∂x(τ)

∂ωk

=

(
∂x(τ)

∂ωk

)
∗

+
∂x(τ)

∂τ

∂τ

∂ωk






. (6)

However, we have from Eq. (3)

∂x(τ)

∂τ
= 0

and therefore

∂x(τ)
∂sk

=

(
∂x(τ)

∂sk

)
∗

∂x(τ)
∂αk

=

(
∂x(τ)

∂αk

)
∗

∂x(τ)
∂ωk

=

(
∂x(τ)

∂ωk

)
∗






. (7)

We obtain the following conditions:
m∑

k=1

∂Ak

∂sj

eskτ + Ajτesjτ

+
p∑

k=1

(
∂Bk

∂sj

cosωkτ +
∂Ck

∂sj

sinωkτ

)
eαkτ = 0

j = 1, 2, ....., m

m∑
k=1

∂Ak

∂αj

eskτ +
p∑

k=1

(
∂Bk

∂αj

cosωkτ +
∂Ck

∂αj

sin ωkτ

)
eαkτ

+ (Bj cosωjτ + Cj sin ωjτ ) eαjττ = 0

m∑
k=1

∂Ak

∂ωj

eskτ +
p∑

k=1

(
∂Bk

∂ωj

cosωkτ +
∂Ck

∂ωj

sin ωkτ

)
eαkτ

+ (Cj cosωjτ − Bj sin ωjτ ) eαjττ = 0






j = 1, 2, ......, p

(8)
In this way we have a system of n linear and homogenous
equations with n unknowns

eskτ , eαkτ sinωkτ, eαkτ cosωkτ.

The determinant of system (8) must vanish if there are not
to be all zero solutions. The same determinant (after being
reflected about one of the main diagonals) is:

|D + Aτ | , (9)

where D and A are matrices determined by the following
equations:

D =
m∑

j=1

m∑
k=1

∂Aj

∂sk

Ejk +
p∑

j=1

m∑
k=1

·
(

∂Bj

∂sk

Em+2j−1,k +
∂Cj

∂sk

Em+2j,k

)
+

m∑
j=1

p∑
k=1

·
(

∂Aj

∂αk

Ej,m+2k−1 +
∂Aj

∂ωk

Ej,m+2k

)
+

p∑
j=1

p∑
k=1

·
[(

∂Bj

∂αk

Em+2j−1,m+2k−1 +
∂Bj

∂ωk

Em+2j−1,m+2k

)

+

(
∂Cj

∂αk

Em+2j,m+2k−1 +
∂Cj

∂ωk

Em+2j,m+2k

)]
,

A =
m∑

j=1

AjEjj +
p∑

j=1

· [Bj (Em+2j−1,m+2j−1 − Em+2j,m+2j)

+Cj (Em+2j−1,m+2j + Em+2j,m+2j−1)] ,






(10)

Ejk =
(
e(jk)

µ,ν

)

µ,ν=1,....,n

e(jk)
µ,p = δµjδνk =

{
0 for µ = j, ν = k

1 for all other cases

(11)

Finally, we have

|D + Aτ | = 0 (12)

and system (8) yields for unknown τ (after some algebraic
manipulations) the following equation:

(−1)
n

τn

m∏

k=1

Ak

p∏

k=1

(
B2

k + C2
k

)
= 0 (13)

Case 2

It might be asked whether the time τ , corresponding to the
extreme value of the dynamic error, attains an extreme value
with respect to the parameters sk, αk, ωk. To investigate this
we assume that

∂τ

∂sk

= 0 (k = 1, ...., m)

∂τ

∂αk

=
∂τ

∂ωk

= 0 (k = 1, ...., p)





. (14)

We compute the partial derivatives of Eq. (8), taking into
account Eq. (14).

m∑

k=1

∂Ak

∂sj

skeskτ + (1 + sjτ)Aje
sjτ

+

p∑

k=1

[(
∂Bk

∂sj

cosωkτ +
∂Ck

∂sj

sin ωkτ

)
αk

+

(
∂Ck

∂sj

cosωkτ − ∂Bk

∂sj

sinωkτ

)]
eskτ = 0,

(j = 1, ....., m),

(15)
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m∑

k=1

∂Ak

∂αj

skeskτ +

p∑

k=1

(
∂Bk

∂αj

cosωkτ +
∂Ck

∂αj

sin ωkτ

)
αk

+ [(Bj cosωjτ + Cj sinωjτ) (1 + αjτ )

