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Abstract. In this study, a relatively simple method of discrete structural optimization with dynamic loads is presented. It is based on a tree

graph, representing discrete values of the structural weight. In practical design, the number of such values may be very large. This is because

they are equal to the combination numbers, arising from numbers of structural members and prefabricated elements. The starting point of

the method is the weight obtained from continuous optimization, which is assumed to be the lower bound of all possible discrete weights.

Applying the graph, it is possible to find a set of weights close to the continuous solution. The smallest of these values, fulfilling constraints,

is assumed to be the discrete minimum weight solution. Constraints can be imposed on stresses, displacements and accelerations. The short

outline of the method is presented in Sec. 2. The idea of discrete structural optimization by means of graphs. The knowledge needed to

apply the method is limited to the FEM and graph representation.

The paper is illustrated with two examples. The first one deals with a transmission tower subjected to stochastic wind loading. The

second one with a composite floor subjected to deterministic dynamic forces, coming from the synchronized crowd activities, like dance or

aerobic.

Key words: discrete structural optimization, combinatorial optimization, structural dynamics, stochastic loading, problem oriented optimiza-

tion, graphs.

1. Introduction

So far, most of research on the minimum weight structural

design has been carried out on structures subjected to static

loads. Only in the sixties and seventies, of the past centu-

ry, first works on structural optimization with constraints im-

posed on eigenvalues were published. Turner [1] discussed a

numerical procedure for finding minimum weight of a com-

plex structure under a constraint imposed on a given natural

frequency. Tang [2] presented an optimum design of three-

member frame subjected to frequency constraints. However,

only few of them, among others by Mroz [3] dealt with con-

straint resulting from dynamic loadings. Most of attention has

been paid to problems with small number of degrees of free-

dom, and with steady-state sinusoidal responses. An extended

survey by Pierson [4] covering over sixty papers, gives pro-

found information about progress, at this time, done in the

field of structural optimization with dynamic constraints.

With the increasing computational possibilities and knowl-

edge of mathematical programming, it was possible to extend

engineering design to more practical problems. McGee and

Phan [5] considered space frames with relatively larger num-

bers of degrees of freedom and dynamic constraints. Their

discussion, based on the Optimality Criteria approach, was

devoted to the computational complexity of problems with

constraints imposed on several natural frequencies. The paper

is illustrated with eight-member frame, and structural weight

concentrated on four rigid joints with six degrees of freedom

each.

The increased demands for research in structural and ma-

chine dynamics optimization were caused, mostly by devel-

opment of aircraft industry. In the review paper Grandhi [6],

widely cited to this day, presents an extended discussion on

variety problems related to structural optimization with fre-

quency constraints. He turns attention, to one of the most

important problem, consisting in the switching of vibration

modes due to structural size modification.

In the last decade, several stochastic approaches has been

used for dynamic structural optimization problems. Most of

them are based on the Genetic Algorithm, a heuristic approach

giving near optimum solutions. A profound review on discrete

stochastic methods in structural optimization is given by Arora

et al. [7]. However, with the lack of the mathematical back-

ground of the algorithm, the distance of the solution from

real extreme is unknown. An example of minimum weight

design with constraints imposed on several natural frequen-

cies, obtained by genetic algorithm, is presented in the paper

by Lee et al. [8]. An extended review of discrete structural

optimization is given by Gutkowski [9]. One of the simplest

heuristic methods for finding minimum structural weight, by

removing redundant material, is presented by Blachowski and

Gutkowski [10].

The increasing requirements for structural safety caused

farther demands for solutions of structural response to dy-

namic loads. However, due the complexity of dynamic analy-

sis, in some papers we don’t find a direct dynamic analysis,

but analysis under a static load equivalent, to a dynamic one.

Kang et al. [11] proposed structural optimization approach un-

der equivalent static load, generating identical displacements

as caused by dynamic excitations. Choi et al. [12] presented a

method, based on modal analysis, transforming dynamic loads

into equivalent static one.
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In general, civil engineering structures are subjected, to

a large extent, to stochastic loads. These are mainly loads

coming from wind or earthquake, and their stochastic nature

cannot be neglected in the design. Recently, then, more atten-

tion has been paid to this type of problems. Papadrakakis et al.

[13] discussed multi-objective optimization problem of skele-

tal structures under seismic condition, applying Evolutionary

Algorithm.

Norkus and Karkauskas [14] presented an algorithm for

truss optimization under stochastic load, composed of three

parts. Each of them consists of separate problems. In the first

one, variation bounds of stresses and displacements for a giv-

en time period are presented. Next, an analysis for defined

bounds is performed. The third one is optimizing the member

cross-section areas, satisfying the safety constraints. All three

problems are applied in each optimization cycle. Jensen and

Beer [15] proposed discrete-continuous structural optimiza-

tion under stochastic load, applying generalized Optimality

Criteria method, including dual function for discrete vari-

ables. An adaptive genetic algorithm for structural topology

optimization of transmission tower, with discrete sizing, was

proposed by Guo and Li [16] The problem is solved for static

loads only.

