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Incompressible limit for a magnetostrictive energy functional
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Abstract. The modern materials undergoing large elastic deformations and exhibiting strong magnetostrictive effect are modelled here by free

energy functionals for nonlinear and non-local magnetoelastic behaviour. The aim of this work is to prove a new theorem which claims that

a sequence of free energy functionals of slightly compressible magnetostrictive materials with a non-local elastic behaviour, converges to an

energy functional of a nearly incompressible magnetostrictive material. This convergence is referred to as a Γ-convergence. The non-locality

is limited to non-local elastic behaviour which is modelled by a term containing the second gradient of deformation in the energy functional.

Key words: gamma-convergence, incompressibility, magnetostrictive material, second gradient of deformation, existence of minimizers.

1. Introduction

Magnetostrictive properties of smart materials are stronger

when the considered structural element is comparatively thin.

The magnetostrictive materials are potentially important as

actuator and sensor materials. However, tension brittleness

limits their applications. When metals such as iron, nickel or

cobalt are combined with a polymer in a composite, the poly-

mer matrix improves elastic behaviour while magnetostrictive

properties, due to metal particles, are still preserved.

Mathematical models of plates or shells are generally used

for the elasticity description of thin structural elements. The

models possess an internal elastic energy, which depends on

higher gradients of elastic deformation, and are known as non-

local models. Frequently, deformation under external loads

(magnetic or mechanical) applied to elements of metals and

their alloys is sufficiently small, hence the theory of small

deformations may be used. However, if magnetostrictive ele-

ments are made of composites with a polymeric matrix, the

deformation is no longer small. Thus, the theory of large elas-

tic deformations should be employed. Such an example of

composite is shown in [1] where a polyurethane elastomer

mixed with polycrystalline powders of Terfenol-D has been

studied.

With large deformations, rubber-like material models may

be used as appropriate for the analysis of stresses in such

composites. Let us notice that the polymer is usually a very

poorly compressible material, and there is a need to intro-

duce an incompressible nonlinear model of magnetostrictive

materials undergoing external loads.

In what follows, we study relationships between a special

store energy form of an incompressible magnetostrictive mate-

rial element and near incompressible material energy models.

The problem is solved by the penalty method introducing a

near incompressibility. Such an approach seems to be fruit-

ful from the numerical point of view when FEM is employed,

see [2,3]. The penalty method introduces isochoric-volumetric

decoupling of the magnetoelastic energy functional. The mea-

sure of the volume change is represented by Jacobian of the

deformation. The volumetric strain energy term is proportion-

al to the bulk modulus of the considered material and is also

inversely proportional to a small parameter.

We follow the model of a magnetostrictive finite body with

prescribed boundary conditions and a non-local elastic behav-

iour, deforming under the external magnetic field introduced

in [4]. In the model, the energy density function has been de-

composed into isochoric and volumetric parts. The theorem

on existence of minimizers of the magnetostrictive energy

functional has been proved; therefore, the so-called existence

problem for magnetostrictive body has been solved. The form

of magneto-elastic strain energy density studied in [4] allowed

us to define the penalization term, and to formulate a bound-

ary value problem for nearly incompressible magnetostrictive

bodies. Recently, we have proved in [5] that there exists a

sequence of nearly incompressible bodies for which solutions

of existence problems converge to a solution of an incom-

pressible magnetostrictive existence problem. The proof was

based on the direct method of the calculus of variations. In

the present paper, we apply a special convergence type of

nearly incompressible magnetostrictive models (i.e. appropri-

ate energy functionals) to an incompressible magnetostrictive

model. The convergence of functionals is understood as the

Γ-convergence. The gamma convergence method is so strong

that we can easily recover the main result of [5].

The Γ-convergence is an abstract notion of the function-

al convergence introduced by De Giorgi [6, 7]. A detailed

presentation of the Γ-convergence theory may be found in

Attouch [8], Braides [9] and Dal Maso [10].

Certain necessary definitions and properties of the Γ-

convergence will be presented in Sec. 2. The necessary no-

tions and definitions of energy functionals and admissible

function sets of deformation and magnetization are presented

in Secs. 3 and 4, respectively. The main result of the paper
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is contained in Sec. 5, where the theorem on the existence of

the Γ-limit for the sequence of nearly incompressible magne-

tostrictive energy functionals is proved. Additionally, in Sec. 6

we show that from the new obtained result we can easily re-

cover the result as a consequence of the theorem the result

of our previous paper [5], i.e. the existence of the incom-

pressible magnetostrictive problem is resolved. In Sec. 7 we

comment some analytical forms of the penalization term in

the considered energy functional.

