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Abstract. In the paper a path following problem for a wheeled mobile robot of (2,0) type has been considered. The kinematic model

of the robot was derived with respect to the Serret-Frenet frame. Two kinematic control algorithms – Samson and Morin-Samson – have

been tested taking into account their sensitivity to a white noise with a zero mean appearing in the one of state variables. The properties

of path following errors have been analysed using statistical techniques. The conclusions related to an acceptable level of noise and a range

of applicability of the presented algorithms have been reached.
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1. Introduction

The problem of designing a control law for nonholonomic

systems has been deeply investigated in the literature, see

e.g. [1–3]. Among the nonholonomic robots one can distin-

guish wheeled mobile robots [4]. As mobile robots are more

and more often used in many different applications, just to

mention mobile platforms for planetary explorations, cars that

travel by themselves and autonomous vacuum cleaners, there

is still a need for a research related to effective control al-

gorithms for such robotic objects. One can distinguish three

basic types of tasks realized by mobile robots:

• point stabilization – the robot should be stabilized at a giv-

en target point,

• trajectory tracking – the vehicle has to track a time-

parametrized curve,

• path following – the robot has to follow a path which is

parametrized by a curvilinear distance from a fixed point.

In the paper we focus on a path following task.

There are many path following algorithms published in

the literature which use model-based motion planning tech-

niques. The path following of the mobile platforms with non-

holonomic constraints can be realized e.g. by the Pomet the-

orem [5], what was presented in [6], or using algorithms

dedicated to particular types of the platforms. The important

advantage of the Pomet algorithm is that it can be applied

to many nonholonomic systems, however it gives oscillatory

transient states with slow convergence rate. The example of

the algorithm dedicated to a certain type of mobile robots

is the Samson algorithm [7] which guarantees an asymptotic

path following for a unicycle – the wheeled mobile robot of

(2,0) type.

The approach presented in [8] bases on controlling explic-

itly the rate of progression of a “virtual target” to be tracked

along the path. Such an approach overcomes the restriction

imposed on the initial position of the robot in the case when

the position of the virtual target is simply defined by the or-

thogonal projection of the actual vehicle on that path. The

method proposed in [9] solves the problem of the bounded

path curvature. It neither requires the computation of a pro-

jection of the robot position on the path, nor does it need to

consider a moving virtual target to be tracked.

The another idea of developing control strategy in a path

following task is to transform kinematic equations of the ro-

bot derived with respect to the Serret-Frenet frame into a

canonical form called the chained form and then propose an

algorithm for such a system. Morin and Samson applied that

solution and introduced the algorithm which may be used e.g.

for the path following of the unicycle, [10]. The same idea

to derive the kinematic equations of a car-like robot in terms

of path coordinates and then transform them into the chained

form was presented in [11].

When designing new control strategies, one has to ver-

ify if the proposed method works properly. The evaluation

of an algorithm could be done using a real robot or simula-

tion experiments. In general the simulation approach should

be faster and cheaper than experiments on a real robot. How-

ever it is not always obvious if lessons learnt during simulation

experiments are relevant to real-life applications. The existing

robots have to deal with the uncertainty that exists in the phys-

ical world and result from many different sources. Some of

the researches provide only the simulations which do not take

into account the robot’s uncertainty. The question arises how

such control strategies would cope in real-life applications.

The problem of the validity of computer simulations in the
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process of developing control systems for autonomous robots

was described in e.g. [12, 13]. The comprehensive overview

of the methods used in robotics which focus on the uncertainty

in robot perception and action could be found in [14].

One can use different methods to verify the effectiveness

of designed control algorithms. Usually simulations or ex-

periments on a real robot are performed. The majority of

the simulation approaches are based on a deterministic model

which may be insufficient and too simplified. In contrary, ex-

periments on real robots might be more expensive and longer

lasting than simulations. What is more, experiments allow to

observe results for narrower range of parameters, due to a

fixed robot construction, comparing to simulations. Thus that

was a motivation to undertake research by simulation studies

for probabilistic model.

The topic concerning the investigation of the impact of

disturbances on the realization of the task by the robot is not

so popular among the researches. In [15] the authors provided

simple definition of robustness of asymptotic stabilizers with

respect to modelling error. What is more, the conclusion that

for chained form systems no continuous homogeneous stabi-

lizer can be robust was made. The problem of global robust

exponential stabilization of nonholonomic chained systems in

the presence of sensor noise and external disturbances has

been considered in [16]. It was shown that the problem is

solvable by means of a simple hybrid control law. There are

practical approaches known from the literature, see e.g. [17],

which test theoretically designed algorithms by performing

chosen motion tasks on a real robot, however the probabilis-

tic analysis of the behaviour of tracking errors is omitted.

