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Necessary and sufficient conditions for the minimum energy control

of positive discrete-time linear systems with bounded inputs
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Abstract. The minimum energy control problem for the positive discrete-time linear systems with bounded inputs is formulated and solved.

Necessary and sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is

proposed and illustrated by a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive theory is given in the monographs [1,

2]. Variety of models having positive behavior can be found

in engineering, economics, social sciences, biology and medi-

cine, etc. Positive linear systems consisting of n subsystems

with different fractional orders have been analyzed in [3].

The minimum energy control problem for standard linear

systems has been formulated and solved by J. Klamka [4–7]

and for 2D linear systems with variable coefficients in [8].

The controllability and minimum energy control problem of

fractional discrete-time linear systems has been investigated

by Klamka in [7]. The minimum energy control of positive

continuous-time linear systems has been addressed in [9, 10].

The minimum energy control of positive fractional linear sys-

tems has been considered in [9, 10] and of descriptor positive

systems in [11, 12].The minimum energy control of positive

continuous-time linear systems with bounded inputs has been

addressed in [13] and of discrete-time linear systems with

bounded inputs in [14, 15].

In this paper the minimum energy control problem for pos-

itive discrete-time linear systems with bounded inputs will be

formulated and solved.

The paper is organized as follows. In Sec. 2 the basic def-

initions and theorems of the positive discrete-time linear sys-

tems are recalled and the necessary and sufficient conditions

for the reachability of the positive systems are given. The min-

imum energy control problem of the positive linear systems

with bounded inputs is formulated and solved in Sec. 3. Nec-

essary and sufficient conditions for the existence of solution

of the problem are established and a procedure for compu-

tation of the optimal inputs and the minimum value of the

performance index are also presented. Concluding remarks

are given in Sec. 4.

The following notation will be used: ℜ – the set of re-

al numbers, ℜn×m – the set of n × m real matrices, ℜn×m
+

– the set of n × m matrices with nonnegative entries and

ℜn
+ = ℜn×1

+ , Mn – the set of n × n Metzler matrices (re-

al matrices with nonnegative off-diagonal entries), In – the

n × n identity matrix.

2. Preliminaries and the problem formulation

Consider the discrete-time linear system

xi+1 = Axi + Bui, (1)

where xi ∈ ℜn and ui ∈ ℜm are the state and input vectors

and A ∈ ℜn×n, B ∈ ℜn×m.

Definition 1. [1, 2] The system (1) is called the internally pos-

itive if xi ∈ ℜn
+, i ∈ Z+ for any initial conditions x0 ∈ ℜn

+

and all inputs ui ∈ ℜm
+ , i ∈ Z+.

Theorem 1. [1, 2] The system (1) is internally positive if and

only if

A ∈ ℜn×n
+ , B ∈ ℜn×m

+ . (2)

Definition 2. The positive system (1) (or the positive pair

(A, B)) is called reachable in q steps if for any given final

state xf ∈ ℜn
+ there exists an input sequence uk ∈ ℜm

+ , for

k = 0, 1, . . ., q − 1 that steers the state of the system from

zero initial state x0 = 0 to the state xf , i.e. xq = xf .

A real square matrix is called monomial if each its row

and each its column contains only one positive entry and the

remaining entries are zero.

Theorem 2. [2] The positive system (1) is reachable in q steps

if and only if the reachability matrix

Rq = [ B AB ... Aq−1B ]. (3)

contains n linearly independent monomial columns.

For single input systems (m = 1) q = n the positive sys-

tem (1) is reachable in n steps if and only if the reachability

matrix Rn is a monomial matrix. In this case there exists only
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one input sequence uk ∈ ℜm
+ , k = 0, 1, . . ., n − 1 that steers

the state of the system from x0 = 0 to the state xf ∈ ℜn
+

given by 



un−1

un−2

...

u0




= R−1

n xf . (4)

If m > 1 and the positive system (1) is reachable in q

steps then there exist many input sequences uk ∈ ℜm
+ ,

k = 0, 1, . . ., q − 1 that steers the state of the system from

x0 = 0 to the state xf ∈ ℜn
+. Among these inputs sequences

we are looking for the sequence uk ∈ ℜm
+ , k = 0, 1, . . ., n−1

that minimizes the performance index

I(u) =

q−1∑

k=0

uT
k Quk, (5)

where Q ∈ ℜ
m×m
+ is a symmetric positive defined matrix.