2. Preliminaries

The model of a magnetostrictive body with a non-local elas-

tic behaviour, deformed under the external magnetic field is

introduced in [4]. The energy functional for the model, is ad-

ditionally defined and the theorem on the existence problem is

proved. Following the results of [4] we proved in [5] that there

exists a sequence of weakly compressible bodies for which

solutions of existence problems converge to a solution of an

incompressible magnetostrictive existence problem. The proof

was based on the direct method of the calculus of variations.

Now, our aim is to demonstrate that the sequence of slightly

compressible magnetostrictive models, i.e. appropriate energy

functionals, converges to the incompressible magnetostrictive

model.

Let us remind the necessary definitions and properties of

the Γ-convergence.

2.1. Definition of Γ-convergence.

Definition 2.1. Let (X, τ) be a metrizable topological space,

and let {Gε}ε>0 be a sequence of functionals from X into R.

• (a) Γ(τ)- lim inf , denoted by Gi, is defined on X by

Gi(u) = Γ(τ)- lim inf
ε→0

Gε(u) = min
{uε

τ

→u}

lim inf
ε→0

Gε(uε).

• (b) Γ(τ)- lim sup, denoted by Gs, is defined on X by

Gs(u) = Γ(τ)- lim sup
ε→0

Gε(u) = min
{uε

τ
→u}

lim sup
ε→0

Gε(uε).

• (c) A sequence {Gε}ε>0 is Γ(τ)-convergent iff Gi = Gs;

so we can write

G = Γ(τ)- lim
ε→0

Gε.

2.2. Properties of Γ-convergence. Let Gε : (X, τ) → R be

a sequence Γ(τ)-convergent to G = Γ(τ)- lim
ε→0

Gε. Then the

following properties hold (Braides [9], Dal Maso [10]):

Theorem 2.2.

1. The functionals Gi and Gs are τ -lower semicontinuous

(τ -l.s.c.).

2.

G(u) = Γ(τ) − lim
ε→0

Gε(u) ⇔





∀ {uε
τ
→ u}, G(u) ≤ lim inf

ε→0
Gε(uε),

∀u ∈ X ∃uε
τ
→ u such that G(u) ≥ lim sup

ε→0
Gε(uε).

3. If Φ: X → R is a τ -continuous functional, then

Γ(τ)-lim
ǫ→0

(Gǫ + Φ) = Γ(τ)-lim
ǫ→0

Gǫ + Φ = G+ Φ.

and Φ is called a perturbation functional.

The following theorem is a key step in the investigations:

Theorem 2.3. (Fundamental Property of Γ-convergence).

LetG = Γ(τ)− lim
ε→0

Gε, and let us assume that there exists τ -

relatively compact set X0 ⊂ X such that inf
X0

Gε = inf
X
Gε

(for all ε > 0). Then inf
X
G = lim

ε→0
(inf

X
Gε). Besides, if

{uε}ε>0 is such that lim
ε→0

Gε(uε) = lim
ε→0

inf
X
Gε then τ -point

of convergence of the sequence {uε : ε→ 0} minimizes G
on X .

3. Energy functionals of slightly incompressible

and incompressible deformable magnetics

Let Ω be a bounded domain in R
3, which is a reference

configuration of the considered magnetoelastic body. We as-

sume that the deformation y : Ω → R
3 is of the class of

W 2,2(Ω,R3), and the magnetic field m : Ω → R
3 has a

regularity of the class W 1,2(Ω,R3). Since the magnetiza-

tion vector m is controlled and measured in actual config-

uration we assume, according to [4], that m = m(y) ∈
W 1,2(y(Ω),R3), where y(Ω) denotes the image of the do-

main Ω under the deformation y

m(y) ≡ (m ◦ y) : Ω → R
3.

In the paper [4], Luskin and Rybka proposed, for the case

of magnetostrictive crystals, the energy, where the term of a

surface energy in the domain walls is described by an inte-

grand containing a combination of second derivatives of the

deformation y ∈W 2,2(Ω,R3).

The free energy functional, whose minimizers describe

the macroscopic behaviour of a weakly compressible magne-

tostrictive body caused by the applied magnetic field h reads

Jε (y,m) =

∫

Ω

κ
∣∣∇2y(x)

∣∣2 dx

+

∫

Ω

Wε (∇y(x),m(y(x))) dx

+

∫

y(Ω)

α |∇zm (z)|2 dz

−

∫

y(Ω)

h (z) · m (z) dz +
1

2

∫

R3

|∇zζ(z)|
2
dz.

(1)

The integrand Wε in the last relation is a density of the in-

ternal magnetoelastic energy of a weakly compressible body.