The comparison of the algorithms adapted to a control of a

three-link nonholonomic manipulator shown in [18] is based

on the simulation results and takes into account, inter alia, the

algorithms’ robustness to measurements errors.

The aim of this paper is to verify the effectiveness of the

selected kinematic path following controllers basing on sim-

ulation experiments in the situation when one of the state

variables is noised. The presented research may be seen as a

middle point between a theoretical design and a practical ap-

plication on a real machine. To describe the courses of the path

tracking errors some statistical techniques have been applied

and because of that the presented paper could be of interest

not only to robotics researchers but also to applied statisti-

cians.

2. Description of a robot relative

to a given path

Let us consider a wheeled mobile robot of (2,0) class moving

on a plane. Such a robot with a path that has to be followed

was shown in Fig. 1.

We make an assumption that the robot’s wheels are non-

deformable, they move without slip and as a result the non-

holonomic constraints appear in the motion of the robot.

The state variables of the mobile robot are described by a

vector of coordinates q = (x, y, θ)T , where (x, y) denote the

position of the point M, which is the robot’s guidance point

located in the middle of the wheel axle of the vehicle, and θ
is a robot’s chassis orientation with a respect to the inertial

frame X0Y0. The kinematic model of the unicycle robot can

be expressed by the equations



ẋ

ẏ

θ̇


 =




cos θ 0

sin θ 0

0 1




(
v

ω

)
= G(q)η. (1)

Symbols v and ω denote linear and angular velocities, respec-

tively.

Fig. 1. The parameters of the unicycle and Serret-Frenet frame def-

inition

2.1. Representation in a Serret-Frenet frame. To deter-

mine the position of the considered object relative to a desired

path one may use different parametrizations. One of the most

popular is the Serret-Frenet parametrization.

The path P is characterized by a curvature κ(s), which

is the inversion of the radius of the circle tangent to the path

at a point characterized by the parameter s. Let us consider

a moving point M and the associated Serret-Frenet frame de-

fined on the curve P by the normal and tangent unit vectors

−→n and
d−→r
ds

. The point M’ is the orthogonal projection of the

point M on the path P . It exists and is uniquely defined if

the following conditions are satisfied, see e.g. [19]:

• the curvature κ(s) is not bigger than 1/rmin > 0,

• the distance between the path P and the point M is smaller

than rmin,

where rmin =
1

κmax

and κmax = maxs κ(s). The coordinates

of the point M relative to the Serret-Frenet frame are (0, l)
and relative to the basic frame X0Y0 are equal to (x, y), where

l is the distance between M and M’. The curvilinear abscissa

of M’ is equal to s, where s is a distance along the path from

some arbitrarily chosen point. The desired orientation of the

platform satisfies the equation

dθr

dt
= ±κ(s)ṡ. (2)
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The sign on the right side of the equation depends on the

direction of moving along a desired curve (negative when the

Serret-Frenet frame moves in the clockwise direction, positive

otherwise).

If we want to express the position of the point M not in

coordinates (x, y) relative to inertial frame, but relative to the

given path P , we should use certain geometric relationships,

l̇ = (− sin θr cos θr)

(
ẋ

ẏ

)
, (3)

ṡ =
(cos θr sin θr)

1 ∓ κ(s)l

(
ẋ

ẏ

)
, (4)

where ẋ and ẏ can be expressed e.q. by the nonholonomic

constraints of a mobile platform. In addition, we determine

the orientation error

θ̃ = θ − θr (5)

and its derivative

˙̃
θ = θ̇ − θ̇r = θ̇ ∓ κ(s)ṡ. (6)

The restrictions imposed on the desired path cause that in-

equality |l κ(s)| < 1 must hold.

For the unicycle the kinematic model expressed with re-

spect to the Serret-Frenet frame is given by the following

system of equations






l̇ = v sin θ̃,

ṡ =
v cos θ̃

1 ∓ κ(s)l
,

˙̃
θ = ω ∓ κ(s)v cos θ̃

1 ∓ κ(s)l
.

(7)

2.2. The chained form of a kinematic model. The kinemat-

ic equations of some of the mobile robots can be transformed

into the chained form via a change of state and control vari-

ables, e.g. the equations of the unicycle and of the kinematic

car. Such a transformation can be generalized to the kinemat-

ics models expressed with respect to the Serret-Frenet frame,

which was shown in e.g. [20, 21].