+ (Cj cosωjτ − Bj sin ωjτ) ωjτ ] eαjτ = 0,

(j = 1, ......, p),
(16)

m∑

k=1

∂Ak

∂ωj

skeskτ +

p∑

k=1

[(
∂Bk

∂ωj

cosωkτ +
∂Ck

∂ωj

sin ωkτ

)
αk

+

(
∂Ck

∂ωj

cosωkτ − ∂Bk

∂ωj

sin ωkτ

)
ωk

]
eαkτ

+ [(Cj cosωjτ − Bj sinωjτ) (1 + αjτ)

− (Bj cosωjτ + Cj sin ωjτ) ωjτ ] eαjτ = 0,

(j = 1, ..., p).
(17)

Let

F =

m∑

µ=1

sµEµ,µ +

p∑

µ=1

· [αµ (Em+2µ−1,m+2µ−1 + Em+2µ,m+2µ−1)

+ ωµ (Em+2µ−1,m+2µ − Em+2µ,m+2µ−1)] .

(18)

Equations (15)–(17) yield, after by equating the determinant
to zero

|FD + A + FAτ | = 0, (19)

(−1)p

m∏

k=1

Ak

p∏

k=1

(
B2

k+C2
k

) m∏

k=1

sk

p∏

k=1

(
α2

k+ω2
k

)
τn−1

·
[
τ +

m∑

k=1

1

sk

+

p∑

k=1

(
1

rk

+
1

r̂k

)]
= 0.

(20)

From (20) it results that

τ = 0 (21)

or, using Vieta’s formulae

τ = −
[

m∑

k=1

1

sk

+

p∑

k=1

(
1

rk

+
1

r̂k

)]
=

an−1

an

. (22)

The set of Eqs. (17) gives also another necessary condition,
which was presented in [2].

In the paper [2] another necessary condition was
found, i.e.:

Dn(τ)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4 ... cn−1 cn

−an−2

an

τ −1 0 ... 0 0

−an−3

an

0 τ −2 ... 0 0

... ... ... ... ... ... ...

− a1

an

0 0 0 ... τ 2 − n

− 1

an

0 0 0 ... 0 τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (23)

After substituting τ =
an−1

an

into (23) we obtain the relation between initial conditions ci+1, i = 0, 1, ..., n−1 and coefficients

aj , j = 1, 2, ..., n.

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4 ... cn−1 cn

an−2 −an−1 an 0 ... 0 0

an−3 0 −an−1 2an ... 0 0

an−4 0 0 −an−1 ... 0 0

... ... ... ... ... ... ...

a1 0 0 0 ... −an−1 (n − 2)an

1 0 0 0 ... 0 −an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (24)
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3. Solution of the problem

It is a very difficult problem to determine the roots

s1, s2, ..., sn which fulfill the necessary conditions τ =
an−1

an
and Dn = 0. The solution of algebraic equation with n high-
er than n = 4 is possible only using an additional assump-
tion [3]. For that reason we use the properties of symmetrical
algebraic equations. From the theoretical point of view such
equations can be solved up to 9-th degree, which is satisfac-
tory for practical applications.

3.1. Symmetrical algebraic equations. In what follows we
use the equations

a0z
n+a1z

n−1+a2z
n−2+...+a2z

2+a1z+a0 = 0, a0 6= 0
(25)

in which the coefficients of all terms in equal distance from
the beginning and from the end are equal. It is easy to see

that if the equation has a root zk, then it also has a root
1

zk

.

Let the degree be even, n = 2k.
Divide Eq. (25) by zk and arrange the appropriate terms

to obtain

a0

(
zk +

1

zk

)
+ a1

(
zk−1 +

1

zk−1

)

+ ... + ak−1

(
z +

1

z

)
+ ak = 0.

(26)

Putting

y = z +
1

z
(27)

we obtain that

y2 = z2 +
1

z2
+ 2

...

yk =

(
zk +

1

zk

)
+ k

(
zk−2 +

1

zk−2

)

+
k

2

(
zk−4 +

1

zk−4

)
+ ...






. (28)

Hence we have

z +
1

z
= y

z2 +
1

z2
= y2 − 2

z3 +
1

z3
= y3 − 3y

...






