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ON ADJUSTING THE LOAD BEARING CAPACITY OF DECISIVE MEMBERS 
TO RELIABILITY CLASSES OF STATICALLY DETERMINATE COMPLEX 

STRUCTURES 

Z. KOWAL1

The paper provides a solution to the problem of dimensioning decisive bars on the basis of the 
conditions of meeting the recommended reliability classes [9] of statically determinate structures 
composed of n members. A theorem was formulated: if a statically determinate structure composed 
of n decisive members is to attain the reliability greater than, or equal to, the recommended relia-
bility p = 1- q, it is necessary and suffi cient that the damage frequency sum qi of decisive members 
is smaller than the admissible damage frequency q of the structure: ∑qi < q. On the basis of this 
theorem, s coeffi cients that recommend increase of the load bearing capacity of the decisive bars 
in a statically determinate structure constructed in order to meet the recommended class [9] of the 
structure reliability, are estimated and presented in a tabular form. 

Key words: reliability, complex structures, quantiles of member load bearing capacity 

1. INTRODUCTION

The degradation of the load bearing capacity and reliability of statically determinate 
structures composed of members calculated in accordance with the code, including the 
EU code [9], is a known problem. The degradation of the load bearing capacity in time 
is caused by steel structure deterioration due to: 1) aging of material, 2) corrosion that 
occurs, in particular, in industrial buildings (e.g. industrial stacks, pipelines, etc.), 3) 
corrosion and steel abrasion in hydro-engineering, 3) member fatigue in machine engi-
neering, 4) documentation errors. In the paper, the impact of the load bearing capacity 
of joints, and that one of the number of decisive members, on reduced load bearing 
capacity of statically determinate structures was taken into account. Those impacts were 
accounted for while estimating the coeffi cients that increase the load bearing capacity 
of decisive bars, thus restoring the recommended reliability class [9] of complex struc-
tures. When in some construction practice, joints with load bearing capacity lower than 
the load bearing capacity of bars jointed at nodes are used, a considerable number of de-
cisive members results in reduced load bearing capacity and reliability of bar structures, 
and may lead to failure and collapse of complex structures. In B2 Table of the code 
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[9], three structure reliability classes with the recommended minimum reliability index 
after 50 years of service are differentiated. Those include: RC1 class with the reliability 
index β0 = 3.3, RC2 class – β0 = 3.8, and RC3 class – β0 = 4.3. Minimum reliability 
indexes β refer to the ultimate strength limit states. Below B2 Table, an annotation was 
made: generally, it is thought that designing a structure in accordance with EN 1990 [9] 
with partial indexes given in the Appendix A1 and EN 1991 to EN 1999 [10], yields 
a structure with the reliability index β > 3.8 for the 50-year reference period. 

The information quoted in the code [9] is based on practical experience collected 
from observations of the structure service life, without differentiation made between 
mechanical properties of structures constructed of different simple and complex deci-
sive members. The term “decisive members” is used in reference to minimum critical 
sets of members, the destruction of which activates the kinematically admissible failure 
mechanism (KAFM) of the structure, resulting in the collapse of the structure, or of 
its part. In the paper, symbol t denotes the index of structure reliability. It replaces the 
notation used in the code, i.e. β. The aim is to differentiate the impact of the number 
of decisive members, including the load bearing capacity of bars and their connections 
with nodes, on a decrease in load bearing capacity and reliability of structures com-
posed of many members, from the impact resulting from wear. The reliability index 
β2 = t2 = 3.8 recommended for RC2 class can be adopted as a reliability index for sim-
ple and complex decisive members of steel structures, designed of non-aging structural 
steels, protected against corrosion, in accordance with the presently binding code. The 
reliability index mentioned above is recommended by the code [9] and it has proved 
effective in construction practices. On the basis of historical experience collected in 
construction, it can be assumed that decisive members of steel structures, dimensioned 
in accordance with the presently binding code, indicate the reliability index t2 = 3.8, 
which is congruent with the content of the code [9]. The structural reliability p of stat-
ically determinate RC2 class bar structures composed of decisive members having the 
reliability RC2, is estimated from the formula (1.1) [5]: 

(1.1) p = ∏ Pr{Ni > Si} > p(t=3.8),   for i from 1 to n 

where: Ni – random load bearing capacity of bars, Si – random forces in bars, resulting 
from the structure load. 