The model described by Eq. (7) can be transformed into

the three-dimensional chained system

ż1 = u1,

ż2 = u2,

ż3 = z2u1

(8)

using the change of coordinates

z1 = s,

z2 = (1 ∓ κ(s)l) tan θ̃,

z3 = l

(9)

and control variables

u1 =
v cos θ̃

1 ∓ κ(s)l
,

u2 = (∓κ̇(s)l ∓ κ(s)u1z2)·tan θ̃

+
1 ∓ κ(s)l

cos2 θ̃
(ω∓u1κ(s)) .

(10)

It is worth to mention that the presented transformation is

local
(
|θ̃| <

π

2

)
.

3. Path following algorithms

There are different approaches to formulation of a path fol-

lowing task. The robot’s motion can finish on stopping on

a path or it may be continuous, cyclical. In this paper the lat-

ter approach is adopted. Let us assume that a direction of a

movement along the desired curve is opposite to the clockwise

direction, this means that

dθr

dt
= κ(s)ṡ.

Hence the equations describing parameters and path tracking

errors have a below form

l̇ = v sin θ̃,

ṡ =
v cos θ̃

1 − κ(s)l
,

˙̃
θ = ω − κ(s)v cos θ̃

1 − κ(s)l
.

(11)

3.1. Samson algorithm. For the path following errors for

the mobile platform of (2,0) type expressed by the equations,

see (11)

l̇ = v sin θ̃, (12)

˙̃
θ = u, (13)

where u = ω − κ(s) cos θ̃

1 − κ(s)l
v is a new control for the second

equation, Samson kinematic controller [7] is equal to

v = const, u = −k2lv
sin θ̃

θ̃
− k3θ̃,

k2, k3 > 0.

(14)

3.2. Morin-Samson algorithm. The objective of Morin and

Samson work was to design a control law which allows the

vehicle to follow the path in a stable manner, independently

of the sign of the longitudinal velocity. In [10] the authors

proposed two kinematic control algorithms. The second one

– which is a modification of their first proposal – is described

here.
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For the kinematic equations expressed with respect to a

Serret-Frenet frame (11) which are transformed into the 3-

dimensional chained system (8), the following control law is

proposed

u1 = const,

u2 = −|u1|k0z0 − u1k3z3 − |u1|k2z2

= −|u1|k0

t∫

0

u1z3 − u1k3z3 − |u1|k2z2,

(15)

where a new variable z0 is defined by

ż0 = u1z3, z0(0) = 0.

If the below conditions are satisfied:

1. the polynomial s3 +k3s
2 +k2s+k0 is Hurwitz stable (ex-

ceptionally in this line the notation s means the parameter

of the Laplace transform),

2. the initial conditions verify

z2

3(0) +
1

k3 −
k0

k2

z2

2(0) <
1

κ2
max

then the constraint |l κ(s)| < 1 is satisfied along any solution

to the controlled system.

4. Probabilistic approach to robot control

4.1. Motivation. The often practice in a robotic control sys-

tems design is a deterministic approach. But in real-life ap-

plications, there are usually met some uncertainties [12], as

distortions of used devices or inaccuracy of sensors. The mo-

tivation for consideration of a noised control signal is its like-

ness to real robotic systems. The probabilistic approach [14]

places the robot in the physical world, as opposed to a deter-

ministic approach with ideal conditions modelled in computer

simulations. Making real of the world in which we place the

robot should deal with mentioned uncertainties (due to the

used sensors accuracy) and changing external conditions (like

e.g. an earthquake). The first type of internal interference can

be estimated, based on the sensor unit accuracy specified by

a manufacturer. The external interference can be extremely

difficult to predict and to assess its exact impact on the robot.

Taking into account those limitations, in this article we

will only concern the measurement inaccuracy of devices,

and more – only the influence of noise (or measurement un-

certainty) to determine the orientation of the robot. In the

analysed kinematic path following algorithms, Morin-Samson

and Samson, the parameter that has the biggest influence on

the control is the orientation θ.

4.2. Noised orientation. We accept the convention that ran-

dom variables and stochastic processes will be marked in cap-

ital letters, with the exception of ǫ – noise distorting the orien-

tation. The orientation θ was noised at every step of feedback

loop between an object and a controller. The loop steps were

chosen by stochastic differential equations solver ’ode45’ in a

numerical computing environment MATLAB. For this reason,

the theoretically continuous in time orientation θ, the noise ǫ
and other random variables and stochastic processes are dis-

crete in time in performed simulations. So in the following

sections the time t means discrete moments in time, defined

by SDE solver.

There were three variables describing the kinematics of a

robot: an orientation θ in radians and a robot location coor-

dinates (x, y). The only variable noised before transmission

to the controller was the orientation θ. For a fixed time t, the

orientation θ(t) was distorted by a Gaussian white noise with

a variance σ2, denoted by σǫ(t). Generally, the white noise

process ǫ(t) has the following properties:

• is independent and identically distributed (iid),

• has zero mean function, i.e.