. (29)

In particular, for the equation of the 4-th degree we must solve
three equations of the second degree: one for the determina-
tion of the values of y and two for determination the values of
unknown z. The equation of the odd degree n = 2k + 1 has
always the root equal to z = −1. After dividing the equation

a0z
2k+1 + a1z

2k + a2z
2k−1 + ... + akzk+1

+ ... + a2z
2 + a1z + a0 = 0

(30)

by (z + 1) we obtain the equation of the even degree

b0z
2k + b1z

2k−1 + ... + b1z
k + b0 = 0 (31)

where

b0 = a0

b1 = −a0 + a1

b2 = a0 − a1 + a2

...

bk = (−1)ka0 + (−1)k−1a1 + (−1)k−2a2 + ... + ak






.

(32)

3.2. Determination of the curves bounding the regions

with different kinds of roots. We apply the well-known re-
lation for the discriminant of Eq. (25):

∆n = V 2
n =

n∏

k,l=1

k>l

(zk − zl)
2
, (33)

where Vn is the Vandermonde determinant.
In the paper [4] there is presented an example of the 3-rd

degree.
We illustrate the method by an example of equation of the

4-th degree.

4. Particular example, n = 4

Let us consider the differential equation

d4x(t)

dt4
+a1

d3x(t)

dt3
+a2

d2x(t)

dt2
+a3

dx(t)

dt
+a4x(t) = 0 (34)

with initial conditions

x(0) = c1, x(1)(0) = c2, x(2)(0) = c3, x(3)(0) = c4.

The characteristic equation of (34) is

s4 + a1s
3 + a2s

2 + a3s + a4 = 0. (35)

We assume that the roots s1, s2, s3, s4 have negative real
parts.

We want to obtain simple analytic formulae for si by using
symmetrization of Eq. (34).

We put
s = 4

√
a4z, a4 > 0. (36)

Then we obtain the equation

z4 +
a1

4
√

a4
z3 +

a2

4

√
a2
4

z2 +
a3

4

√
a3
4

z + 1 = 0. (37)

We denote

b1 =
a1

4
√

a4
, b2 =

a2

4

√
a2
4

, b3 =
a3

4

√
a3
4

(38)

and assume that
b1 = b3

or

a1 =
a3√
a4





. (39)
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Then Eq. (37) takes a form

z4 + b1z
3 + b2z

2 + b1z + 1 = 0 (40)

which is symmetric.

We observe that the extremal time for Eq. (35) is

τ1 =
a3

a4
(41)

with the necessary condition

D4 =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4

a2 −a3 a4 0

a1 0 −a3 2a4

1 0 0 −a3

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (42)

After symmetrization we have for Eq. (40) that

τ1 = b1. (43)

The condition (42) has the form

D4 =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4

b2 −b1 1 0

b1 0 −b1 2

1 0 0 −b1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (44)

or

c1b
3
1 +

(
b2
1 + b2b

2
1 + 2

)
c2 +

(
2b1 + b3

1

)
c3 + b2

1c4 = 0. (45)

Using Eq. (28) for solution Eq. (40) we put

y = z +
1

z

y2 = z2 +
1

z2
+ 2





(46)

and obtain

y2 + b1y + b2 − 2 = 0. (47)

The roots of (47) are

y1 = −1

2
b1 +

1

2

√
b2
1 − 4b2 + 8

y2 = −1

2
b1 −

1

2

√
b2
1 − 4b2 + 8





. (48)

From Eq. (46) we have

z2 − zy + 1 = 0. (49)

Substitution of (48) to Eq. (49) gives the roots of Eq. (40)

z1 = −1

4
b1 +

1

4

√
b2
1 − 4b2 + 8

+
1

4

√
2b2

1 − 2b1

√
b2
1 − 4b2 + 8 − 4b2 − 8

z2 = −1

4
b1 −

1

4

√
b2
1 − 4b2 + 8

+
1

4

√
2b2

1 + 2b1

√
b2
1 − 4b2 + 8 − 4b2 − 8

z3 = −1

4
b1 +

1

4

√
b2
1 − 4b2 + 8

−1

4

√
2b2

1 − 2b1

√
b2
1 − 4b2 + 8 − 4b2 − 8

z4 = −1

4
b1 −

1

4

√
b2
1 − 4b2 + 8

−1

4

√
2b2

1 + 2b1

√
b2
1 − 4b2 + 8 − 4b2 − 8






. (50)

Knowing the roots of Eq. (40) we can calculate the discrimi-
nant (33)

∆4 =

4∏

k,l=1

k>l

(zk − zl)
2

= − (2b1 + b2 + 2) (2b1 − b2 − 2)
(
b2
1 − 4b2 + 8

)2
.