A concept of applying graphs to discrete structural opti-

mization was proposed by Gutkowski et al. [17]. It is based

on an algorithm, elaborated by Iwanow [18], for finding an

ordered sequence of values of a discrete linear function. The

basic assumption made in the method is that the continuous

minimum of structural weight constitutes a lower bound for

discrete solution. However, the mentioned algorithm gives on-

ly structural volumes, without information on member forces.

It means that the obtained, from the graph, discrete solution

should be checked if physical constraints are not violated.

The algorithm allows for arbitrary numbers of permutations

of graph branches, representing member volumes. The idea

of the method is illustrated, by a simple problem, in Sec. 2.

Now, the algorithm presented by Blachowski and Gutkowski

[19] is extended to structure composed of trusses, frames and

plates, under dynamic conditions.

The algorithm is divided in two parts. In the first part,

using the graph property, described in Subsec. 3.2, the values

of the discrete cost function, larger than continuous one, but

next to it are found. The algorithm starts with a tree graph

containing only two branches. In the second part, the obtained

combination of structural members is verified for constraints.

The same procedure is performed, after enlarging the cat-

alogue to four, six etc. available parameters.

In this study, the application of the discussed graph ap-

proach is extended to structures under dynamic loads. Two

practical problems are discussed. The first one is a transmis-

sion tower under stochastic wind load. A transmission tower

can be considered, under static load, as a pin connected. How-

ever, the pin joint assumption can’t be applied in structural

dynamics. Blachowski and Gutkowski [20] presented several

structures for which significant differences between eigenfre-

quencies and even eigenmodes could be observed. It depends

if the structure is considered as a truss (pin joints), or as a

frame (rigid joints). Considering dynamics of the transmission

tower as a frame requires division of each structural member

in several FE. This increases significantly number of degrees

of freedom, entering in the problems. To overcome difficul-

ties with very large numbers of DOF, a load-dependent Ritz

vector method, proposed by Gu et al. [21] is applied. Due

to the wind nature, the method allows to reduce the number

of DOF to be considered from thousand to less than twenty

only.

The second problem deals with a composite floor, which

consists of concrete slab, supported by a set of steel beams.

The floor is subjected to dynamic forces coming from the

synchronized crowd activities, like dance or aerobic. In this

case the load is considered to be deterministic.

In both examples, in the structural analysis, an algorithm

of FEM, based on an earlier work by Blachowski [22] is ap-

plied.

In the paper, as mentioned above, tree graphs are used for

finding the minimum from a very large number of combina-

tions. The latter arises from the number of structural members

and available parameters located in a catalogue of prefabricat-

ed elements. In order to be more consistent in applying graphs,

one could expect the application of the graph based physical

systems modelling approach. However, the experience in the

application of the method is, so far, limited to the problems

with very small numbers of elements. Borutzky [23] is giving

examples with two degrees of freedom, and a one loop elec-

trical circuit. A. Buchacz [24] is discussing free vibrations of

a single beam. These examples show lack of usefulness of the

method in cases of systems with hundreds elements, like the

structures considered in the paper.

2. The idea of discrete structural optimization

by means of graphs

In this study, the discrete minimum weight design consists in

assigning to each structural member a profile from a given list

(catalogue). Here, structures are composed of beams and/or

plates and sheets. It must be pointed out, that “assigning”

means choosing a set of values of cross section area (CSA),

pipes diameters, principal moment of inertia (PMI) etc. from a

catalogue containing dozens or even hundreds of profiles. On

the other hand, the optimized structure can be also composed

of dozens or hundreds of elements.

Denoting by k = the number of all available, in a cat-

alogue, elements, and by j = the number of all structural

members, or linking groups, design consists in searching for

an optimum from among n = kj combinations. Even, in a

relatively simple engineering problem, there can be 10 struc-

tural members and 10 available parameters, which give 1010

combinations. More cases, when several catalogues are taken

into consideration, together with different structural profiles

(beams and plates), are discussed in Sec. 3.

Searches for discrete minimum weight consists in verifica-

tions of fulfilment of state equations and imposed constraints

for each combination. In many practical designs, as mentioned

above, n is so large, that a simple enumeration searching for
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optimum is impossible, even using very powerful numerical

tools.

This is the reason, that only applying a heuristic approach

it is possible find optimum, or more rigorously, near optimum.

An outline of the proposed method is presented on a graph

in Fig. 1, showing it for a structure composed of a beam and

a plate. The beam can be chosen from three available parame-

ters, and the plate from two different thicknesses. Subscripts

are indicating position of the parameters in the catalogue, say

CSA. Superscripts indicate structural member numbers.

Fig. 1. Graph with three available parameters for a beam and two

for a plate

The edges of the graph are representing the structural

weights of beams and plates respectively. They are chosen

from catalogues of parameters, which are ordered with their

increasing values. Vertices are representing sum of weights of

structural members represented by edges starting from (0,0)

vertex. This way, at the bottom of the graph, vertices are repre-

senting all possible combination between structural members

and available parameters.

Inspecting the given graph, it can be seen, that extreme

vertex, belonging to the same layer of the graph (subgraph),

represent the smallest and the largest volumes from all pos-

sible volumes included in the layer. This important property

of the discussed graph (subgraph) will be used in finding the

discrete minimum of structural volume.