E{ǫ(t)} = 0 for t > 0, (16)

• is uncorrelated, i.e. its autocorrelation function

E{ǫ(t1)ǫ(t2)} = δ(t1 − t2) for t1, t2 > 0, (17)

where δ(τ) is Kronecker delta, δ(τ) =

{
1, if τ = 0

0, if τ 6= 0
.

We assume that ǫ(t) is normally distributed ǫ ∼ N (0, 1),
for a fixed time t, because Gaussian noise is a distortion the

most commonly appearing in nature. The noised orientation

θ is denoted by Θǫ:

Θǫ = θ + σǫ for all t, (18)

where σ has a fixed value, but usually unknown and only

estimated.

4.3. Theoretical properties of errors. The influence of an

additive Gaussian white noise on analysed algorithms were

examined taking into account:

• a random orientation error Θ̃ (a random equivalent of a

deterministic orientation error θ̃),

• a random distance error L (a random equivalent of a de-

terministic distance error l).

Corollary 4.1. The orientation error Θ̃ for a distorted orien-

tation Θǫ is a random process and has a distribution given by

the mean function µeΘ and the autocorrelation function γeΘ:

µeΘ(t) = E{Θ̃(t)} = θ(t) − θr(t) for t > 0, (19)

γeΘ(t1, t2) = E{Θ̃(t1)Θ̃(t2)}

= [θ(t1) − θr(t1)][θ(t2) − θr(t2)] + σ2δ(t1 − t2)

for t1, t2 > 0.

(20)

Proof. Firstly, the random process Θǫ is plugged in the place

of a deterministic orientation θ for all t in the formula (5)

θ̃ = θ − θr.

For a distorted orientation Θǫ, we get that the orientation

error Θ̃ is equal to:

Θ̃ = Θǫ − θr = (θ + σǫ) − θr = (θ − θr) + σǫ, (21)
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where (θ − θr) is deterministic function in time. The distrib-

ution of a white noise ǫ is given by Eqs. (16) and (17). The

noise level σ has a fixed value. The mean function is equal to

µeΘ(t) = E{Θ̃(t)} = θ(t) − θr(t) + σE{ǫ(t)}, (22)

while the autocorrelation function is equal to

γeΘ(t1, t2) = E{Θ̃(t1)Θ̃(t2)}

= E{[θ(t1) − θr(t1) + σǫ(t1)]

·[θ(t2) − θr(t2) + σǫ(t2)]}

= [θ(t1) − θr(t1)][θ(t2) − θr(t2)]

+ [θ(t1) − θr(t1)]σE{ǫ(t2)}

+ [θ(t2) − θr(t2)]σE{ǫ(t1)} + σ2
E{ǫ(t1)ǫ(t2)}.

(23)

Corollary 4.2. Under assumption that θ(t) = θr(t) for t > T ,

the orientation error Θ̃ for a distorted orientation Θǫ is a

Gaussian white noise with a stationary Gaussian distribution

with a zero mean and a variance σ2, i.e.

Θ̃ ∼ N (0, σ2) for t > T. (24)

Proof. Using the Corollary 4.3 with the assumption θ(t) −
θr(t) = 0, we have

µeΘ(t) = E{Θ̃(t)} = 0 for t > T, (25)

γeΘ(t1, t2) = E{Θ̃(t1)Θ̃(t2)}

= σ2δ(t1 − t2) =

{
σ2, if t1 = t2

0, if t1 6= t2

for t1, t2 > T.

(26)

Thus, the orientation error Θ̃ is uncorrelated and has a zero

mean. The normal distribution is a consequence of the equa-

tion Θ̃ = σǫ.

Corollary 4.3. For Morin-Samson algorithm when the Serret-

Frenet parametrization is correct, the derivative of the distance

error L̇ for a distorted orientation Θǫ satisfies the diferential

equation

L̇ = u1 tan Θ̃(1 ∓ κ(s)L), (27)

where u1 = const and κ(s) = κ(s(t)).

Proof. The derivative of the deterministic distance error l̇ sat-

isfies the equation

l̇ = v sin θ̃ = u1 tan θ̃(1 ∓ κ(s)l). (28)

In the place of the deterministic orientation error θ̃, there is

the random variable Θ̃ plugged-in. The longitudinal velocity

is given by the equation

v =
u1(1 ∓ κ(s)l)

cos θ̃
, (29)

where |θ̃| <
π

2
and u1 = const, see the Morin-Samson kine-

matic controller in (15).