(51)

From Eq. (51) we obtain that

∆4 = 0 (52)

if
b2 = 2b1 − 2 (53)

or
b2 = −2b1 − 2 (54)

or

b2 =
1

4
b2
1 + 2. (55)

For the stability of the system, the Hurwitz determinant H

must be positive

H4 =

∣∣∣∣∣∣∣∣∣

b1 1 0 0

b1 b2 b1 1

0 1 b1 b2

0 0 0 1

∣∣∣∣∣∣∣∣∣

> 0. (56)

From (56) we obtain the following stability conditions

b1 > 0

b2 > 0

b2 > 2





. (57)

The limit of stability is for b2 = 2.
From (57) it follows that the case (54) is not allowed.
In Fig. 1 we illustrate the regions for different kinds of

roots according to the values of the discriminant (51), that
means ∆4 < 0, ∆4 > 0 and p < 0 or p > 0, q < 0, q > 0.
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Fig. 1. Regions of roots for different values of b1 and b2, according to the values of ∆, p and q

Different regions of the roots

The equation

s4 + a1s
3 + a2s

2 + a3s + a4 = 0. (58)

Substituting

s = y − a1

4
(59)

to Eq. (58) gives

y4 + py2 + qy + r = 0, (60)

where

p = a2 −
3

8
a2
1, (61)

q = −1

2
a1a2 +

1

8
a3
1 + a3, (62)

r = −1

4
a1a3 +

1

16
a2
1a2 −

3

256
a4
1 + a4 (63)

and the discriminant

∆4 = 16rp4 − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3.

(64)
After symmetrization we obtain

p = b2 −
3

8
b2
1, (65)

q =
1

8
b3
1 −

1

2
b1b2 + b1, (66)

r = −1

4
b2
1 +

1

16
b2
1b2 −

3

256
b4
1 + 1, (67)

∆4 = − (2b1 + b2 + 2) (2b1 − b2 − 2)
(
b2
1 − 4b2 + 8

)2
,

(68)

p = 0 for b2 =
3

8
b2
1, (69)

q = 0 for b2 =
1

4
b2
1 + 2, (70)

∆4 = 0 for b2 = 2b1 − 2 (71)

or

b2 =
1

4
b2
1 + 2. (72)

The limit of stability is for

b1 > 0

b2 = 2

}
. (73)

In particular, for b2 = 2, b1 =
4√
3

we have r = 0.

Using the curves which are determined by relations (69),
(70), (71) and (72) we can establish Fig. 1 and Table 1, illus-
trating the different regions of the roots.
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Table 1
Different regions of roots

Two pairs complex-conjugate Two real + two complex Four real Contradictionary inequalities

D > 0 > 0 > 0 < 0 > 0 < 0 < 0 < 0

p > 0 > 0 < 0 < 0 < 0 < 0 > 0 > 0

q > 0 < 0 < 0 > 0 > 0 < 0 < 0 > 0

In particular we have that:
for b1 = 4 and b2 = 6: one quadruple real root

for b1 > 4 and b2 =
1

4
b2
1 + 2: two double real roots

for 0 < b1 < 4 and b2 =
1

4
b2
1 + 2: double pair of complex-

conjugate roots
for b1 > 4 and b2 = 2b1 − 2: two different real roots and one

double real root
for 0 < b1 < 4 and b2 = 2b1 − 2: one double real root and

one pair of complex-conjugate root.

In conclusion we see that there are three different regions
which include two pairs of complex-conjugate roots, one re-
gion with one pair of complex roots and two real roots and
finally one region with four real roots.

The determination of the coefficients b1 and b2 from the
necessary conditions (45) and (3) is very difficult. For that rea-
son we calculate from these equations the initial conditions
c2

c1
,

c3

c1
,

c4

c1
, c1 6= 0.