A large number of discussed combinations can be omitted

from considerations, by applying an assumption that minimum

of the discrete structural weight W d cannot be smaller than

minimum of the continuous structural weight W c This can

be noted as W c ≤ W d. This assumption comes from the

observation of a discretized continuous function.

If W c is smaller than the sum of all smallest structural

weights, it means, that structural elements with smallest avail-

able parameters are candidates for discrete minimum weight.

The minimum can be confirmed only after verification, if im-

posed on the structure constraints are not violated.

On the other hand, if W c is larger than the value at the

vertex being most to the right side of the graph, the solution

within assumed available parameters doesn’t exist. Finally, if

W c is between two extreme vertices, a part of the graph can

be neglected from farther considerations. This is when values

at the vertices are smaller than continuous minimum weight.

The values of structural weight represented by vertices of

the last layer of the graph are not ordered according to their

increasing values. Their order depends on the order of sub-

sequent graph branches. This is the reason for which, in the

cases with large numbers of combinations, a set of graphs

with permuted branches are considered.

Detailed and formal presentation of this problem is pre-

sented in Sec. 3.

3. The algorithm for discrete minimum weight

structural design

Let us present in details, the algorithm outlined in the previ-

ous section. As motioned there, the discrete optimum problem

consists in finding the minimum weight from all values aris-

ing from all combinations relating structural members and

available parameters. In practical design, structural members

are divided in groups having the same sectional parameters.

In general, the number of combinations occurring in a struc-

ture composed of b0 different beams and p0 different plates

is equal to the following product:




b0
∏

b=1

k0
b









p0

∏

p=1

j0p



 , (1)

where k0
b and j0p are numbers of, available in catalogues, beam

sections and plate thicknesses respectively.

Before proceeding with farther considerations, let intro-

duce the following, principal notations: b = [1, 2, ..., b0] and

p = [1, 2, ..., p0] is the number of a beam and/or of a plate

in the structure respectively, nb = [n1, n2, n3, . . . , nb0 ] the

number of beam structural members in b-th linking group,

mb =
[

m1,m2,m3, . . . ,mp0

]

the number of plate structural

members in p-th linking group, Lb – sum of nb beam lengths

lb,n in b-th linking group, Lb =
nb
∑

n=1

lb,n, Sp – sum of mp

plate areas sp,m in p-th linking group, Sp =
mp
∑

m=1
sp,m, Ab,

Db, tb, Ib – cross section area, diameter, thickness and mo-

ment of inertia of a pipe respectively, of b-th beam,Ab, Hb, hb

– cross section area, height and flange thickness of a I – beam

respectively, of b-th beam, hp – the thickness of p-th plate, vb

– volume of b-th beam linking group vb = AbLb, vp – volume

of p-th plate linking group, vp = hpSp, kb =
[

1, 2, 3, . . . , k0
b

]

,

jp =
[

1, 2, 3, . . . , j0p
]

the number of a beam profile and plate

thickness from the catalogue, assigned to b-th beam or b-th

linking group, or to p-th plate or p-th linking group, respec-

tively, Ab . . . over line defines section parameters obtained

from continuous solution, Akb

b . . . superscript kb defines the

parameter from the catalogue assigned to the b-th structural

element, A
kb

b . . . over line with a superscript kb-th define the

parameter from the catalogue, assigned to the b-th structural

element, obtained from discrete minimum solution, V , Vb, Vp

– total structural volume, volume of all beam elements, vol-
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ume of all plate elements respectively, V c, V d – continuous

and discrete minimum volumes, respectively, W c, W d – con-

tinuous and discrete minimum weights, respectively, ρb, ρp –

density of beam and plate materials, respectively.

3.1. Graph representing structural weight. The discussed

graph is a directed tree graph. An edge of the graph is la-

belled with the weight of the structural member. A vertex is

labelled with a pair of numbers and with the sum of all edges

joining the vertex with the graph root (0,0). At the bottom

of the graph, vertices (j0, kj) represent all possible structural

weights, arising from combinations between structural mem-

bers and available parameters.

The applied directed tree graph and all its transformation

belong to well established graph theory [25].

As mentioned above, the algorithm is based on an as-

sumption that the minimum structural weight W c, obtained

from continuous optimization, constitutes the lower bound of

all possible discrete values of structural weight Wd

W c ≤Wd = ρb

b0
∑

b=1

vkb

b + ρp

p0

∑

p=1

vkp
p . (2)

The algorithm tends to approach the discrete value, as

close as possible, to the continuous one, under the condition

V c ≤ Vd. The first try is along path OCD (Fig. 2). The next

is along OEF. Both of them are giving discrete values larger

than continuous one. The third try along OGH shows that H

vertex value is smaller than continuous minimum. It means

that all other branches at left from GH can be neglected from

farther considerations. Now, the aim is still to approach closer

to V c. This can be done, going along EIJK. In this case, the

discrete structural weight in the closest to V c, and at the same

time larger than it. If the structure composed of such a set of

available cross sections area is fulfilling given constraints, it

is considered as discrete minimum volume V d.