Corollary 4.4. For Samson algorithm when the Serret-Frenet

parametrization is correct, under assumption that θ(t) ≈ θr(t)

for t > T , the derivative of the distance error L̇ for a distort-

ed orientation Θǫ can be approximated for a small values of

σǫ
(

i.e. |σǫ| <
π

8

)
by a Gaussian white noise vσǫ with a sta-

tionary Gaussian distribution with a zero mean and a variance

(vσ)2, i.e.

L̇ ≈ vσǫ ∼ N (0, (vσ)2) for t > T, (30)

where v is a longitudinal velocity and it has a constant value,

and σ is a noise level of the orientation Θǫ.

Proof. Plugging-in the random variable Θ̃ in the place of a

deterministic orientation error θ̃ in the formula (7)

l̇ = v sin(θ̃),

and considering the fact that v = const (see Eq. (14)), the

derivative of the distance error L̇ for a distorted orientation

Θǫ has the form:

L̇ = v sin(Θ̃) = v sin(Θǫ − θr)

= v sin((θ − θr) + σǫ)

= v(sin(θ − θr) cos(σǫ) + cos(θ − θr) sin(σǫ)).

(31)

For θ − θr ≈ 0, using the properties of sine and cosine func-

tions we have

L̇ = v sin(σǫ).

Sine function can be approximated with a linear function for

small angles, i.e. for σǫ ∈
(
−π

8
,

π

8

)
. Therefore,

L̇ ≈ vσǫ ∼ N (0, (vσ)2).

5. Simulations and tests

The task of the robot was to achieve a defined path – a cir-

cle with center in the point (0, 0) and a radius equal to 2 –

and to continue its movement along the path. The controller’s

parameters were constant, v = 1, k2, k3 = 1 for Samson al-

gorithm and u1 = 1, k0 = 1, k2, k3 = 1 for Morin-Samson

algorithm. The additive noise σǫ(t) was generated for several

levels of dispersion σ: 10−4, 10−3, 10−2, 0.1, 0.2, . . . , 0.9,
and 1. For the noised orientation Θ̂ǫ, the two following errors

were investigated:

• an orientation error Θ̃ (in radians),

• a distance error L (in meters).

The simulations were performed for two algorithms: Morin-

Samson and Samson. The robot had 25 seconds to get and

follow the defined path. The robot starts to move inside the

circle, which constitutes the path the robot should follow. The

simulation results for chosen values of σ were presented in

Figs. 2 and 3. For orientation and distance errors, the sample

mean values (µ̂eΘ and µ̂L) and the sample standard deviation

(σ̂eΘ and σ̂L) were calculated for the last few seconds of simu-

lations and placed in Tables 2 and 3. There was also presented

3σ̂-interval around the mean value µ̂. For the Gaussian distri-

bution, 99.7% of observations can be found inside the interval

[µ̂ − 3σ̂, µ̂ + 3σ̂].

Bull. Pol. Ac.: Tech. 62(1) 2014 7
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Fig. 2. The path following (control algorithm – Samson): (a), (d), (g), (j), (m) – XY plane, (b), (e), (h), (k), (n) – the distance error l, (c),

(f), (i), (l), (o) – the orientation error eθ, σ = 0 for (a)–(c), σ = 0.1 for (d)–(f) σ = 0.2 for (g)–(i), σ = 0.4 for (j)–(l), σ = 0.8 for (m)–(o)

8 Bull. Pol. Ac.: Tech. 62(1) 2014
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Fig. 3. The path following (control algorithm – Morin-Samson): (a), (d), (g), (j), (m) – XY plane, (b), (e), (h), (k), (n) – the distance error

l, (c), (f), (i), (l), (o) – the orientation error eθ, σ = 0 for (a)–(c), σ = 0.1 for (d)–(f), σ = 0.2 for (g)–(i), σ = 0.4 for (j)–(l), σ = 0.8 for

(m)–(o)

Bull. Pol. Ac.: Tech. 62(1) 2014 9
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Table 1

The results for Samson algorithm (the orientation error eΘ)

σ S N Z bµeΘ bσeΘ [bµeΘ − 3bσeΘ , bµeΘ + 3bσeΘ]

0.0001 yes yes yes 0.00001 0.00011 [-0.00031, 0.00034]

0.0010 yes yes yes −0.00006 0.00112 [-0.00343, 0.00330]

0.0100 yes yes yes −0.00028 0.01006 [-0.03046, 0.02990]

0.1000 yes yes yes −0.00004 0.10138 [-0.30417, 0.30409]

0.2000 yes yes yes −0.00078 0.19956 [-0.59946, 0.59790]