Equation (1) in this case is as follows:

d4z

dt4
+ b1

d3z

dt3
+ b2

d2z

dt2
+ b1

dz

dt
+ 1 = 0. (74)

The solution of Eq. (74) takes a form

z(t) = − (z2z3z4c1 − z2z4c2 − z2z3c2 + z2c3 + z4c3 + z3c3 − c4 − z3z4c2) ez1t

(z4 − z1) (z3 − z1) (z1 − z2)

+
(z1z3z4c1 − z1z3c2 − z1z4c2 + z1c3 + z4c3 + z3c3 − c4 − z3z4c2) ez2t

(z1 − z2) (z4 − z2) (z3 − z2)

− (z1c3 + z1z2z4c1 − c4 − z1z2c2 − z2z4c2 + z2c3 + z4c3 − z1z4c2) ez3t

(z3 − z1) (z3 − z2) (z3 − z4)

+
(z1z2z3c1 − z1z2c2 + z2c3 − z2z3c2 + z1c3 − c4 − z1z3c2 + z3c3) ez4t

(z4 − z2) (z3 − z4) (z4 − z1)
.

(75)

The derivative

dz(t)

dt
= − (z2z3z4c1 − z2z4c2 − z2z3c2 + z2c3 + z4c3 + z3c3 − c4 − z3z4c2) z1e

z1t

(z4 − z1) (z3 − z1) (z1 − z2)

+
(z1z3z4c1 − z1z3c2 − z1z4c2 + z1c3 + z4c3 + z3c3 − c4 − z3z4c2) z2e

z2t

(z1 − z2) (z4 − z2) (z3 − z2)

− (z1c3 + z1z2z4c1 − c4 − z1z2c2 − z2z4c2 + z2c3 + z4c3 − z1z4c2) z3e
z3t

(z3 − z1) (z3 − z2) (z3 − z4)

+
(z1z2z3c1 − z1z2c2 + z2c3 − z2z3c2 + z1c3 − c4 − z1z3c2 + z3c3) z4e

z4t

(z4 − z2) (z3 − z4) (z4 − z1)
.

(76)
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The necessary condition for extremal τ is
dz

dt

∣∣∣∣
τ

= 0.

From the technological point of view we require the values
of τ and x(τ).

According to (22) we know that for Eq. (74) τ = b1, and

we assume the value of
z(τ)

c1
, c1 6= 0.

Assuming the values of b2 we can calculate the three ini-

tial conditions
c2

c1
,

c3

c1
,

c4

c1
, c1 6= 0 from Eqs. (45), (75) and

(76).

In the special, very interesting case when c2 = 0, which
gives the minimum of z(τ), we need only two equations,

namely (45) and (76). There are linear equations for
c3

c1
and

c4

c1
with the variable coefficients b1 and b2.

In the Table 2 there are the calculated values of
c3

c1
,

c4

c1

and extremal value
ze

c1
as functions of parameters b1 and b2

for the region of the real roots. These relations are illustrated
in Fig. 2. One representative example is shown in Fig. 3.

Fig. 2. Calculated values of
c3

c1

and
c4

c1

as a function of b2 for desired b1 = τ (the region of real roots)

Fig. 3. The response of the system for b1 = τ = 7, b2 = 14, c2 = 0, c1 = 1 and calculated c3 and c4 (the region of real roots)
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Table 2
Calculated values of

c3

c1
,

c4

c1
and extremal value

ze

c1
as a function of b2, for

desired b1 = τ (the region of real roots)

