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An extension of Klamka’s method of minimum energy control

to fractional positive discrete-time linear systems
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Abstract. The Klamka’s method of minimum energy control problem is extended to fractional positive discrete-time linear systems with

bounded inputs. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is

proposed and illustrated by numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive system theory is given in the mono-

graphs [1, 2]. Variety of models having positive behavior can

be found in engineering, economics, social sciences, biology

and medicine, etc.

Mathematical fundamentals of the fractional calculus are

given in the monographs [3–5]. The positive fractional linear

systems have been investigated in [6–9]. Stability of fraction-

al linear 1D discrete-time and continuous-time systems has

been investigated in the papers [9–11] and of 2D fractional

positive linear systems in [12]. The notion of practical sta-

bility of positive fractional discrete-time linear systems has

been introduced in [13, 14] and the stability problem of sys-

tems with delays and systems consisting of n subsystems have

been investigated in [15–19] Some recent interesting results in

fractional systems theory and its applications can be found in

[20–25]. The minimum energy control problem for standard

linear systems has been formulated and solved by J. Klamka

[26–28] and for 2D linear systems with variable coefficient in

[29]. The controllability and minimum energy control prob-

lem of fractional discrete-time linear systems has been inves-

tigated by Klamka in [30]. The minimum energy control of

fractional positive continuous-time linear systems has been

addressed in [31]. The Klamka’s method of minimum energy

control to positive continuous-time linear systems has been

extended in [9, 31] and to positive discrete-time linear sys-

tems in [32].

In this paper the method is extended to fractional positive

discrete-time linear systems with bounded-inputs.

The paper is organized as follows. In Sec. 2 some defi-

nitions and theorems concerning fractional positive discrete-

time linear systems are recalled. The main result of the paper

is presented in Sec. 3, where the Klamka’s method of mini-

mum energy control is extended to fractional positive discrete-

time linear systems with bounded inputs. Concluding remarks

are given in Sec. 4.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set

of n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,

In – the n × n identity matrix.

2. Preliminaries

The following definition of the fractional difference will be

used

∆αxk =

k∑

j=1

(−1)j

(
α

j

)
xk−j ,

0 < α < 1, k ∈ Z+ = {0, 1, ...},

(1)

where α ∈ ℜ is the order of the fractional difference, and

(
α

j

)
=






1 for j = 0

α(α − 1) · · · (α − j + 1)

j !
for j = 1, 2, ...

(2)

Consider the fractional discrete-time linear system, described

by the state-space equation

∆αxk+1 = Axk + Buk, k ∈ Z+, (3)

where xk ∈ ℜn is the state vector, uk ∈ ℜm is the input

vector and A ∈ ℜn×n, B ∈ ℜn×m.

Using (1) we can write the equation (3) in the following

form

xk+1 +

k+1∑

j=1

(−1)j

(
α

j

)
xk−j+1 = Axk + Buk. (4)
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Theorem 1. The solution of Eq. (4) is given by

xk = Φkx0 +

k−1∑

i=0

Φk−i−1Buk, k ∈ Z+ (5)

and the matrix Φi can be computed from the formula

Φk+1 = (A + Inα)Φk +

k+1∑

j=2

(−1)j+1

(
α

j

)
Φk−j+1,

Φ0 = In.

(6)

Definition 1. The system (3) (or (4)) is called the fractional

(internally) positive system if xk ∈ ℜn
+, k ∈ Z+ for any ini-

tial conditions x0 ∈ ℜn
+ and all input sequences uk ∈ ℜm

+ ,

k ∈ Z+.

Theorem 2. The fractional system (3) for 0 < α < 1 is

positive if and only if

Aα = A + Inα ∈ ℜn×n
+ , B ∈ ℜn×m

+ . (7)

Proof is given in [9].

Definition 2. The fractional positive system (3) is called

reachable in q steps if for every given final state xf ∈ ℜn
+

there exists an input sequence uk ∈ ℜm
+ for k = 0, 1, ..., q−1

such that xq = xf .

A column of the form aei, i = 1, ..., n, a > 0 is called

monomial, where ei, i = 1, ..., n is the i-th column of the

identity matrix. A square matrix A is called monomial if in

each row and in each column only one entry is positive and

the remaining entries are zero.

Theorem 3. The fractional positive system (3) is reachable in

q steps if and only if the matrix

Rq = [ B Φ1B ... Φq−1B ] (8)

contains n linearly independent monomial columns.

Proof is given in [9].