0.3000 yes yes yes 0.00292 0.29947 [-0.89550, 0.90134]

0.4000 yes yes yes 0.00675 0.39805 [-1.18739, 1.20089]

0.5000 yes yes no 0.01493 0.50039 [-1.48625, 1.51611]

0.6000 yes yes yes 0.00832 0.59219 [-1.76825, 1.78489]

0.7000 yes yes yes 0.00888 0.70940 [-2.11933, 2.13708]

0.8000 yes yes yes 0.00980 0.80530 [-2.40609, 2.42569]

0.9000 yes yes yes −0.01133 0.89635 [-2.70039, 2.67773]

1.0000 yes no yes −0.00856 1.00053 [-3.01014, 2.99303]

Table 2

The results for Morin-Samson algorithm (the orientation error eΘ)

σ S N Z bµeΘ bσeΘ [bµeΘ − 3bσeΘ, bµeΘ + 3bσeΘ]

0.0001 no yes yes 0.00002 0.00014 [−0.00040, 0.00044]

0.0010 yes yes yes −0.00009 0.00109 [−0.00336, 0.00317]

0.0100 yes yes yes 0.00037 0.00992 [−0.02938, 0.03013]

0.1000 yes yes yes 0.00032 0.09956 [−0.29837, 0.29902]

0.2000 yes yes yes −0.00230 0.20046 [−0.60370, 0.59909]

0.3000 yes yes no −0.00650 0.29726 [−0.89829, 0.88528]

0.4000 yes yes yes 0.00191 0.40019 [−1.19866, 1.20248]

0.5000 yes yes yes 0.00306 0.49965 [−1.49589, 1.50201]

0.6000 yes yes no 0.01949 0.60743 [−1.80280, 1.84179]

0.7000 yes yes yes −0.00786 0.69690 [−2.09856, 2.08284]

0.8000 yes no no 20.68008 0.80196 [18.27419, 23.08597]

0.9000 yes yes no −82.45772 0.91320 [−85.19731, −79.71813]

1.0000 yes yes no −80.61119 1.02498 [−83.68611, −77.53626]

Table 3

The results for Samson algorithm (the distance error L)

σ S bµL bσL [bµL − 3bσL, bµL + 3bσL]

0.0001 no 0.00007 0.00012 [−0.00030, 0.00045]

0.0010 no 0.00035 0.00091 [−0.00238, 0.00307]

0.0100 no −0.00092 0.00248 [−0.00835, 0.00651]

0.1000 no −0.01562 0.00536 [−0.03172, 0.00047]

0.2000 no −0.04447 0.01563 [−0.09136, 0.00241]

0.3000 no −0.08786 0.02234 [−0.15489, −0.02083]

0.4000 no −0.19513 0.02857 [−0.28084, −0.10941]

0.5000 no −0.36274 0.02385 [−0.43428, −0.29120]

0. 6000 no −0.61677 0.01323 [−0.65646, −0.57707]

0.7000 no −0.92244 0.00609 [−0.94072, −0.90416]

0.8000 no −1.10745 0.02807 [−1.19166, −1.02324]

0.9000 no −1.09119 0.04750 [−1.23369, −0.94869]

1.0000 no −0.78942 0.05382 [−0.95086, −0.62797]

Table 4

The results for Morin-Samson algorithm (the distance error L)

σ S bµL bσL [bµL − 3bσL, bµL + 3bσL]

0.0001 no −0.00000 0.00002 [−0.00006, 0.00005]

0.0010 no 0.00021 0.00023 [−0.00048, 0.00089]

0.0100 no −0.00025 0.00105 [−0.00339, 0.00289]

0.1000 no 0.01113 0.00292 [0.00236, 0.01990]

0.2000 no 0.04370 0.00160 [0.03889, 0.04851]

0.3000 no 0.13790 0.00573 [0.12070, 0.15509]

0.4000 no 0.17544 0.01195 [0.13958, 0.21130]

0.5000 no 0.13543 0.00584 [0.11789, 0.15296]

0.6000 no −0.08654 0.01818 [−0.14107, −0.03201]

0.7000 no −2.37433 0.00759 [−2.39709, −2.35156]

0.8000 no −0.39407 0.00797 [−0.41798, −0.37017]

0.9000 no 0.18410 0.02158 [0.11937, 0.24884]

1.0000 no 0.28838 0.01465 [0.24443, 0.33233]

The test data come from the final seconds of the simula-

tion. The number of SDE solver steps in the 25-second period

of time is variable for different noise levels and the greater the

higher the noise level: 58 steps for σ = 0.0001, 391 – 0.001,

3572 – 0.01, 35305 – 0.1, 71678 – 0.2, ..., 395427 – 1.0. The

final time periods were chosen arbitrarily, eg. 7 sec (only 10

steps) for σ = 0.0001, 3.5 sec (10k steps) for σ = 0.2 and 1.7

sec (10k steps) for σ = 1.0. The time periods for analysis were
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selected in such a way that the robot has a chance to reach

the desired path and stabilize its movement. In some cases the

desired path was not reached. Additionally, the orientation er-

ror and distance from path were not stabilized around zero,

but for high noise levels were still increasing in final seconds

of the simulation.