The minimum energy control problem for the positive

discrete-time linear systems (1) with bounded inputs can

be stated as follows: Given the matrices (2), the final state

xf ∈ ℜn
+ and matrix Qof the performance index (5), find an

input sequence uk ∈ ℜm
+ , k = 0, 1, . . ., q − 1 satisfying the

condition

uk < U(U ∈ ℜm
+ is given) for k = 0, 1, . . ., q − 1, (6)

that steers the state vector of the system from x0 = 0 to

xf ∈ ℜn
+ and minimizes the performance index (5).

3. Problem solution

To solve the problem we define the matrix

Wq = RqQ
−1
q RT

q ∈ ℜn×n, (7)

where Rq is defined by (3), T denote the transpose and

Q−1
q = blockdiag[Q−1, ..., Q−1] ∈ ℜ

qm×qm
+ . (8)

Note that the condition (8) is met if and only if the matrix Q

is diagonal.

Remark 1. If all columns of the matrix (3) are monomial and

the matrix Q is diagonal then the matrix (7) is also diagonal.

Remark 2. It is easy to check that all columns of the matrix

(3) are monomial if and only if the pair (A, B) is reachable

and all columns of the matrix [A B] are monomial.

Lemma 1. The matrix (7) is diagonal if and only if the pair

(A, B) is reachable and all columns of the matrix

Rn+1 = [ B AB ... AnB ] (9)

are monomial and the matrix Q is diagonal.

Proof. By Theorem 2 the pair (A, B) is reachable if and

only if n columns of the matrix (9) are monomial. If all

columns of the matrix (9) are monomial then from the equal-

ity AkB = A(Ak−1B), k = 1, 2, . . ., q it follows that all

columns of the matrix (8) are monomial for any q = n+1, . . ..

By Remark 1 if all columns of the matrix (3) for any q are

monomial and the matrix Q is diagonal then the matrix (7) is

diagonal for any q = 1, 2, . . ..

Lemma 2. If the pair (A, B) is reachable and all columns

of the matrix (9) are monomial and the matrix Q is diagonal

then

W−1
q xf ∈ ℜn

+ (10)

for any xf ∈ ℜn
+.

Proof. By Lemma 1 if the assumptions are satisfied then the

matrix (7) is diagonal and W−1
q ∈ ℜ

n×n
+ since the diagonal

entries of Wq are positive. Therefore, the condition (10) is

met for any xf ∈ ℜn
+.

Lemma 3. If the pair (A, B) is reachable and all columns

of the matrix (9) are monomial and the matrix Q is diagonal

then the input sequence

ûq =





uq−1

uq−2

...

u0




= Q−1

q RT
q W−1

q xf ∈ ℜ
qm
+ (11)

steers the positive system from x0 = 0 to xf ∈ ℜn
+.

Proof. Using the solution

xi = Aix0 +

i−1∑

j=0

Ai−j−1Buj (12)

of the Eq. (1) for x0 = 0 and i = q and (11) we obtain

xq = Rqûq = RqQ
−1
q RT

q W−1
q xf = xf (13)

since (7) holds.

Lemma 4. If the diagonal matrix Q is scalar matrix

Q = diag[q1, ..., q1] ∈ ℜ
m×m
+ (14)

then the input sequence (11) is independent of Q and is giv-

en by

ûq = RT
q [RqR

T
q ]−1xf ∈ ℜ

qm
+ (15)

for any xf ∈ ℜn
+.

Proof. If (14) holds then from (7) we have

Wq =
1

q1

RqR
T
q ∈ ℜ

n×n
+ (16)

and

W−1
q = q1[RqR

T
q ]−1 ∈ ℜn×n

+ . (17)

In this case the input sequence (11) is given by

ûq = Q−1
q RT

q W−1
q xf

=
1

q1

RT
q q1[RqR

T
q ]−1xf = RT

q [RqR
T
q ]−1xf

(18)

for any xf ∈ ℜn
+.