Fig. 2. Search for smallest feasible discrete cost function

3.2. The graph algorithm. The algorithm is composed of

two parts. In the first one, discrete cost function values, clos-

est to the continuous minimum weight are found. In the second

one, verification of constraints in discrete solutions, obtained

in the first part, is performed.

PART 1: Find value of the discrete cost function Wd ≥W c

STEP 1.1

Find continuous minimum weight W c of the given struc-

ture, subjected to the assumed loading conditions and con-

straints.

STEP 1.2

Take, for each structural member, or linking group, two

subsequent values:

for a beam

Akb

b ≤ Ab ≤ Akb+1
b (3)

with

Dkb

b ≤ Db ≤ Dkb+1
b ; tkb

b ≤ tb ≤ tkb+1
b

and/or

Hkb

b ≤ Hb ≤ Hkb+1
b ;

hkb

b ≤ hb ≤ hkb+1
b ; Ikb

b ≤ Ib ≤ Ikb+1
b

and for a plate

hkp
p ≤ hp ≤ hkp+1

p . (4)

Set a list of parameters, composed of two, just mentioned,

values for all structural members.

STEP 1.3

Construct two branch graph (Fig. 2) and:

(i) Find the smallest values of the structural weight, W
kj

j,max,

represented by extreme vertices of subgraphs with roots

(j, kj), for j = 1, 2, . . . , (j0−1). Save the subgraph with

root (j, kj), giving the smallest value of
(

W
kj

j,max −W c

)

for W
kj

j,max > W c.

(ii) Find the largest values of the structural weight W
kj+1

l,min,

represented by extreme vertices of subgraph with roots

(l, kl + 1), for l = j, (j + 1). . . (j0 − 1). Save the sub-

graph with the root (l, kl + 1), giving the smallest of
(

W
kj+1

l,min −W c

)

for W
kj+1

l,min > W c.

(iii) Find the smallest values of the structural weight,W
kp

p,max,

represented by extreme vertices of subgraphs with roots

(p, kp), for p = l, (l+1). . . (j0 − 1). Save the sub-

graph with root (p, kp), giving the smallest value of
(

W
kp

p,max −W c

)

for W
kp

p,max > W c.

(iv) Go to (ii) and (iii), increasing subsequently l and p to

(j0 − 1).
(v) Save, from all m arrangements, structures with values of

discrete cost function, giving min
(

Wd −W c

)

.

STEP 1.4

Assume an arbitrary number m. Select randomlym differ-

ent permutations of graph edges, represented by the index j.
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Larger m is, the probability of obtaining better result increas-

es. Preform STEP 1.3 for each permutation.

PART 2: Verify constraint violation

Find, for all m structures obtained in STEP 1.3 (v), a

parameter

µ(1) = max
(

qmax,i
/

u0, σj
/

σ0, q̈max,i
/

a0

)

for i = 1, 2, . . . , i0 and j = 1, 2, ..., j0.

If µ ≤ 1, the structure is considered as of minimum weight

W d. If several discrete solutions are fulfilling this condition,

the one with the smallest weight is considered as the discrete

minimum weight.

If all of m structures are not fulfilling this condition, go to

PART 1, STEP 1.2 of the algorithm. Enlarge lists of available

profiles to four positions and proceed with all steps there.

The above algorithm can be also presented in the form of

block diagram (Fig. 3), as follows:

j = 1, 2, . . . , j0 (tree level)

k = 1, 2, . . . , k0 (tree branch, for two branch tree k0 = 2)
V c (continuous minimum volume)

V d (discrete minimum volume)

Vd,j (discrete volume obtained, starting from j-th tree le-

vel)

V k
d,j =

j−1
∑

r=1

Akr

r lr +Ak
j lj +

j0

∑

r=j+1

Ak0

r lr.

Fig. 3. Block diagram of the algorithm

4. Discrete minimum weigh design

of a transmission tower under wind load

The first example illustrating the application and validity of

the proposed method is devoted to a 27meter high transmis-

sion tower (Figs. 4 and 5). The tower is supporting conductors

and ground-wires. The basic data for the structure are taken

from the Guidelines for Electrical Transmission Line Struc-

tural Loading the 3rd ed., published by ASCE. Spans between

neighbouring towers are equal to 200 meters. The static shape

of the wires and conductors is assumed to be a catenary curve

with a six-meter sag. Initial tension in wires equals 7 kN.

a) b)

Fig. 4. Transmission tower data – plane XZ (a), plane YZ (b)

a) b)

Fig. 5. 3D view of the tower (a), tower divided into four assembling

modules (b)
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It is assumed that structural members are made of pipes,

rigidly connected at joints. The 3D structure is divided in four

sections (Fig. 5), and members are linked in seven groups of

the same cross section areas. A commercially available cata-

logue of circular hollow sections, consisting of 314 sections

from CHS 22/1.2 to CHS 273/8 is considered. Constraints are

imposed on both, stresses and displacements.

The structure is subjected to forces, arising from stochas-

tic wind, blowing horizontally in a direction perpendicular to

wires.