The data from the end of simulation were tested for distri-

bution stationarity by the Kwiatkowski, Phillips, Schmidt, and

Shin test [22] (in abbreviation KPSS test), see Subsec. 5.1. For

cases with stationary distributions, there were also performed

tests of distribution normality by the Lilliefors test, present-

ed in Subsec. 5.2. Zero mean value was tested by Student

t-test, described in Subsec. 5.3. All the tests were performed

at the significance level 5%. For data in Tables 1–4, we in-

troduce the following notation for columns:

S – the distribution stationarity for Θ̃ or L (the KPSS test

[22]),

N – the distribution normality for Θ̃ (the Lilliefors test [23]),

Z – zero mean test for Θ̃ (the Student’s t-test [24]).

The normality and zero mean tests were conducted only for

the orientation error Θ̃, since for the distance error L the

null hypothesis of distribution stationarity was always reject-

ed. And the stationarity of distribution is a primary assump-

tion required in the both mentioned tests.

5.1. Stationarity test. The definition of the weak-sense sta-

tionarity says that 1st and 2nd moments of a random process-

es x(t) are needed to not vary with respect to time. It means

that a continuous-time random process x(t) is stationary, if

its mean function fulfils the equation

E{x(t)} = µx(t) = µx(t + τ) for all τ ∈ R (32)

and autocorrelation function is equal to

E{x(t1)x(t2)} = γx(t1, t2)

= γx(t1 + τ, t2 + τ) = γx(t1 − t2, 0)

for all τ ∈ R.

(33)

The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test

[22] verifies the null hypothesis that a univariate time series

x(t) is stationary against the alternative hypothesis that it is

a nonstationary unit-root process:

H0: x(t) = c + dt + ξ(t)

(trend-stationary process),

H1: △xt−1,t = x(t) − x(t − 1) = d + ξ(t)

(a difference-stationary process).

(34)

Although the KPSS test allow to check whether the time se-

ries x(t) is stationary with a deterministic trend, we used the

test for the null hypothesis without trend, i.e. with level trend

d = 0.

5.2. Normality test. To verify the hypothesis of a normal dis-

tribution we use nonparametric Lilliefors test [23], also known

as the Kolmogorov-Smirnov test with Lilliefors correction.

The Lilliefors test requires an assumption that analysed sam-

ple {xi}n
i=1 is iid, in particular it means that the distribution

is stationary. The test statistics is:

Dn = max
xi

∣∣∣∣Φ
(

xi − x

S

)
− Fn (xi)

∣∣∣∣ , (35)

where Φ – the cumulative standard normal N (0, 1) distrib-

ution function, Fn – empirical cumulative distribution func-

tion from n-element sample, x =
1

n

n∑
i=1

xi – sample mean,

S2 =
1

n − 1

n∑
i=1

(xi − x)2 – sample variance.

5.3. Test of a zero mean. The one sample Student’s t-test

[24] was used for the examination of the null hypothesis that

the mean is equal to zero:

H0: µx = 0,

H1: µx 6= 0.
(36)

The test assumes that the sample is normally distributed. The

sample {xi}n
i=1

form measured observations. The rejection

area is chosen to be two-tailed, because there are no predic-

tions if values of µx are positive or negative. The test statistics

for n-element sample has the form:

t =
x

S

√
n, (37)

where the symbols x and S are the same as in Subsec. 5.2,

sample mean and sample standard deviation, respectively.

5.4. Simulation results. Orientation error. In both algo-

rithms Morin-Samson and Samson, the values of sample de-

viation σ̂Θ̃ are close to the noise level σ, i.e. σ̂eΘ ≈ σ. The

orientation error is transferred directly without multiplication

and it does not accumulate. The noise level of the orienta-

tion Θǫ (see (18)) was transferred on the noise level of the

orientation Θ̃.