Theorem 3. Let the positive system (1) be reachable in q

steps, the matrix Q ∈ ℜm×m
+ be diagonal and all columns of

the matrix (9) be monomial. Let uk ∈ ℜm
+ , k = 0, 1, . . ., q−1

be an input sequence satisfying (6) that steers the state of the
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positive system (1) from x0 = 0 to xf ∈ ℜn
+. Then the in-

put sequence (11) satisfying (6) also steers the state of the

system from x0 = 0 to xf ∈ ℜn
+ and minimizes the perfor-

mance index (5), i.e. I(û) ≤ I(u). The minimal value of the

performance index (5) is given by

I(û) = xT
f W−1xf . (19)

Proof is similar to the proof in [14].

Remark 3. If U in (6) decreases then the number q of steps

needed to transfer the state of the system from x0 = 0 to

xf ∈ ℜn
+ increases.

Therefore, the following theorem has been proved.

Theorem 4. There exists input sequence (11) that steers the

state of the system (1) from x0 = 0 to any given xf ∈ ℜn
+

and minimize the performance index (5) for diagonal matrix

Q ∈ ℜm×m
+ and any xf ∈ ℜn

+ if and only If the system is

reachable in q steps and all columns of the matrix (9) are

monomial.

Proof. Necessity. For any given xf ∈ ℜn
+ the condition (10)

is satisfied only if W−1
q ∈ ℜn×n

+ and this holds if and only if

Wq ∈ ℜn×n
+ is monomial matrix. Note that Q−1

q ∈ ℜ
qm×qm
+

if and only if Q ∈ ℜ
m×m
+ is diagonal matrix. From (7) it

follows that for diagonal matrix Q the matrix Wq ∈ ℜn×n
+ is

diagonal if and only if all columns of the reachability matrix

(9) are monomial.

Proof of sufficiency is similar to the proof of Theorem 3.

Theorem 5. If the assumptions of Theorem 4 are met then the

minimum energy control problem with bounded inputs has a

solution for arbitrary U in (6).

Proof. We shall show that if the number q in (3) increas-

es then U in (6) decreases. Without loss of generality we can

assume that the matrices A, B (m = 1) and Q have the forms

A =





0 0 ... 0 an

a1 0 ... 0 0

0 a2 ... 0 0
...

...
. . .

...
...

0 0 ... an−1 0




,

B =





b

0
...

0




, Q = [q1].

(20)

Using (3) for q > n + 1, (7) and (20) we obtain

Rq = [ B AB ... Aq−1B ] =





b 0 0 ... 0 a1...anb 0 ...

0 a1b 0 ... 0 0 a2
1a2...anb ...

0 0 a1a2b ... 0 0 0 ...
...

...
...

. . .
...

...
...

...

0 0 0 ... a1...an−1b 0 0 ...




(21)

and

Wq = RqQ
−1
q RT

q =
1

q1

diag[b2 + (a1...anb)2 + ..., (a1b)
2 + (a2

1a2...anb)2

+..., ..., (a1...an−1b)
2 + ...] ∈ ℜn×n.

(22)

From (11) and (22) we have

ûq = Q−1
q RT

q W−1
q xf =

1

q1





b 0 0 ... 0

0 a1b 0 ... 0

0 0 a1a2b ... 0
...

...
...

. . .
...

0 0 0 ... a1...anb

a1...anb 0 0 ... 0

0 a2
1a2...anb 0 ... 0

...
...

... ...
...





×q1diag

[
1

b2 + (a1...anb)2 + ...
,

1

(a1b)2 + (a2
1a2...anb)2 + ...

, ...,
1

(a1...an−1b)2

]
xf

= diag

[
b

b2 + (a1...anb)2 + ...
,

a1b

(a1b)2 + (a2
1a2...anb)2 + ...

, ...

]
xf .

(23)
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From (23) if follows that if q increases then the compo-

nents of ûq decrease and for any given U in (6) there exists a

number q for which the condition (6) is satisfied. Therefore,

if the assumptions of Theorem 4 are met then the minimum

energy control problem with bounded inputs has a solution

for arbitrary U in (6).