From the formula above, it is obvious that the more decisive members are found 
in a statically determinate structure, the lower is its reliability. Thus, it is important to 
develop a method of restoring the recommended class reliability, especially for large 
complex structures, by means of estimating s coeffi cients, which appropriately increase 
[9] the reliability of decisive members. Fig 1. shows an example of statically determi-
nate structure, composed of decisive members in the form of bars, and their connections 
with the nodes. 

Integrated decisive member 3, shown in Fig. 1b, is a specifi c complex member, 
in which three potentially decisive members occur: a bar (3) and two joints (1; 2). In 
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order to regard bar 3, and joints 1 and 2, as a single integrated decisive member, it is 
necessary to construct joints 1 and 2 in accordance with paper [7], i.e. with increased 
load bearing capacity when compared with bar 3. 

Fig. 1. Examples: a) statically determinate complex structure, 
b) complex decisive member

2. ADJUSTING THE LOAD BEARING CAPACITY OF DECISIVE MEMBERS TO RECOMMENDED 
RC2 CLASS RELIABILITY OF STATICALLY DETERMINATE COMPLEX STRUCTURES 

Estimating the postulated increase in the reliability p(ti) of decisive members in a stati-
cally determinate complex structure, which satisfy the equation (2.1), is meant to meet 
the recommended reliability class p(t2) of the whole complex structure:

(2.1) ∏p(ti) > = p(t2) 

Each decisive member, dimensioned in accordance with the codes, has the expected 
reliability at the level of recommended reliability p(t2 = 3.8) of the structure, which 
is forecasted to be found at the end of the structure service life [9]. In order to meet 
the recommended reliability p(t2 = 3.8) of the whole statically determinate complex 
structure, it is necessary to increase the reliability of decisive members p(ti) so that the 
equation (2.2) is satisfi ed: 

(2.2) p(t2) = 1 – q (t2) = ∏ p(ti) = 1 – ∑q(ti), 

where: p(t2 = 3.8) – the structure reliability recommended in RC2 class, q(t2) = 1- p(t2 = 3.8) 
– admissible damage frequency of the structure, q(ti) – damage frequency of decisive 
members, which makes it possible to meet the recommended reliability class of a com-
plex structure. 
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In a statically determinate complex structure, n decisive members are found. In 
order to meet the recommended reliability level p(t2) of a complex structure, it is nec-
essary to restrict the maximum damage frequency q(ti) of decisive members to the one 
determined from the equation (2.3): 

(2.3) q(ti)=q(t2)/n 

The resultant damage frequency q(ti) of members can be globally checked from the 
inequality (2.4):

(2.4) ∑q(ti) < q(t2) 

The reliability of members in statically determinate complex structure should sat-
isfy the theorem 1: if a statically determinate structure composed of n decisive 
members is to attain the reliability p greater than, or equal to, the recommended 
class of structure reliability p = 1  –  q, it is necessary and suffi cient that the damage 
frequency sum qi of decisive members is smaller than the damage frequency q of the 
complex structure ∑qi < q. 

For RC2 class structures, the recommended reliability of decisive members can be 
estimated from the formula (2.5):

(2.5) p(ti) = 1 – q(ti) > 1 – q(t2) / n 

On the basis of p(ti), an increased reliability index ti for decisive members can be 
read from the load bearing capacity distribution tables [11]. The aim of estimating an 
increase in the reliability index ti of decisive members in a complex structure composed 
of n decisive members is to meet the recommended reliability index of the structure 
which belongs to one of RC1, RC2, RC3 complex structure reliability classes [9]. An 
increase of the load bearing capacity of decisive members dimensioned in accordance 
with the codes [10] should correspond to an increased quantiles (2.6) with the reliability 
index ti of decisive members determined from the equation (2.5):

(2.6) Nizk = E(Niz)[1 – tivi], 

where: E(Niz) – expected load bearing capacity of the i-th strengthened member, ti – 
reliability index of strengthened members, vi = D(Niz) : E(Niz) = D(Ni) : E(Ni) – coeffi -
cient of variation in the load bearing capacity of members, D(Niz) – standard deviation 
of the i-th strengthened member. 