b1 = 4

c2 = 0

b2 c3/c1 c4/c1 ze/c1

6 −0.679245283 −0.9433962264 −0.2484706482

b1 = 5

c2 = 0

b2 c3/c1 c4/c1 ze/c1

8 −2.617624782 9.135173888 −0.03364848487

8.1 −2.389863918 7.905265195 −0.05388612399

8.2 −2.136979825 6.539691016 −0.07584527425

8.25 −1.999999956 5.799999839 −0.08755429817

b1 = 6

c2 = 0

b2 c3/c1 c4/c1 ze/c1

10 −3.402404662 15.54856285 −0.01697600359

10.2 −3.202966053 14.28545166 −0.03059548085

10.4 −2.967764948 12.79584467 −0.04579562809

10.6 −2.692469396 11.05230621 −0.06279719315

10.8 −2.371936048 9.022261736 −0.08185799389

11 −2.000000044 6.666666995 −0.1032832451

b1 = 7

c2 = 0

b2 c3/c1 c4/c1 ze/c1

12 −4.196680909 23.57581808 −0.008374700879

12.2 −4.112881804 22.96528172 −0.01406499475

12.4 −4.010758671 22.22124176 −0.02031697029

12.6 −3.889626399 21.33797805 −0.02716253005

12.8 −3.74826571 20.30879306 −0.03463748129

13 −3.585910017 19.12591582 −0.04278209987

13.2 −3.401229646 17.78038747 −0.05164173296

13.4 −3.192812588 16.26192029 −0.06126758383

13.6 −2.959042807 14.55874049 −0.07171744313

13.8 −2.698071966 12.65738158 −0.08305677028

14 −2.407788289 10.54245749 −0.0953597931

14.25 −2.000000014 7.57142857 −0.112223357

b1 = 8

c2 = 0

b2 c3/c1 c4/c1 ze/c1

14 −4.968478984 32.98995162 −0.004098064005

14.4 −4.918750972 32.57969552 −0.009603254458

14.8 −4.82170042 31.77902846 −0.01618774958

15.2 −4.676045858 30.57737832 −0.02389987752

15.6 −4.479653474 28.95714115 −0.0328066236

16 −4.229539518 26.893701 −0.04299445956

16.4 −3.921827338 24.3550756 −0.05457104061

16.8 −3.5516614 21.3012065 −0.06766787904

17.2 −3.113073026 17.68285252 −0.08244401846

17.6 −2.598793318 13.44004491 −0.0990911605

18 −1.999999995 8.49999981 −0.117840256

b1 = 9

c2 = 0

b2 c3/c1 c4/c1 ze/c1

16 −5.713414685 43.69037987 −0.001978385241

16.5 −5.750949645 44.03653558 −0.005380995691

17 −5.737717664 43.91450736 −0.009677120366

17.5 −5.673621184 43.32339540 −0.01488141079

18 −5.557659340 42.25396948 −0.02102410706

18.5 −5.388022188 40.68953792 −0.02814984718

19 −5.162122091 38.606237 −0.03631751054

19.5 −4.87658356 35.97293733 −0.04560073231

20 −4.527191754 32.75076841 −0.05608919669

20.5 −4.108804888 28.89231179 −0.06789049313

21 −3.615228095 24.34043678 −0.081328436

21.5 −3.039042137 19.02672209 −0.0959685279

22 −2.371376361 12.86936036 −0.1125786369

22.25 −1.999999955 9.44443995 −0.1216150122

b1 = 10

c2 = 0

b2 c3/c1 c4/c1 ze/c1

18 −6.434525218 55.63215725 −0.00093787534

18.5 −6.539897052 56.70694988 −0.00260483763

19 −6.609580769 57.41772380 −0.00477255357

19.5 −6.643686286 57.76560014 −0.00744384137

20 −6.641995790 57.74835703 −0.01062633021

20.5 −6.603987445 57.36067192 −0.01433211262

21 −6.52884935 56.59426338 −0.01857762093

21.5 −6.415485545 55.43795259 −0.02338353566

22 −6.262511818 53.87762056 −0.02877490912

22.5 −6.068245005 51.89609906 −0.03478136144

23 −5.830684720 49.47298414 −0.04143740995

23.5 −5.547491238 46.58441064 −0.04878285211

24 −5.215950789 43.20269810 −0.05686333165

24.5 −4.832936369 39.29595106 −0.06573101696

25 −4.394857127 34.82754296 −0.07544539723

25.5 −3.897596923 29.75548874 −0.0860743367

26 −3.336439698 24.03168512 −0.0976952159

26.5 −2.705977542 17.60097119 −0.1103964981

27 −2.0 10.40000016 −0.1242794964

Similarly in the Table 3 the relations for the region of
the two real roots and one pair of complex-conjugate roots is
presented. This is illustrated in Fig. 4 and the representative
example is shown in Fig. 5.