4.1. Structural response to the dynamic load. In the fol-

lowing dynamic response analysis, the classical FEM motion

equations, with NDOF degrees of freedom are applied:

Mq̈total(t) + Cq̇total(t) + Kqtotal(t) = ptotal(t) (5)

where M, C, K are mass, damping and stiffness matrices

respectively (NDOF × NDOF). The number NDOF includes

the numbers of structural joints, together with joints, arising

from partition of each structural member in four FE. q̈total,

q̇total, qtotal are vectors of total structural node accelerations,

velocities and displacements, respectively (NDOF × 1). ptotal

is an external, stochastic force vector (NDOF × 1). It is al-

so assumed that the total displacement can be considered as

a sum of constant static displacements q, equal to the mean

value of total displacements, and fluctuating parts q(t)

qtotal(t) = q + q(t). (6)

The fluctuating part of the dynamic equation, has, under this

assumption the following form

Mq̈(t) + Cq̇(t) + Kq(t) = p(t). (7)

In the problem, relatively a large number of modes are orthog-

onal to the horizontal wind direction, and their contribution to

the structural dynamic response can be neglected. Taking into

account the above statement, one can extract from the system

of Eqs. (7), a set of NMode ≪ NDOF, effective subset of

modes shapes, called Ritz vectors, proposed by Wilson [26].

Applying Ritz vectors the structural displacement vector

q(t) can be transformed into

q(t) = ΦRη(t), (8)

where ΦR is the modal transformation matrix (NDOF ×
NMode) defined by a designer, and η(t) modal vector. Here,

ΦR is assumed to be a matrix (2106 × 24).

Substituting (8) in (7) we get

MRη̈(t) + CRη̇(t) + KRη(t) = ΦT
Rp(t), (9)

where

MR = ΦT
RMΦR, CR = ΦT

RCΦR, KR = ΦT
RKΦR.

(10)

In the end the dynamics of the transmission tower is repre-

sented by 24 mode shapes (Figs. 6 and 7).

Fig. 6. Two mode shapes of the transmission system – first mode (a),

seventeenth (b)

Fig. 7. Tower mode shapes – first mode (a), sixth mode (b)

4.2. Stochastic wind load and structural displacements.

The formulae, related to stochastic wind forces and displace-

ments, applied in the problem, are based on the monograph

by Buchholdt [27].

The horizontal wind velocity is varying with height above

the ground, starting with the velocity equal to 30 m/sec at

10 meters above the ground level. The wind power spectrum

density is Kaimal type function.

The total wind force ptotal(t) acting on the structure can

be expressed in the form

ptotal(t) =
1

2
ρairCd ◦ Aproj ◦

◦ (vtotal(t) − q̇(t)) ◦ (vtotal(t) − q̇(t)) ,
(11)

where ρair – air density, Cd – vector of drag coefficients,

Aproj – vector of structure’s areas exposed to wind project-

ed in normal direction, vtotal(t) – total wind velocity, ◦ –

denotes Hadamard product (entrywise product).
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Assuming that the total wind velocity vtotal(t) is a sum

of a constant part v and fluctuating one v(t), and neglecting

small nonlinear terms, one gets

ptotal(t) =
1

2
ρairCd ◦ Aproj ◦

◦ (v ◦ v + 2v ◦ v(t) − 2v ◦ q̇(t) ) .
(12)

The first term of Eq. (12) describes static loading

p =
1

2
ρairCd ◦ Aproj ◦ v ◦ v. (13)

The second one describes dynamic loading due to wind fluc-

tuations

p(t) = ρairCd ◦ Aproj ◦ v ◦ v(t). (14)

For a number of adjoining FEM joints, the wind veloc-

ity may have the same value. Denoting it by wtotal,j for

j = [1, 2, . . . , NWind], with NWind ≪ NDOF, the rela-

tion with vtotal,i for i = [1, 2, . . . , NDOF] can be define as

vtotal,i = bijwtotal,j or in a matrix form

vtotal(t) = Bwtotal(t). (15)

Together, it was assumed that the spatial wind turbulence acts

at 7 wind sections (3 along the height of tower, and 1 on

each of 4 windward wires). It means, that all total velocities

wtotal,j for j = [1, 2, . . . , NWind] constitute a vector with

NWind = 7 components.

Finally, dynamic wind loading (14) can be expressed in

matrix notation as

p(t) = Gw(t), (16)

where G is the load pattern matrix.

The third term of (12) is the aerodynamic damping, usu-

ally, for practical calculations a simplified its form is applied,

as follows

ρairCd ◦ Aproj ◦ v ◦ q̇(t). (17)

After reducing the number of equations of motion – ap-

plying equations (8)–(10) – the response of the structure due

to fluctuating wind velocity can be efficiently calculated us-

ing frequency domain method. Based on the paper Carassale

et al. [28] the power spectral density matrix of modal coordi-

nates can be evaluated from

Sη(f) = H(f)ΦT
RGSw(f)GTΦRH(f)∗, (18)

where f is the frequency, H(f ) is the frequency response

matrix, and H (f)∗ is its complex conjugate.

Assuming weak correlation between individual modes,

one can simplify the above matrix equation to mode-by-mode

form. Following Strommen [29], this can be done by cal-

culating only diagonal terms of the spectral density matrix.