Coeffi cients s of load bearing capacity of decisive members are determined from the 
equation (2.7) of quantiles of decisive members having the reliability stated by the code 
(2.1) and the reliability postulated (2.6) for a complex structure:

(2.7) E(Niz)[1-tivi]=E(Ni)[1-t2vi]. 
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Coeffi cients s which requires an increase in the load bearing capacity of decisive 
members, are estimated on the basis of equation (2.7), from the formula (2.8):

(2.8) s = E(Niz) / E(Ni) = [1-t2 vi] / [1-ti vi] 

Increased quantiles of the load bearing capacity of decisive members result from 
the need to increase expected load bearing capacities E(Niz). Increasing the expected 
value, by defi nition, does not change the coeffi cient of variation of the load bearing 
capacity of decisive members, fabricated while following the same technology. In deci-
sive members, different coeffi cients of the load bearing capacity variation vi of members 
can occur, which does not change the manner of estimation. In numerical examples, the 
following are taken into account: the most frequently occurring, identical coeffi cients of 
the load bearing capacity – variation vi of members, and equal indexes t = ti of the 
reliability of decisive members, depending on the number n of all decisive members 
found in the complex structure under consideration. Coeffi cients s of the load bearing 
capacity of members estimated from the formula (2.8) should be applied to increase 
the load bearing capacity of decisive members, which have already been estimated in 
accordance with respective codes.

The equalisation of reliabilities of statically determinate structures composed of 
many decisive members makes it possible to adjust reliabilities of decisive members 
to recommended reliability class of statically determinate complex structures by means 
of employing historical experience in structure dimensioning, which is contained in 
academic procedures and construction codes.

 
3. NUMERICAL ADJUSTMENT OF COMPUTATIONAL LOAD BEARING CAPACITIES OF DECISIVE 

ELEMENTS TO THE RELIABILITY OF RC2 CLASS COMPLEX STRUCTURES

The manner of adjusting the load bearing capacity and reliability of decisive members 
to commonly accepted structure RC2 class with the reliability index t2 = 3.8 is shown 
with an example of a bar structure composed of 10 members. 

Example 1. Recommended [9] in general construction, structure RC2 class relia-
bility with the reliability index t2= 3.8 amounts to [10]: p(t2 = 3.8) = 0.999927652. The 
corresponding structure damage frequency is: q(t2=3.8) = 1 – p(t2=3.8) = 0.000072348. 
The admissible damage frequency of the decisive members of the structure composed 
of 10 members is: q(t) = q(t2) / 10 = 0.0000072348, the reliability: p(ti) = 1 – q(t2) 
/ 10 = 0.9999927652. The recommended reliability index of a member is [11]: 
t = 4.33665. The coeffi cient s for vi = 0.1 computed from the formula (2.8) amounts 
to: s = [1-3.8x0.1) / [1 – 4.33665x0.1] = 0.62 / 0.56634 = 1.0948. Increasing, in ac-
cordance with Example 1, the load bearing capacity of bars in a statically determi-
nate structure of 10 decisive bars having the reliability index ts = 4.33665, restores 
the recommended reliability of complex structure according to the estimation. The 
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reliability of the structure composed of 10 bars is as follows: p = ∏psi = 1 – 10 qs = 
1 – 0.000072348 = 0.999927652. From normal distribution table [11], we have: t = 3.8. 
The structure demonstrates the reliability recommended by the code [9].

On the basis of Example 1, coeffi cients s recommending an increase in the load 
bearing capacity of the decisive members of statically determinate trusses composed 
of n = 10; 50; 100; 200; 500; 800; and 1000 decisive members, with the variation 
coeffi cient of load bearing capacity v = 0.06; 0.08; 0.1; 0.12, are estimated and put into 
tables. 

Table 1
Coeffi cients s increasing the load bearing capacity of decisive members 

of RC2 class structure (t2 = 3. 8)