The constants κ and α stand for material properties. The sub-

sequent terms in the above equation represent the nonlocal

effect (surface elastic energy effect), magneto-elastic energy,
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exchange magnetic energy, external energy and magnetostat-

ic energy, respectively. The magnetic potential ζ satisfies the

following equations:

divz

(
∇zζ(z) − χy(Ω)m(z)

)
= 0, z ∈ R

3, (2)

where χy(Ω) is a characteristic function of domain y(Ω). We

use the same definition as in [4]:

∫

Ω

∣∣∇2y (x)
∣∣2dx =

∫

Ω




3∑

i,j=1

∣∣∣∣
∂2y (x)

∂xi∂xj

∣∣∣∣
2


dx.

For our purposes it will be convenient to consider the mag-

netization m(y(·)) : Ω → R
3 in the reference configuration.

Let us split the total energy functional as follows:

Jε (y,m) = Gε (y,m) + Φ(y,m), (3)

where (with all terms rewritten in the reference configuration)

Gε (y,m) =

∫

Ω

κ
∣∣∇2y(x)

∣∣2 dx

+

∫

Ω

Wε (∇y(x),m(y(x))) dx

+

∫

Ω

α |∇ym (y(x))|2 det∇y(x) dx

(4)

and

Φ(y,m) ≡ −

∫

Ω

h (y (x)) · m (y(x)) det∇y (x) dx

+
1

2

∫

R3

|∇zζ(z)|
2
dz.

Remark 3.1. The functional Φ(y,m) is a continuous func-

tional, so it may be treated as a perturbation functional in the

sense of the Γ-convergence, cf. property 3 in the Theorem 1.2.

The proof of the continuity of the functional is contained

in the Theorem 4.1 of the paper [4].

The nonconvex magnetic anisotropy density Wε (F ,m) is

a continuous function of the deformation gradient F ∈ M
3×3

(the set of 3 × 3 matrices), F = ∇y and the magnetization

m ∈ R
3.

The energy Wε is split into two parts i.e., we assume that

the anisotropy free energy density takes the form:

Wε (F ,m) = Ŵ (F ,m) +
1

ε
(ψ (detF ) − ψ (1)) , (5)

where ε ∈ (0, 1) is a small parameter.

The last term in (5) is referred to as a penalization term

introduced in a similar way as in [5, 11–13].

Additional assumptions on the function ψ are:





ψ (a) − ψ (1) = 0 ⇔ a = 1,

ψ′(1) = 0,

ψ′′(a) ≥ c0 > 0.

(6)

Moreover, the functions Ŵ and ψ satisfy the following growth

conditions:

1. function ψ : (0,∞) → R is continuous, convex and is such

that for some q > 2

cL
(
a−q + aq

)
≤ ψ (a) for all a ∈ (0,+∞), (7)

2. continuous function Ŵ : M
3×3 × R

3 → R is such that

CL

(
|F |2 − 1

)
≤ Ŵ (F ,m)

≤ CU (|F |r + 1) for 2 ≤ r < 6,

(8)

where the positive constants CL, CU are such that 0 <
CL < CU .

Let us notice, that assumptions (6) imply the strong con-

vergence in L2(Ω) of det∇y → 1, because the following

inequality holds

ψ(a) − ψ(1) ≥
c0
2

(a− 1)2. (9)

Similarly as in (5) we define

Gε(y,m) = Ĝ(y,m) +
1

ε

∫

Ω

(ψ(det∇y) − ψ(1))dx.

For deformation satisfying the constraint of incompressibility

det∇y = 1 the functional Ĝ reads as

Ĝ(y,m) =

∫

Ω

κ
∣∣∇2y(x)

∣∣2 dx

+

∫

Ω

Ŵ (∇y,m(y(x))) dx +

∫

Ω

α |∇m(x)|2 dx.

(10)

4. Kinematically admissible functions

Here we introduce important sets for our considerations.

Definition 4.1. We denote by A the set of the following func-

tions, called the set of admissible functions

A =

{
(y,m) ∈ W 2,2

(
Ω; R3

)

×W 1,2
(
y(Ω); R3

)
: y (x) = y0 (x)

for x ∈ ∂Ω1, det∇y > 0,

and

∫

Ω

det∇y dx ≤ vol(y(Ω))

}
.

(11)

Here ∂Ω1 means a part of the boundary ∂Ω with a posi-

tive measure. Additionally, we require that the magnetization

vector satisfies the saturation condition given as

|m (y (x))| det∇y(x) = ms = const a. e. in Ω. (12)

Remark 4.2. We note that the set of admissible functions

given above is equivalent to the definition of the same set

introduced in [4]. Namely, the conditions of impermeability

and the Ciarlet-Nečas condition∫

Ω

det∇y dx ≤ vol(y(Ω)) (13)

Bull. Pol. Ac.: Tech. 61(4) 2013 1027
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guarantees the injectivity of mapping y, see e.g. [14].