Knowing spectral of individual modal coordinates, one can

easily estimate their modal variances std2
ηj

std2
ηj

=
1

8 (2π fj)3 ζj

NWind
∑

i=1

(ϕ
(j)
R,ri

Grii)
2Swi

(fj), (19)

where fj – natural frequency of j-th mode shape, ζj – di-

mensionless damping coefficient of j-th mode shape, ϕ
(j)
R, ri

–

ri-th component of j-th mode shape, Grii – load pattern due

to i-th wind velocity at ri-th DOF, Swi
(fj) – value of i-th

wind fluctuation power spectrum evaluated for fj frequency.

And finally the maximal modal displacement equals

ηj,max = κjstdηj
, (20)

where κj is the peak factor (usually from 3.5 to 5 – after

Buchholdt [27]).

Having calculated maximal modal amplitude, maximal

physical displacements and stresses can be obtained from

Eq. (20) by taking the absolute sum of modal maxima

(Petyt [30])

qmax = q +

NMode
∑

j=1

∣

∣

∣ϕ
(j)
R ηj,max

∣

∣

∣,

σmax = σ +

NMode
∑

j=1

∣

∣

∣σ

(

ϕ
(j)
R

)

ηj,max

∣

∣

∣,

(21)

where q and σ stand for mean values of displacements and

stresses.

The proposed absolute sum of modal maxima always gives

the upper estimation of extreme stresses. This entails that our

optimal design, which is sensitive to the assumed constraints,

will be on the safe side.

4.3. Continuous minimum weight for the tower. The prob-

lem is as follows:

Find fourteen design variables: seven pipe diameters Db

and seven their thicknesses tb of structural members, with

material density ρb, linked in seven groups, assuring the min-

imum of the structural volume Vc equal to

Vc =

b0
∑

b=1

LbAb. (22)

Subjected to constraints on:

• Stresses

|σj,t| ≤ σ0 = 215 MPa j = 1, 2, . . . ,NElem. (23)

It is assumed that the largest compressive force Pc

Pc ≤ 0.4PE. (24)

• Displacements

|qmax,i| ≤ q0i i = 1, 2, . . . ,NDOF. (25)

• Maximal and minimal values of pipe diameters and their

wall thicknesses

D1
b ≤ Db ≤ D

k0
b

b , t1b ≤ tb ≤ t
k0

b

b , (26)

where σj,t – the largest value of the sum of stresses from

bending and tension at the cross section of j-th FE, σ0 –

the maximum allowable tension stress, q0i – the maximum

allowable displacements.
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The stresses from bending, in members subjected to com-

pressive forces, are multiplied by the amplification factor

ψ = 1, 6 arising from constrains (24), (Chen and Atsu-

ta [31]).

The continuous optimization has been performed using

MATLAB: Optimization Toolbox and Global Optimization

Toolbox. The former contains several types of local minimiz-

ers, which allow to solve nonlinear programming problems,

but strongly dependent on the initial guess of optimal solution.

The latter invokes a selected local minimizer and looks for a

global solution using hundreds of different starting points.

Six design variables of the problem have been assigned

to cross section parameters of legs and braces for Sec. 1, 2

and 3, respectively. The last variable is related to cross section

parameters of all members in Sec. 4 of the tower.

The volume of structural material Vc = 0.1803 m3, ob-

tained from continuous optimization is given in Table 1.

Table 1

Continuous solution

No
Diameter

[mm]
Thickness

[mm]
Area
[cm2]

Moment of Interia
[cm4]

1 48.5 2.0 2.9217 7.9114

2 27.1 2.0 1.5771 1.2499

3 51.9 2.1 3.2855 10.2033

4 46.4 2.0 2.7897 6.8884

5 44.4 2.0 2.6641 6.0000

6 27.9 2.0 1.6273 1.3727

7 41.7 2.0 2.4944 4.9268

Total volume = 0.1803 m3

4.4. Discrete minimum weight for the tower. Let us fol-

low now calculations according to the algorithm presented in

Sec. 3.

PART 1: Find values of the discrete cost function.

STEP 1.1

The continuous optimization presented in the previous

Subsec. 4.3 gives V c = 0.1803 m3 (Table 1).

STEP 1.2

The problem with two-branch graph containing all avail-

able CSA Akb

b and Akb+1
b , with Ikb

b and Ikb+1
b , for each of

seven linking groups, is constructed (Table 2).

Table 2

Catalogue for graph algorithm

Linking group A
k [cm] A

k+1 [cm]

1 2.5384 – CHS 42.4x2.0 3.3238 – CHS 48.3x2.3

2 1.5645 – CHS 26.9x2.0 1.7775 – CHS 26.9x2.3

3 3.3238 – CHS 48.3x2.3 4.1362 – CHS 48.3x2.9

4 2.5384 – CHS 42.4x2.0 3.3238 – CHS 48.3x2.3

5 2.5384 – CHS 42.4x2.0 3.2509 – CHS 42.4x2.6

6 1.5645 – CHS 26.9x2.0 1.9918 – CHS 33.7x2.0

7 1.9918 – CHS 33.7x2.0 2.5384 – CHS 42.4x2.0

STEP 1.3

The closest found, discrete structural volume is Vd =
0.1844 m3.

STEP 1.4

The STEP can be omitted, since all possible solutions are

found in STEP 1.3.