n q p = 1 – q ti = v=0.06 v=0.08 v=0.1 v=0.12

item 1 2 3 4 5 6 7 8

1 1 0.000072348 0.999927652 3.8 1 1 1 1

2 10 0.0000072348 0.9999927652 4.3367 1.0426 1.0672 1.1026 1.1582

3 100 0.00000072348 0.9999992765 4.8185 1.0860 1.1344 1.2052 1.3164

4 200 0.0000003618 0.9999996382 4.9550 1.0981 1.1546 1.2361 1.3641

5 500 0.0000001447 0.9999998553 5.1303 1.1151 1.1813 1.2769 1.4270

6 1000 0.00000007235 0.99999992765 5.2592 1.1279 1.2015 1.3078 1.4747

Table 1 comprises in columns: 1 – number of decisive members in a structure, 
2 – damage frequency of decisive members, 3 – recommended reliability of members, 
4 – recommended reliability index of members. Columns 5, 6, 7, 8 of Table 1 pro-
vide coeffi cients s, estimated from formula (2.8) as a function of n number of mem-
bers, which recommend an increase in the load bearing capacity of decisive members. 
Validation of statically determinate structure composed of 1000 decisive bars, each 
having the reliability index ts = 5.2592, reliability ps = 0.999999927652, damage fre-
quency qs = 1 – ps = =0.00000072348, indicates that the reliability of such structure 
is: p = ∏psi = 1 – 1000 qs = 1 – 0.000072348 = 0.999927652. The reliability index is: 
t = 3.8, which is congruent with the code recommendations [9].

On the basis of Table 1, graphs shown in Fig. 2 are plotted in order to estimate co-
effi cients s by using the logarithmic abscissa scale lg10(n ) of the n number of members. 
The practical reason for employing the logarithmic abscissa scale is the possibility of 
accurate interpolation and extrapolation of coeffi cients s, because graphs of coeffi cients 
s are rectilinear when the logarithmic abscissa scale lg10(n) is used. This mode is shown 
in Example 2. 

Example 2. Estimation of coeffi cients s for vi = 0.09 by controlling the load bear-
ing capacity of the members with the logarithmic abscissa scale. RC-2 class truss [9] 
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consists of n = 1000 decisive members. The reliability index t [11] of members amounts 
to: t = 5.2592, s coeffi cient =[1-t2vi] / [1-t vi] = (1-3.8x0.09) / (1-5.2592x0.09) = 0.658 
/ 0.526672 = 1.2494. 

Table 2 presents coeffi cients s for v = 0.09 interpolated in accordance with Example 2. 

Table 2
Coeffi cients s as a function of n, obtained from interpolation for RC2 class structure

n =10 50 100 200 500 800 1000

lg10(n ) 1 1.6990 2 2.3010 2.6990 2.9031 3

v =0.09 1.0831 1.1412 1.1662 1.1913 1.2243 1.2413 1.2494

With the use of the logarithmic abscissa scale, the graphs in Fig. 2 for n = 10 000 
are completed. That is done on the basis of extrapolation, owing to the fact that the 
straight line graphs go through the centre of the co-ordinate system (1;1). In Fig. 2, 
rectilinear s dependence on n is shown, which was obtained with the help of the loga-
rithmic abscissa scale lg10(n ). 
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Fig. 2. Coeffi cients s increasing the load bearing capacity of decisive elements 
of RC 2 class structure (t2 = 3.8).

While designing statically determinate RC2 class structures, in accordance with the 
formula (2.8), it is also necessary to increase, with the help of coeffi cients s, the load 
bearing capacity of decisive members dimensioned in accordance with detailed codes.
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4. NUMERICAL ADJUSTMENT OF COMPUTATIONAL LOAD BEARING CAPACITIES OF DECISIVE 
ELEMENTS TO THE RELIABILITY OF RC3 CLASS COMPLEX STRUCTURES

The recommended reliability index for RC3 class structure [9] is: t3 = β = 4.3. It should 
be taken into account that the more decisive members are found in a structure, the 
more serious are the consequences of a failure or a collapse. A high number of decisive 
members is used in large structural systems, e.g. bar structures or tendon structures of 
large volume halls, in tall frame buildings, and in many other structures. Let us con-
sider high-profi le statically determinate RC3 class structures and estimate coeffi cients 
s equalizing the structure reliability in the logarithmic abscissa scale for the n number 
of decisive members. It is assumed that, as expected, each decisive member, dimen-
sioned in accordance with the code, has the expected initial reliability level, which is 
congruent with the structure reliability stated in the code p(t2 = 3.8). In order to obtain 
increased reliability p(t3 = 4.3) = 0.999991460094524 (related to the damage frequency 
q = 1 – p(t3 = 4.3) = 0.000008539905476) recommended for the whole statically deter-
minate structure of RC3 class, it is necessary to increase the reliability of the decisive 
members so that the equation (3.1) is satisfi ed: 