3. Minimum energy control problem

Consider the fractional positive discrete-time system (3). If the

system is reachable in q steps then there exist many (m > 1)

input sequences that steer the state of the system from x0 = 0
to the given final state xf ∈ ℜn

+. Among these input sequences

we are looking for sequence ui ∈ ℜm
+ for i = 0, 1, . . ., q − 1

that satisfy the condition

ui ≤ U ∈ ℜm
+ for i = 0, 1, . . ., q − 1 (9)

which minimizes the performance index

I(u) =

q−1∑

j=0

uT
j Quj, (10)

where Q ∈ ℜn×n
+ is a symmetric positive defined matrix.

The minimum energy control problem for the fraction-

al positive discrete-time linear systems (3) can be stated as

follows: Given the matrices A, B, degree α of the system

(3), the final state xf ∈ ℜn
+ and the matrix Q ∈ ℜn×n

+ of

the performance index (2). Find an input sequence ui ∈ ℜm
+

for i = 0, 1, . . ., q − 1 satisfying the condition (9) that steers

the state of the system (3) from x0 = 0 to xf ∈ ℜn
+ and

minimizes the performance index (10).

To solve the problem we define the matrix

Wq = W (q, Q) = RqQ
−1
q RT

q ∈ ℜn×n, (11)

where Rq is defined by (8) and

Q−1
q = blockdiag [Q−1, ..., Q−1] ∈ ℜqm×qm

+ . (12)

If all columns of the matrix Rq are monomial and the ma-

trix Q is diagonal then the matrix (11) is also diagonal. All

columns of the matrix Rq are monomial only if the pair (A, B)

is reachable and only if all columns of the matrix [A, B] are

monomial [9, 31].

If the fractional positive system (3) is reachable in q steps

and

Wqx
−1

f ∈ ℜn
+ (13)

then the input sequence

ûq =





uq−1

uq−2

...

u0




= Q−1

q RT
q W−1

q xf ∈ ℜqm
+ (14)

steers the fractional positive system from x0 = 0 to xf ∈ ℜn
+

since

xq = Rqûq = RqQ
−1
q RT

q W−1
q xf = xf . (15)

Theorem 4. Let the fractional positive system (3) be reach-

able in q steps and the conditions (12) and (13) be satisfied.

Let uk ∈ ℜm
+ for k = 0, 1, . . ., q−1 be an input sequence sat-

isfying (9) that steers the state of the system (3) from x0 = 0
to xf ∈ ℜn

+. Then the input sequence (14) satisfying (9) also

steers the state of the system (3) from x0 = 0 to xf ∈ ℜn
+

and minimizes the performance index (10), i.e. I(û) ≤ I(u).
The minimal value of the performance index (10) is given by

I(û) = xT
f W−1

q xf . (16)

Proof. If the fractional system (3) is positive, reachable in q

and the conditions (12) and (13) are met then for xf ∈ ℜn
+

we have ûq ∈ ℜqm
+ and (15) holds. Both input sequences ûq

and uq steer the state of the system from x0 = 0 to xf ∈ ℜn
+

and we have xf = Rqûq = Rquq , i.e.

Rq[ûq − uq] = 0. (17)

Using (17) and (14) we shall show that

[ûq − uq]
T Qqûq = 0, (18)

where Qq = blockdiag [Q, ..., Q] ∈ ℜqm×qm
+ .

Transposing (17) and postmultiplying it by W−1
q xf we

obtain

[ûq − uq]
T RT

q W−1
q xf = 0. (19)

Using (14) and (18) we obtain (19) since

uûq − uqt
T Qqûq = [ûq − uq]

T QqQ
−1
q RT

q W−1
q xf

= [ûq − uq]
T RT

q W−1
q xf = 0

(20)

and QqQ
−1
q = Iqm.
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Taking into account (18) it is easy to show that

uT
q Qquq = ûT

q Qqûq + [ûq − uq]
T Qq[uq − ûq]. (21)

From (21) it follows that the inequality I(û) ≤ I(u) holds

since

[uq − ûq]
T Qq[uq − ûq] ≥ 0. (22)

To find the minimal value of the performance index (16) we

substitute (14) into (10) and using (11) we obtain

I(û) = ûT
q Qqûq = [Q−1

q RT
q W−1

q xf ]T Qq[Q
−1
q RT

q W−1
q xf ]

= xT
f W−1

q RqQ
−1
q RT

q W−1
q xf = xT

f W−1
q xf

(23)

since W−1
q RqQ

−1
q RT

q = In.

Remark 1. If the components of U in (9) decrease then the

number q of steps needed to transfer the state of the system

(3) from x0 = 0 to xf ∈ ℜn
+ increases.

Therefore from Theorem 4 and Remark 1 we have the

following theorem.