Since y ∈ W 2,2(Ω,R3) so by an embedding theo-

rem on Sobolev spaces, cf. [15–17], we deduce that y ∈
W 1,s(Ω,R3), for s ∈ [1, 6] but the compact embedding oc-

curs for s ∈ [1, 6). Taking s > 3 we may use the Ciarlet-Nečas

result, cf. [15,18], which guarantees the closure of the set A.

Let us define the set A0 of kinematically admissible func-

tions for the incompressible problem as follows.

Definition 4.3.

A0 =
{
(y,m) ∈ W 2,2

(
Ω; R3

)

×W 1,2(y(Ω); R3) : y(x) = y0(x) ∀ x ∈ ∂Ω1,

det∇y = 1 a. e. in Ω, |Ω| ≤ vol(y(Ω))} .

(14)

In what follows we assume that A0 6= ∅. The weak con-

vergence in the set A of admissible functions, given below, is

defined as in [4].

Definition 4.4. The sequence {(yn,mn)} ⊂ A converges

weakly to (y,m) ∈ A if and only if the following conditions

hold:

yn ⇀ y in W 2,2
(
Ω; R3

)
,

χy
n
(Ω)mn → χy(Ω)m in L2

(
R

3; R3
)
,

χy
n
(Ω)∇zmn ⇀ χy(Ω)∇zm in L2

(
R

3; R3×3
)
.

(15)

For each ε ∈ (0, 1) let us formulate the following minimiza-

tion problems for energy functionals.

5. Γ-limit of the sequence of energies

We assume (cf. [5]) that for every ε > 0 there exist an el-

ement (y1,m1) ∈ A and an element (y2,m2) ∈ A0, such

that Gε(y1,m1) and Ĝ(y2,m2) are finite.

The problem to be considered now is to prove that the

sequence of solutions of slightly compressible problems con-

verges to a solution of the incompressible problem when the

compressibility tends to zero (ε→ 0).

In accordance to the notion of the Γ-convergence let us

introduce the topological space X with its norm topology,

namely:

X ≡ [L2(Ω)]3 × [L2(Ω)]3 (16)

and the following functionals

Gε, G0 : X → R,

such that

Gε(y,m) =






Gε(y,m) if (y,m) ∈ A,

+∞ otherwise

and

G0(y,m) =






Ĝ(y,m) if (y,m) ∈ A0,

+∞ otherwise.

The functionals Gε(y,m) and Ĝ(y,m) are given by (4)

and (10), respectively.

Additionally, for each ε ∈ (0, 1), the minimum of the

functional Gε (y,m) is attainable, cf. [4] therefore there ex-

ists at least one point in the set A, denoted by (yε,mε) ∈ A
such that

inf
(y,m)∈A

Gε (y,m) = Gε (yε,mε) . (17)

Theorem 5.1. Let Gε be a functional given above. Then we

have Γ- lim
ε→0

Gε = G0.

The proof of the theorem is based on the following lemma.

Lemma 5.2. Let us assume that the sequence (yε,mε) is

convergent to the limit (y0,m0). Then we have

lim inf
ε→0

Gε(yε,mε) ≥ G0(y0,m0).

(a) First, we assume that (y0,m0) ∈ A0 then

lim inf
ε→0

Gε(yε,mε)

≥ lim inf
ε→0

Gε(yε,mε) ≥ lim inf
ε→0

Ĝ(yε,mε) ≥ Ĝ(y0,m0).

The last inequality is a consequence of a lower semi-continuity

of the functional Ĝ.

Further, it is trivial that ex definitione

Ĝ(y0,m0) ≡ G0(y0,m0).

(b) Now, let us take (y0,m0) /∈ A0 than

1◦ lim inf
ε→0

Gε(yε,mε) = lim sup
ε→0

Gε(yε,mε) = +∞

2◦ G0(y0,m0) = +∞,

so the proof is finished.

We note that a constant sequence (yε,mε) = (ŷ, m̂)
has the following properties

(i) (yε,mε)
L2

→ (ŷ, m̂)

(ii) lim sup
ε→0

Gε(yε,mε) ≤ G0(ŷ, m̂).

what is easy to check. The property (i) is obvious. To

check (ii) let us consider two cases

(a) (ŷ, m̂) ∈ A0

(b) (ŷ, m̂) /∈ A0.