(3.1) p(t3) = 1 – q(t3) = ∏ pi(t) = [1 – ∑qi(t)], 

where: p(t3 = 4,3) – structure reliability recommended for RC3, q (t3) = 1 – p(t3) 
– admissible damage frequency of the structure, q (ti) – admissible damage frequency 
of decisive* members, which makes it possible to meet the recommended reliability 
class of a complex structure. In a statically determinate structure, n number of decisive 
members is found. In order to meet the reliability level p(t3 = 4.3) of a complex struc-
ture, it is necessary to reduce the damage frequency q(ti) of decisive* members to that 
determined from the equation (3.2): 

(3.2) q(ti) = < q(t3) / n 

Coeffi cient s that recommends an increase of the load bearing capacity of decisive* 
members of the structure should be calculated from the formula (2.8): s = [1 – t2 vi] / 
[1 – ti vi]. Table 3 shows the estimates of s coeffi cients computed from a detailed for-
mula (3.3): 

(3.3) s = [1 – 3.8 vi] / [1 – 5.64926 vi]. 

In order to draw graphs of coeffi cients s which correct the coeffi cients of the load 
bearing capacity of decisive members estimated for RC2 class (3,8), so that they would 
be applicable to RC 3 class complex structures (t3 = 4.3), coordinates lg10(n = 1000), 
which control the construction of nomographs in accordance with Example 3, were 
selected.
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Example 3. Statically determinate high-profi le RC3 (t3 = 4.3) class truss structure 
is given. It is composed of n = 1000 decisive members that have the coeffi cient of 
variation of the load bearing capacity v1 = 0.06; 0.08; 0.09; 0.1. The recommended 
structure reliability is: p(t3 = 4.3) = 0.999991460094524, and the admissible damage 
frequency of the structure is: q(t3) = 0.000008539905476. It is necessary to esti-
mate coeffi cients s which increase the load bearing capacity of decisive members of 
high-profi le RC3 class structure composed of n =1000 members dimensioned in ac-
cordance with RC2 class [9]. The admissible damage frequency of the members is: 
qi(t) = q (t3) : (n =1000) = 0.000000008539906, the recommended reliability of the 
members: pi(t) = 1 – qi(t) = 0.999999991460094. The reliability index t of the decisive 
members amounts to: t = 5.63926. Table 3 shows estimates of coeffi cients s from the 
detailed formula: s = [1 – 3.8 vi] / [1-5.63926 vi]. 

Table 3
Coeffi cients s for n=1000, controlling the graphs of RC3 structure nomograph (Fig. 3)

v1 = 0.06 s = (1-3.8x0.06) / (1-5.63926x0.06) = 0.772 / 0.66164 = 1.1668

v1 = 0.08 s = (1-3.8x0.08) / (1-5.63926x0.08) = 0.696 / 0.54886 = 1.2681

v = 0.09 s = (1-3.8x0,09) / (1-5.63926x0.09) = 0.658 / 0.49247 = 1.3361

v1 = 0.10 s = (1-3.8x0.10) / (1-5.63926x0.10) = 0.620 / 0.43607 = 1.4218

Table 4 presents coeffi cients s estimated with the interpolation of those given in Ta-
ble 3 for n = 1000. They are used to compile nomographs shown in Fig. 3. Table 4 can 
be applied to the direct estimation of coeffi cients s for coeffi cients of variation v = 0.06; 
0.08; 0.09; 0.1 of the load bearing capacity of members in a RC3 class complex struc-
ture with the reliability index t3 = 4.3.

Table 4
Coeffi cients s for increasing the load bearing capacity of decisive members of RC3 class structure

n 10 50 100 200 500 1000

v = 0.06 1.0556 1.0945 1.1112 1.1279 1.1501 1.1668

v = 0.08 1.0894 1.1518 1.1787 1.2056 1.2412 1.2681

v = 0.09 1.1120 1.1904 1.2241 1.2578 1.3024 1.3361

v = 0.10 1.1406 1.2389 1.2812 1.3235 1.3795 1.4218

x = lg10(n ) 1 1.699 2 2.301 2.699 3

 
Fig. 3 shows linear graphs of coeffi cients s constructed for RC 3 structure with the 

index t3 = 4.3 and v = 0.06; 0.08; 0.09; 0.1. s coeffi cients can be interpolated and extrap-
olated directly from the graphs in Fig. 5. The case of v = 0.12 was omitted in Table 4 
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and in Fig. 5 because in high-profi le structures, heightened quality control should be 
imposed. In order to facilitate interpolation and extrapolation of coeffi cients s, Table 3 
provides the data for the logarithmic scale refi nement, thus extending the determination 
of s coeffi cients. 