PART 2. Verifying constraint violation.

STEP 2.1

The parameter µ(1) = max(|σj,t| ≤ σ0) (in this exam-

ple constraints imposed on displacements are not active) for

some of j0 structural members are showing that constraints

are violated for a value of Vd = 0.1844 m3.

STEP 2.2

We come back to STEP 1.3, looking for the next dis-

crete larger value. After several iteration following value

of structural volume fulfilling constrains was found to be:

Vd = 0.2031 m3.

Comparison of optimal design obtained by full enumera-

tion and present method is presented in Table 3.

Table 3

Comparison of optimal design obtained by full enumeration and present

method

Method/Linking group Full enumaration Graph algorithm

1 CHS 48.3x2.3 CHS 48.3x2.3

2 CHS 26.9x2 CHS 26.9x2

3 CHS 48.3x2.9 CHS 48.3x2.9

4 CHS 48.3x2.3 CHS 48.3x2.3

5 CHS 42.4x2.6 CHS 42.4x2.6

6 CHS 26.9x2 CHS 33.7x2

7 CHS 42.4x2 CHS 42.4x2

Total volume [m3] 0.1996 0.2031

Since the number of all possible combination for the graph

is 27 = 128, it was possible to verify the obtained discrete

value applying direct enumeration. Four volumes, fulfilling

constraints, are: 0.1996; 0.2031; 0.2023; 0.2058 m3.

It shows that the value obtained by graph algorithm is

larger only by less than two per cent of exact value.

5. Discrete minimum weight design

of a floor under synchronized crowd activity

The second example, showing the applicability of the graph

approach to structural optimization is concerning with a floor

(Fig. 8) under synchronised crowd activity. The floor is com-

posed of a concrete plate and a system of supporting steel

beams.

The example demonstrates the optimization of the floor re-

sponse for a composite floor in an office environment (Smith

et al. [32]). The floor consists of a deep normal weight slab

supported by 6.0 m span secondary beams, which, in turn,

are supported by 7.45 m span castellated primary beams.

The thickness of the plate can be chosen from a cata-

logue containing five values hp = [0.10; 0.12; 0.16; 0.18;

0.20] m. On the other hand, there are four design variables

for beams. All of them are selected from a catalogue (British

Universal Columns and Beams), containing 55 different sets

of cross section areas and related to them moments of inertia

and sectional moduli with respect to two axes, starting from

A1 = 16.5 cm2 and ending at A55 = 228.1 cm2.
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Fig. 8. Composite floor supported by steel beams

5.1. Deterministic load from synchronised crowd activity

and structural response. In the case of a floor under syn-

chronized crowd activity, the load-time function can be ex-

pressed by a sequence of semi-sinusoidal pulses; this aligns

well with measurements for individuals (Smith et al. [32])

pjump(t)=Q

{

1.0 +

H
∑

h=1

αhD
(1)
δ,h sin(2hπfpt+ θh + θ

(1)
h )

}

,

(27)

where Q is the weight of the jumpers (usually taken as 746 N

per individual), H is the number of Fourier terms, αh is the

h-th Fourier coefficient (or dynamic load factor), fp is the

frequency of the jumping load (Hz), θh is the phase lag of

the h-th term, θ
(1)
h is the phase of the response of the 1st

mode relative to the h-th harmonics.

The right side of Eq. (7), for the case of the floor, is taking

the following form

ΦT
Rp(t) = ΦT

RBpjump(t)

= ΦT
RBQ

{

1.0 +
H
∑

h=1

αhD
(1)
δ,h sin(2hπfpt+ θh + θ

(1)
h )

}

,

(28)

where B is Boolean matrix which nonzero elements corre-

spond to jumpers location.

The j-th component of (9) can be presented as

η̈j(t) + 2ζjωj η̇j(t) + ω2
j ηj(t)

= φ
(j)T

R BQ

{

1.0 +

H
∑

h=1

αhD
(1)
δ,h sin(2hπfpt+ θh + θ

(1)
h )

}

.

(29)

Applying known solutions for linear vibration problems,

we get the acceleration at the point of maximal modal defor-

mation, for the first mode (Fig. 9) and h harmonic

q̈RMS
j,h = ϕ

(j)
max,1ϕ

(j)
max,1

q̈hQ√
2
D

(j)
a,h, (30)

where

D
(j)
a,h =

(hβj)
2

√

(1 − hβj)2 + (2ζjhβj)2
(31)

is the dynamic magnification factor for acceleration. The max-

imum acceleration is found from summation

q̈RMS =

NMode
∑

j=1

H
∑

h=1

q̈RMS
j,h . (32)

Similarly, displacement at the point of maximal modal

deformation, for the first mode and h-th harmonic

qRMS
j,h = ϕ

(j)
max,1ϕ

(j)
max,1

αhQ√
2
D

(j)
δ,h, (33)

D
(j)
δ,h =

1
√

(1 − hβj)2 + (2ζjhβj)2
(34)

and the maximum displacement

qRMS =
NMode
∑

j=1

H
∑

h=1

qRMS
j,h . (35)
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Fig. 9. First mode shape of composite floor

5.2. Continuous minimum weight for the floor. The prob-

lem consists in finding six design variables, assuring the mini-

mum of the structural weightWc equal to (notations in Sec. 3)

Wc = ρb

b0
∑

b=1

LbAb + ρph1S1, (36)

where ρb is the mass density of the beam material, ρp is the

mass density of the floor composite.