The optimal input sequence (11) and the minimal value

of the performance index (19) can be computed by the use of

the following procedure.

Procedure 1.

Step 1. Knowing the matrices A, B, Q and using (3) and

(7) compute the matrices Rq and Wq for a chosen q such that

the matrix Rq contains at least nlinearly independent mono-

mial columns.

Step 2. Using (11) find the input sequence uk ∈ ℜm
+ ,

k = 0, 1, . . ., q − 1 satisfying the condition (6). If the con-

dition (6) is not satisfied increase q by one and repeat the

computation for q + 1. If the matrix Wq is diagonal after

some number of steps we obtain the desired input sequence

satisfying the condition (6).

Step 3. Using (19) compute the minimal value of the per-

formance index I(û).

Example 1. Consider the positive discrete-time linear system

(1) with matrices

A =

[
0 3

2 0

]
, B =

[
0

1

]
(24)

and the performance index (5) with Q = [2].
Find the input sequence uk ∈ ℜm

+ , k = 0, 1, . . . satisfying

the condition (6) with

uk <
1

3
, k = 0, 1, . . . (25)

that steers the state of the system from zero state to final state

xf = [ 1 1 ]T ∈ ℜ2
+ and minimize the performance index.

Note that in this case all columns of the reachability ma-

trix
Rq = [ B AB ... Aq−1B ]

=

[
0 3 0 18

1 0 6 0
...

]
(26)

are monomial.

Using the Procedure 1 we obtain the following:

Step 1. Using (7) and (15) we obtain

Wq = RqQ
−1
q RT

q =

[
0 3 0 18

1 0 6 0
...

]

diag[0.5, 0.5, 0.5, ...]





0 1

3 0

0 6

18 0
...





=

[
9 + 182 + ... 0

0 1 + 62 + ...

]
∈ ℜ2×2

+ .

(27)

Step 2. Using (11), (26) and (27) we obtain

û2 =

[
u1

u2

]
= Q−1

2 RT
2 W−1

2 xf

=

[
0.5 0

0 0.5

] [
0 1

3 0

]


2

9
0

0 2




[

1

1

]

=




1
1

3



 .

(28a)

This input sequence does not satisfy the condition (25) and

we compute

û3 =




u1

u2

u3



 = Q−1

3 RT
3 W−1

3 xf

=




0.5 0 0

0 0.5 0

0 0 0.5








0 1

3 0

0 6








2

9
0

0
2

37





[
1

1

]

=





1

37
1

3
6

37




.

(28b)

The input sequence (28b) also does not satisfy the condi-

tion (25) and we continue the computation

û4 =





u1

u2

u3

u4




= Q−1

4 RT
4 W−1

4 xf

=





0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5









0 1

3 0

0 6

18 0





·





2

9 + 182
0

0
2

37





[
1

1

]
=





1

37

3

9 + 182

6

37
18

9 + 182





.

(28c)

The input sequence (28c) satisfies the condition (25) and by

Theorem 3 is the optimal one that steers the state of the sys-

tem in 4-steps from zero state to final state xf = [ 1 1 ]T

and minimizes the performance index (5) for Q = [2].
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Step 3. The minimal value of the performance index (19)

is equal to

I(û4) = xT
f W−1

4 xf = [ 1 1 ]





2

9 + 182
0

0
2

37





[
1

1

]

=
2

9 + 182
+

2

37
.

(29)

4. Concluding remarks

The minimum energy control problem for the positive

discrete-time linear systems with bounded inputs has been

formulated and solved. Necessary and sufficient conditions

for the existence of solution to the minimum energy con-

trol problem have been established (Theorem 4). It has been

shown that if the positive system is reachable in q steps, all

columns of the reachability matrix (9) are monomial then the

minimum energy control problem has a solution for arbitrary

U in (6) (Theorem 5). The procedure for computation of the

optimal input sequence has been proposed and illustrated by

a numerical example.

These considerations can be extended to fractional posi-

tive linear systems with bounded inputs [9, 14].
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