Table 3

Calculated values of
c3

c1
,

c4

c1
and extremal value

ze

c1
as a function of b2, for

desired b1 = τ (the region of two real roots and one pair of
complex-conjugate roots)

b1 = 7

c2 = 0

b2 c3/c1 c4/c1 ze/c1

2.1 6.53609094 −54.6200911 1.434661654

3 6.400283046 −53.63063362 0.893003676

4 5.358903921 −46.04344286 0.4607888096

5 3.493249467 −32.45081754 0.1998854097

6 1.281385317 −16.33580732 0.07486266353

7 −0.7637276192 −1.435698771 0.03153792368

8 −2.365927912 10.23747478 0.02383135094

9 −3.471488539 18.29227364 0.02495119003

10 −4.121338028 23.02689134 0.02281378

11 −4.360156085 24.76685146 0.0125558468

b1 = 9

c2 = 0

b2 c3/c1 c4/c1 ze/c1

2.1 −4.658365569 33.96048246 −0.8668081094

3 −4.694338046 34.29222867 −0.5268554644

4 −4.984904242 36.97189467 −0.2895477576

5 −5.559588017 42.27175616 −0.1430927554

6 −6.493059670 50.88043917 −0.05002614151

7 −8.029209728 65.04715644 0.01558886642

8 −11.18812141 94.17934182 0.08142263713

9 −26.81749100 238.3168614 0.2999700352

10 10.67225062 −107.4218668 −0.1928873688

11 −0.1987488811 −7.167093665 −0.04900808771

12 −2.900073295 17.74512038 −0.01594925495

13 −4.226415295 29.97694102 −0.00271072203

14 −5.011522285 37.21737220 0.00224000722

15 −5.480719588 41.54441396 0.0021101149
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Fig. 4. Calculated values of
c3

c1

and
c4

c1

as a function of b2 for desired b1 = τ (the region of two real roots and one pair of complex-conjugate

roots)

Fig. 5. The response of the system for b1 = τ = 7, b2 = 6, c2 = 0, c1 = 1 and calculated c3 and c4 (the region of two real roots and one
pair of complex-conjugate roots)
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Fig. 6. Calculated values of
c3

c1

and
c4

c1

as a function of b2 for desired b1 = τ (the region of two pairs of complex-conjugate roots)

Fig. 7. The response of the system for b1 = τ = 4, b2 = 10, c2 = 0, c1 = 1 and calculated c3 and c4 (the region of two pairs of
complex-conjugate roots)
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Finally, in Table 4 the relations are presented for the region
of two pairs of complex-conjugate roots, which is illustrated
in Fig. 6, and the representative example is shown in Fig. 7.

Table 4
Calculated values of

c3

c1
,

c4

c1
and extremal value

ze

c1
as a function of b2, for

desired b1 = τ (the region of two pairs of complex-conjugate roots)

b1 = 2

c2 = 0

b2 c3/c1 c4/c1 ze/c1

2.1 −2.248809837 4.74642951 0.1306296305

3 −2 4 0.268705265

4 −1.826567898 3.479703694 0.3866830853

5 −1.737303398 3.212210193 0.4812627463

6 −1.724068127 3.172204378 0.5613624496

7 −1.790842614 3.372527841 0.6331581293

8 −1.955172845 3.865518534 0.701648558

9 −2.252290764 4.756872292 0.7716972316

10 −2.745134664 6.235403992 0.8489488114

11 −3.541401788 8.624205358 0.9407498264

12 −4.814787823 12.44436346 1.05659048

13 −6.79547724 18.38643172 1.205240265

14 −9.57534339 26.72603018 1.379285011

15 −12.45804420 35.37413261 1.51897341

16 −13.63492921 38.90478765 1.521078675

17 −12.31576928 34.94730784 1.382102952

18 −9.90443416 27.71330248 1.213283112

19 −7.704187413 21.11256225 1.083726842

20 −6.056868333 16.17060500 0.999142181

b1 = 4

c2 = 0

b2 c3/c1 c4/c1 ze/c1

7 −12.35381503 51.59216757 1.274878821

8 −10.69818549 44.14183468 0.9634778725

9 −9.912760664 40.60742298 0.8166015685

10 −9.599016296 39.19557334 0.7489064027

11 −9.569617962 39.06328083 0.7227051559

12 −9.713497686 39.71073957 0.7184386495

13 −9.95167804 40.78255117 0.7247878465

14 −10.22353183 42.00589328 0.7349235474

15 −10.48493376 43.18220196 0.7449514457

16 −10.70956552 44.19304482 0.7530939317

17 −10.8884772 44.99814739 0.7590375048

18 −11.02638808 45.61874638 0.7633093813

19 −11.13593097 46.11168936 0.7667443072

20 −11.2319728 46.54387757 0.770119612

5. Practical example

In Fig. 8, there is shown a simple model of the suspension of
the car (one wheel) [5].