Theorem 5. If the fractional positive system (3) is reach-

able in q steps, all columns of the reachability matrix (9) are

monomial and the conditions (12) and (13) are met then the

minimum energy control problem has a solution satisfying the

condition (9) for arbitrary given U .

The optimal input sequence (14) and the minimal value

of the performance index (16) can be computed by the use of

the following procedure.

Procedure 1.

Step 1. Knowing A, B, Q and α and using (6), (8), (11) com-

pute the matrices Rq and Wq for a chosen q such that the

matrix Rq contains at least n linearly independent mono-

mial columns.

Step 2. Using (14) find an input sequence uk ∈ ℜm
+ for

k = 0, 1, . . ., q − 1 satisfying (9). If the condition (9) is

not satisfied then increase q by one and repeat the com-

putation for q + 1. Note that if the matrix Wq is diagonal

then after some number of steps we obtain the desired input

sequence satisfying (9).

Step 3. Using (16) compute the minimal value of the perfor-

mance index I(û).

Example 1. Consider the fractional discrete-time linear sys-

tem (3) with α = 0.5 and the matrices

A =

[
−0.1 0

0 −0.2

]
, B =

[
0 1

1 0

]
(24)

and the performance index (10) with Q =

[
2 0

0 2

]
.

Find an input sequence uk ∈ ℜm
+ for k = 0, 1, . . ., q − 1

satisfying (9) with

uk ≤ U =





1

1.09

1

1.16



 for k = 0, 1, . . . (25)

that steers the state of the system from x0 = 0 to final state

xf ∈ [ 1 1 ]T and minimizes the performance index.

Note that the fractional system (3) with (24) is positive

since

Aα = A + I2α =




0.4 0

0 0.3



 ∈ ℜ2×2
+

and B =




0 1

1 0



 ∈ ℜ2×2
+ .

(26)

The system is also reachable in q steps for q = 1, 2, . . . since

the reachability matrix

Rq = [ B Φ1B ... Φq−1B ]

=




0 1 0 0.4 0 0.215 ...

1 0 0.3 0 0.285 0 ...




(27)

has only monomial columns.

Using Procedure 1. we obtain the following:

Step 1. Using (11) we obtain

W2 = R2Q
−1

2 RT
2

=

[
0 1 0 0.4

1 0 0.3 0

]
1

2





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









0 1

1 0

0 0.3

0.4 0





=
1

2

[
1.16 0

0 1.09

]
.

(28)

Step 2. Using (14), (27) and (28) we obtain

û2 =

[
u1

u0

]
= Q−1

2
RT

2 W−1

2
xf

=
1

2





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









0 1

1 0

0 0.3

0.4 0









2

1.16
0

0
2

1.09





[
1

1

]

=





1

1.09

1

1.16

0.3

1.09

0.4

1.16





.

(29)
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The input sequence (29) does not satisfy the condition (25)

and we compute

W3 =R3Q
−1

3 RT
3 =

[
0 1 0 0.4 0 0.215

1 0 0.3 0 0.285 0

]

·
1

2





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1









0 1

1 0

0 0.3

0.4 0

0 0.285

0.215 0





=
1

2

[
0.6031 0

0 0.5856

]

(30)

and

û3 =




u2

u1

u0



 = Q−1

3 RT
3 W−1

3 xf

=
1

2





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1









0 1

1 0

0 0.3

0.4 0

0 0.285

0.215 0





·
1

2

[
0.6031 0

0 0.5856

]
−1 [

1

1

]
=





0.8538

0.8290

0.2561

0.3316

0.2433

0.1782





.

(31)

The input sequence (31) satisfies the condition (25) and by

Theorem 4 is the optimal one that steers the state of the sys-

tem in 3-steps from x0 = 0 to final state xf ∈ [ 1 1 ]T and

minimizes the performance index (16) for Q =

[
2 0

0 2

]
.

Step 3. The minimal value (16) of the performance index

(10) is equal to

I(û) = xT
f W−1

3 xf = [ 1 1 ]

·
1

2

[
0.6031 0

0 0.5856

][
1

1

]
= 3.3657.

(32)

4. Concluding remarks

The Klamka’s method of the minimum energy control prob-

lem has been extended to fractional positive discrete-time lin-

ear systems with bounded inputs. Sufficient conditions for the

existence of solution to the problem have been established

(Theorem 4 and 5). A procedure (Procedure 1) for compu-

tation of the optimal input sequence (14) and the minimal

value of the performance index (10) has been proposed. The

effectiveness of the procedure has been demonstrated on a

numerical example (Example 1).

The considerations can be extended to fractional positive

continuous-time linear systems with bounded inputs and to

fractional positive linear systems with delays and bounded

inputs. An open problem is an extension of the method to

continuous-discrete 2D linear systems.
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