Subjected to constraints on:

• Displacements

qRMS ≤ qallowable.

• Accelerations

q̈RMS ≤ q̈allowable.

• Maximal and minimal values of floor composite thickness

hp,min ≤ hp ≤ hp,max.

• Maximal and minimal values of the cross section area of

beams

Amin
b ≤ Ab ≤ Amax

b , b = 1, 2, 3, . . . , b0

and related to CSA height Hb of I beam and its web hb.

Similarly to the tower problem, continuous optimization

has been performed using MATLAB: Optimization Toolbox

and Global Optimization Toolbox.

Four design variables of the problem are assigned to cross

section areas, and related to them moments of inertia, of sup-

porting beams and one to the plate thickness.

The distance between the plate middle surface and cen-

troid of the beam cross section (eccentricity), for the largest

profiles is assumed to be

e =
hb

2
+
hp

2
.

State constrains are imposed on acceleration q̈RMS ≤ 0.6 m/s2

(Smith at al. [32]) and equivalent static stresses, which are

calculated for the following forces

pjump, equiv = Q

(

1.0 +

H
∑

h=1

αhDδ,h

)

.

For beams allowable stress equals to σ0
b = 275 MPa and

for concrete of the plate σ0
p = 35 MPa.

The weights ρbvb and ρpvp of structural members linked

in the five groups, obtained from continuous optimization are

given in Table 4.

Table 4

Continuous, optimal CSA and plate thickness: available parameters for two-branch graph and discrete optimal solution

Linking group Continuous Solution Discrete two-branch graph for beams and plate Discrete solution Db

1 plate 250.00 { 250.00, 300.00}
250.00

(Slab thickness = 10 cm)

2 beam 58.88 { 56.99, 59.82}
59.82

(UB 457x152x60)

3 beam 164.07 { 149.15, 179.06}
179.06

(UB 610x305x179)

4 beam 108.33 { 101.19, 109.04}
109.04

(UB 533x210x109)

5 beam 65.94 { 60.05, 67.12}
60.05

(UB 533x210x60)

Structural weight (kg) 251780 { 249330, 295570} 252282
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5.3. Discrete minimum weight for the floor. PART 1: Find

values of the discrete cost function.

STEP 1.1

The weights ρbvb and ρpvpof structural members linked

in the five groups, obtained from continuous optimization in

section 5.2, are given in Table 4.

STEP 1.2

The lists of two available beams ρbA
kb

b and ρbA
kb+1
b for

each linking group and two available thicknesses of the plate

ρph
kp
p and ρph

kp+1
p , are constructed. They are listed in Ta-

ble 4.

STEP 1.3

For assumed m = 3, permutations the listed weights are

randomly selected.

STEP 1.4

Performing calculation (i)–(v), a set of m = 3 discrete

values of the cost function are found. They are: Wd =
{252178; 252282; 291980} kg.

PART 2.: Verifying constraint violation.

Verification of all constrains shows that for the smallest

weight, they are violated. In the case of the second weight

Wd = 252282 kg, all constrains are satisfied. It is then as-

sumed that this is the discrete minimum weight solution. Val-

ues of optimum parameters for each structural member are

listed in Table 4.

6. Conclusions

A DSO algorithm for structures composed of prefabricated

elements, subjected to stochastic and deterministic loads, is

proposed. The algorithm can be applied to problems with

very large numbers of combinations, arising from numbers of

structural elements and available parameters.

The algorithm is based on a heuristic assumption, that

the structural weight obtained from continuous solution, con-

stitutes a lower bound for a discrete minimum weight. This

assumption, together with the graph representation of the

structural volume, permits to reject from considerations,

very large numbers of structures with volumes smaller, than

the volume obtained from a continuous solution. The algo-

rithm is relatively easy to apply. The only knowledge need-

ed is the FEM and graph representations. In the evolution-

ary type of algorithms, the designer, has to decide about:

number of chromosomes, number of generations, which of

six known methods of the selection of chromosomes for

a crossover should be taken, which of six or even more

mutation types should be applied, the penalty coefficient.

There are no general rules of applying, this or other set

of the mentioned algorithm components. The decision has

to be made through many tedious numerical experiments.

Moreover, evolutionary algorithms need tens of thousands,

or even more, of analysis. The numbers come from products

of numbers of chromosomes multiplied by numbers of gener-

ations.

The proposed algorithm is numerically very efficient. It

requires relatively small numbers of dynamic analyses, com-

paring with Evolutionary Optimization type algorithms [33].

The presented examples are showing advantages of the

proposed algorithm. The number of dynamic analyses, need-

ed to verify, whether obtained from the graph solutions are

not violating constraints, is small. In the first example, with

the transmission tower, this number is 9. In the second one,

dealing with the composite floor, supported with steel beams,

this number is 3. The number of analysis in the continuous

optimisation depends upon the assumed number of starting

points, however usually it does not exceed hundreds.
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