The state matrix A is equal to

A =





0 1 0 0

−k1 + k2

m

−d2

m

k2

m

d2

m

0 0 0 1

k2

M

d2

M

−k2

M

−d2

M





. (77)

The state dynamics is represented by the differential equation

dx(t)

dt
= Ax(t) (78)

with initial conditions x(0) = c1, x(1)(0) = c2, x(2)(0) = c3,
x(3)(0) = c4 where

x =
[
x, x(1), x(2), x(3)

]T

. (79)

The characteristic equation is equal

|sI − A| = 0 (80)

which after calculation of the determinant (80) is

s4 + s3

(
d2

M
+

d2

m

)
+ s2

(
k2

M
+

k1 + k2

m

)

+ s

(
k1d2

mM

)
+

k1k2

mM
= 0,

(81)

where k1 – is the elasticity coefficient of the tire, k2 – is the
coefficient of spring carriage, d2 – is the attenuation coeffi-
cient, m – mass of the wheel, M – mass of the car.

Fig. 8. Model of the suspension system

We want to choose the coefficients k1, k2, d2, m and M .
Putting

s =
4

√
k1k2

mM
z (82)

and
k1d2

mM
=

(
d2

m
+

d2

M

)√
k1k2

mM
(83)

we obtain the symmetric equation

z4 + b1z
3 + b2z

2 + b1z + 1 = 0, (84)

where

b1 =

k1d2

mM

4

√(
k1k2

mM

)3
= τ, (85)

b2 =

k2

M
+

k1 + k2

m√(
k1k2

mM

) . (86)

For determination of the optimal values of the parameters k1,
k2, d2, m and M we have the following relations (45), (75),
(76), (83), (85), (86).

In particular from the relation (83) we have

k1 =
(m + M)

2

mM
k2. (87)
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From (86) using (87) we obtain

b2 =
2m + M

m
. (88)

Similarly we get

b1 = d2

√
m + M

k2mM
(89)

or
τ

d2
=

√
m + M

k2mM
(90)

and finally

k2 =

(
d2

τ

)2
m + M

mM
. (91)

Assuming
τ

d2
we can calculate k2 and then, from the relation

(87), the coefficient k1.
In general the problem of the location poles and zeroes is

in [6].

6. Conclusions

Using the method of the symmetrical equations, analytical re-
sults are obtained. In particular, all the possible cases of the
different roots and the extremal time τ and the extremal value
of x(τ) for the differential equation of the 4-th order have
been considered. The extension to the equations of higher
order can be obtained immediately as shown in the paper.

Remark 1

It is also possible to enlarge the formula (22) on the system
with time-delay using the method described in [7–10].

Let us consider a differential equation with time delay
h > 0.

We assume that the observable and controllable conditions
are fulfilled [8].

ax(t) + bx(1)(t) + x(t − h) = 0. (R1)

With the points initial conditions

x(0) = c1

x(1)(0) = c2

x(t − h) = 0 for t < h





(R2)

and a, b – constant parameters.
The characteristic equation of (R1) is

F (s) = a + bs + e−sh = 0. (R3)

After premultiplying by esh it is evident that the main term
exist and is equal bsesh.

In consequence the necessary condition is fulfilled.
We apply the Theorem 3 proved in [7].
The relation between coefficients and the roots of the qua-

sipolynomial equations of the type (R1) is given by the fol-
lowing formula:

∞∑

k=1

1

sk

=
1

2

[
F (1)(s)

F (s)

]

s=−∞

−
[
F (1)(s)

F (s)

]

s=0

. (R4)

We calculate first derivative with respect to s

F (1)(s) = b − he−sh. (R5)

We have that [
F (1)(s)

F (s)

]

s=0

=
b − h

a + 1
(R6)

and

1

2

[
F (1)(s)

F (s)

]

s=−∞

=
1

2

b − he−sh

a + bs + e−sh

∣∣∣∣
s=−∞

= −h

2
. (R7)

Finally
∞∑

k=1

1

sk

=
1

2

[
F (1)(s)

F (s)

]

s=−∞

−
[
F (1)(s)

F (s)

]

s=0

= −h

2
− b − h

a + 1
.

(R8)

The formula (R8) represents generalization the formula (22)
in the case of the infinite number of the roots.

Remark 2

Investigation of the extremal time τ as the function of the
initial conditions were presented in [11]. A solution of the
problem of the extremal τ(s) in the case of one multiple
roots may be found in [12].
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