From (a) it follows that:

lim sup
ε→0

Gε(ŷ, m̂) ≡ lim sup
ε→0

G0(ŷ, m̂) = G0(ŷ, m̂).

From (b) it follows that

G0(ŷ, m̂) = +∞

and

lim sup
ε→0

Gε(ŷ, m̂) = lim sup
ε→0

[
Ĝ(ŷ, m̂)

+
1

ε

∫

Ω

[ψ(det∇ŷ) − ψ(1)]dx
]

= +∞.

The proof of the theorem 5.1 is now finished by virtue of the

Theorem 1.2, point 2.
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6. The solution of the incompressible problem

For small ε > 0 let us define the set

X0 = {(yε,mε) : inf
X
Gε = Gε(yε,mε)}ε>0,

which is a subset of the set A.

Lemma 6.1. The set X0 is a compact set in X .

Since A0 ⊂ A we have

Gε(yε,mε) = inf
A
Gε(yε,mε) ≤ inf

A0

Gε(yε,mε)

= inf
A0

G0(yε,mε) ≤ G0(yε,mε) ≤ C < +∞.
(18)

Following the proof of the theorem in [5] we conclude that

‖∇2yε‖L2 ≤ C,

‖∇yε‖L2 ≤ C,

‖det∇yε‖Lq ≤ C,

‖∇mε‖L2 ≤ C,

where C is a constant independent of ε and q > 2. The

convergence of det∇yε follows from properties of nonlinear

Nemytski operator det(·), cf. [4, 5, 19].

Since every sequence of minimizers (yε,mε) from the

definition is such that inf
X0

Gε = inf
X
Gε (for all ε > 0) then,

due to Theorem 2.3 and Theorem 5.1 we have inf
X
G0 =

lim
ε→0

(inf
X
Gε). Moreover, we have lim

ε→0
Gε(yε,mε) =

lim
ε→0

inf
X
Gε, also directly from the definition. So, by virtue of

the fundamental property of the Γ-convergence, Theorem 2.3,

we conclude that the limit of the sequence (yε,mε) mini-

mizes G0 on X .

Taken into account the Remark 3.1 we conclude that there

exists

Γ−limJε(y,m)

and is equal to:

Ĵ (y,m) = Ĝ (y,m) + Φ(y,m), (19)

over the set A0 ⊂ A. Moreover, there exists a minimizer of

Ĵ which is equal to minimizer of Ĝ.

7. Final remarks

We have shown that the free energy of the incompressible

material, cf. (10), taking finite values on the admissible set

A0, see (14), is arbitrarily close to the free energy of the

sufficiently slightly compressible material. Moreover, the ex-

istence theorem for the incompressible problem (19) has been

solved, which means that the main result of [5] is recovered

by means of a different approach, i.e. the Γ-convergence.

The numerical formulation of a boundary value problem

for magnetostrictive incompressible material requires an ana-

lytical form of a penalization function which is the volumetric

part of the free energy.

In [3, 20] the isochoric-volumetric different forms of de-

coupling of the elastic strain energy function (cf. (5) in the

paper) are analyzed. The focus is on the analytical form of

the volumetric part. The authors discuss a few of the forms.

We conclude that all the penalty functionals fulfill all ab-

stract mathematical assumption posed in the paper (6)–(7).

They can be used in the a numerical model of a weakly com-

pressible magnetostrictive material.

In particular, the Γ-convergence is employed to obtain the

macroscopic behaviour of elastic composite materials inter-

acting with thermo-electro-magnetic fields, cf. [21].

The obtained result may be useful in more complex sit-

uations, when the composite magnetostrictive materials are

considered. The homogenization theory of composites offers

different methods to determine the link between properties

of components, their geometrical configuration and macro-

scopic properties of composites, e.g. [22–25]. As we already

have noticed at present, it is crucial to control and to design

composite properties made of a polymer matrix and a giant

magnetostrictive material, due to its wide range of applica-

tions in smart devices. The polymer material is modelled in

mechanics as nonlinear and incompressible while the mag-

netostrictive metal may be modeled as elastically linear and

compressible. It is well known that the composite possess-

es magnetostrictive properties and is elastically nonlinear. A

certain basic problem to apply the homogenization methods

to magnetostrictive composites has been studied in [26], cf

also [27].

Results obtained in the paper may have play a crucial

role in homogenisation process of magnetostrictive compos-

ites with incompressible (or nearly incompressible) nonlocal

elastic behaviour.

There is a need to conduct further studies in that direction

for define effective properties of magnetostrictive compos-

ite structural elements with incompressible (or nearly incom-

pressible) nonlocal elastic behaviour.
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