According to Corollary 4.2, for µ̂eΘ ≈ 0 (i.e. θ − θr ≈ 0)

Θ̃ ∼ N (0, σ2). It can be observed for all noise levels in Sam-

son algorithm, and for σ = 10−4, ..., 0.7 in Morin-Samson

algorithm. In such a case one can use 3σ rule – 99.7% of

samples lie within the range (−3σ, 3σ), what was confirmed

by simulations, see Tables 1 and 2. The Student’s t-test used

for the examination of the null hypothesis that the mean is

equal to zero, did not reject the null hypothesis for Samson

algorithm, so we could assume that the sample mean is equal

to zero. Similar results were obtained for Morin-Samson al-

gorithm when σ ≤ 0.7. For σ > 0.7 one cannot use Corol-

lary 4.2 as the assumption that θ − θr ≈ 0 does not hold

anymore.

For high values of σ Samson algorithm deals better with

the task than the Morin-Samson algoritm. The Samson algo-

rithm retained the shape of the desired path, while the path

obtained by using the Morin-Samson algorithm does not even

resemble the ellipse.
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Distance error. For the Samson algorithm for noise levels

σ ≤ 0.2, the mean distance error (in meters) µ̂L < 0.05. It

means that the error was lower than 5 cm. For noise levels

σ > 0.2 the mean distance error µ̂L is unacceptably high, even

higher than 110 cm. One has to take into account that while

the noise level increases, the risk that the robot moves too

far from the path increases too and the applied Serret-Frenet

parametrization could be no longer correct, not to mentioned

the fact that the distance error L is influenced by the noise

appearing in Θ̃. This is probably why for σ > 0.1 the path

circled by the robot is not the same as the desired path – it is

shifted and scaled. The higher the noise level was, the bigger

deformations of the followed path comparing to the desired

path were observed.

For the Morin-Samson algorithm for the noise level σ >
0.2, the mean distance error µ̂L is unacceptably high. The

error has even a value of 237 cm. For the noise level σ ≤ 0.2
the mean µ̂L was close to zero.

For both algorithms, Morin-Samson and Samson, all tests

of stationarity (column S in Tables 3 and 4) rejected the null

hypothesis that the distribution of L is stationary. The station-

arity would mean that the distribution of L does not change

in time, i.e. its mean and the autocorrelation functions are

constant in time. The KPSS test rejected the hypothesis about

a stationarity in all cases. Thus either the expected value or

the autocorrelation function depend on the time. Due to the

fact that the distribution is not stationary, there is no point

in running normality and zero mean tests because those test

could be run only for a random sample, i.e. a realization of

a random variable with a stationary distribution. For σ ≤ 0.2
the mean was close to zero and quite huge for high values

of σ.

Taking into account the simulation results one may con-

clude that the Samson algorithm is more noise robust than

Morin-Samson algorithm. Before Morin-Samson algorithm

could be used, two nonlinear transformations of the robot

have to be computed, while for Samson algorithm one trans-

formation is enough. In addition both the Serret-Frenet para-

metrization and the transformation to the chained form are

local. This means that during the control process not only the

curvature of the desired path is constrained and the distance

between the robot and the path must be limited, but also θ̃

must be bounded: |θ̃| <
π

2
, and then the expression tan θ̃ is

finite: | tan θ̃| < ∞, see (9). The errors made at every step of

the feedback control loop resulting from inaccuracy of mea-

surement devices can accumulate and an additional nonlinear

transformation may cause that the influence of a noise on a

task realization increases. For low noise levels both presented

algorithms work properly, while for bigger values of σ Sam-

son algorithm works better than Morin-Samson algorithm.

6. Conclusions

The presented paper can be seen as a report illustrating the

particular properties of the closed-loop system such a robust-

ness to external disturbances.

In general it is recommended to gather information about

the location of the robot as often as possible and measure the

robot’s orientation precisely (the error equal to few degrees is

acceptable). The frequent regular feedback allows to correct

the robot’s behaviour more often and helps to deal better with

uncertainty. When obtaining information from measurement

devices several or more (whenever possible) measurements

should be done. Then the measurements could be averaged.

Assuming that the noise has a zero mean, one can conclude

that according to the Law of Large Numbers the averaged

measurement result converges to the expected value.

The problem related to examining a noise sensitivity of

control algorithms for robotic objects is quite important and

is still not well considered in the robotics literature. The main

contribution of this work is to show that it is possible to ver-

ify the effectiveness of some of the control algorithms in the

presence of the noise in the control loop based on simulation

results and statistical techniques.

In the presented paper it was assumed that the noise is

centered, i.e. the measurement devices are correctly calibrat-

ed. The situation might be more complex when the devices

would not be calibrated precisely. Then the noise with a non

zero mean is transferred. Further research should be carried

out to investigate what is the required calibration accuracy

of measurement devices for the algorithms to work properly.

The research can be extended by taking into consideration not

only kinematics, but also dynamics of the robot.
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