1.0556
1.1112

1.1668

1.2224

1.0894

1.1787

1.2681

1.3575

1.1120

1.2241

1.3361

1.4481

1.1406

1.2812

1.4218

1.5624

1 10 100 1000 10000

S

log10(n)

V=0.10

V=0.08

V=0.09

V=0.06

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 3. coeffi cients s for increasing the load bearing capacity of decisive* members 
of RC3 class structure (t3 = 4.3). 

SUMMARY

Failures and collapses of large complex steel structures indicate that, while estimat-
ing structure reliability, it is common to disregard the impact of a number of decisive 
 elements (with joints included) on structural safety. The estimation of the reliability of 
complex structures with conventional methods in accordance with the code is prone 
to systematic errors. The latter depend on geometric solutions employed in complex 
structures, and also on number of decisive members and their connections. Errors re-
sult from unacceptable mathematical operations on quantiles, and also from frequent 
underestimation of the load bearing capacity of joints. Quantiles are all characteristic 
and computational physical quantities of a structure, which are given in the code. The 
paper presents the method of estimating the impact of a number of decisive members 
on the load bearing capacity and reliability of statically determinate structures. For the 
method to be applied, it is suffi cient to: 1) estimate the coeffi cients of variation of the 
load bearing capacity of decisive members, 2) dimension the structure members in 
 accordance with the binding code, 3) estimate s coeffi cients which indicate the need 
for increasing the load bearing capacity of decisive members above the estimations 
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that result from the code. That constitutes a major advantage of the method presented 
in the paper. It is widely believed that the coeffi cient of variation vi of the load bearing 
capacity of well fabricated decisive members approximately ranges v = 0.06 – 0.08, and 
the reliability of decisive members in metal structures dimensioned in accordance with 
the code meets RC2 class requirements. The joints of decisive members, however, are 
commonly underestimated, both when designed and executed, hence a need arises 
to consider joints as decisive members. The reliability of statically loaded complex 
structures is naturally facilitated by fabrication of precast units in steps, which results in 
adopting larger sections than theoretically necessary. A greater number of independent 
sets of static loads is also advantageous for heightening the safety of a structure. If the 
method were consistently applied, that would make it possible to avoid more than 70% 
of failures and collapses of statically determinate complex structures, or of statically 
determinate segments of large structural systems. The remaining 30% of failures are 
attributed to gross errors. The calculations for bars integrated with joints in truss nodes 
are sensitive to variation coeffi cients vi of the load bearing capacity of joints. Therefore, 
the load bearing capacity of joints, especially those welded in assembly, should be high-
er than the load bearing capacity of bars, in accordance with, e.g. work [7]. Graphs of 
coeffi cient s in Figs 2 and 3 indicate considerable infl uence of the design quality, work-
manship and assembly on the structure reliability shown in variation coeffi cients vi. 

General conclusion: Decisive members in statically determinate complex struc-
tures need to be dimensioned in such a manner so that the target reliability of the struc-
ture is attained. In the process, it is necessary to account for an increase in damage 
frequency as the number of decisive members in a structure increases. Also, in bar 
decisive members, decisive bar connections to nodes should be included, or the load 
bearing capacity of decisive bars integrated in series with joints ought to be estimated 
in accordance with work [7]. 

The load bearing capacity and reliability of statically indeterminate structures was 
discussed in other works [12], in which it was shown how it is possible to apply proba-
bilistic optimisation of the load bearing capacity of complex structures without increas-
ing the load bearing capacity of members above the requirements stated in construction 
codes. Also, attention should be paid to a signifi cant role the structure geometry 
[5],[6]12] played in the optimisation of the complex structure load bearing capacity 
and reliability. Introducing, intentionally, the bars that couple decisive members into 
kinematically admissible failure mechanisms (KAFM) [12], reverses the tendency for 
reliability to decrease with a growing number of decisive members. Alternatively, that 
yields enhanced load bearing capacity and reliability of the structure [12]. The power of 
the latter tendency is manifested in regular bar truss structures [5; 12] with triangular, 
square and rectangular mesh, including the structures where every other mesh aperture 
is empty. The structures that do not pose hazards shown in study [6], constructed from 
members dimensioned in accordance with the binding codes, have higher load bearing 
capacity and reliability than those recommended by the code [9].
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