
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 61, No. 4, 2013

DOI: 10.2478/bpasts-2013-0106

G-DNA – a highly efficient multi-GPU/MPI tool

for aligning nucleotide reads

W. FROHMBERG1, M. KIERZYNKA1,2∗, J. BLAZEWICZ1,3,

P. GAWRON1,4, and P. WOJCIECHOWSKI1

1 Institute of Computing Science, Poznań University of Technology, Poznań, Poland
2 Poznań Supercomputing and Networking Center, Poznań, Poland

3 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
4 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg

Abstract. DNA/RNA sequencing has recently become a primary way researchers generate biological data for further analysis. Assembling

algorithms are an integral part of this process. However, some of them require pairwise alignment to be applied to a great deal of reads.

Although several efficient alignment tools have been released over the past few years, including those taking advantage of GPUs (Graphics

Processing Units), none of them directly targets high-throughput sequencing data. As a result, a need arose to create software that could

handle such data as effectively as possible. G-DNA (GPU-based DNA aligner) is the first highly parallel solution that has been optimized to

process nucleotide reads (DNA/RNA) from modern sequencing machines. Results show that the software reaches up to 89 GCUPS (Giga

Cell Updates Per Second) on a single GPU and as a result it is the fastest tool in its class. Moreover, it scales up well on multiple GPUs

systems, including MPI-based computational clusters, where its performance is counted in TCUPS (Tera CUPS).

Key words: DNA assembly preprocessing, sequence alignment, GPU computing.

1. Introduction

Software tools that are currently used for de-novo assembly

may be, in general, divided into the ones that use the Eulerian

path approach and those based on the classical overlap-layout-

consensus. Although the former is nowadays more popular,

mainly due to its speed and ability to handle large data sets,

the latter concept still remains in the point of interest. In fact,

some of its unique properties are the cornerstone of a few

established solutions, e.g. [1–4]. However, it is the high time

consumption that often limits their applications, especially in

the context of the constantly increasing number of biologi-

cal sequences. Therefore, it is of great importance to address

this issue by identifying steps that potentially could be ac-

celerated. The fundamental phase of the methods based on

the overlap-layout-consensus is, as the name suggests, com-

puting the so called overlaps, i.e. shifts between given pairs

of sequences and corresponding alignment scores. The most

accurate results may be obtained here using an exact method

that is the semi-global version of the Needleman-Wunsch al-

gorithm [5] (NW), although it is often replaced by some faster

heuristics.

In this paper, we present a new software tool that has

been designed to overcome the outlined problem. It uses

NW to compute the overlaps between each pair of sequences

from a given list. In contrast to the already available imple-

mentations, e.g. [6–9], our solution is highly optimized for

reads from modern sequencers (Roche/454, Illumina/Solexa

and AB/SOLiD) and, unlike cited works, directly targets

the described problem. The software may prove to be use-

ful especially in processing data from Roche/454, where the

overlap-layout-consensus method is the most commonly em-

ployed.

2. Related works

The growing number of sequences in biological databas-

es, including also protein databases [10–12], was the reason

for many scientists to develop efficient software computing

pairwise alignment. Some of the implementations, especially

those taking advantage of modern GPUs, have become spe-

cific gems in the world of high performance computing [13].

The choice of computational architecture of this kind was

not incidental though, as its great potential has already been

demonstrated in many other works related to scientific sim-

ulations [14, 15], databases [16, 17] or optimization prob-

lems [18]. Historically, the first implementation of the Smith-

Watermann algorithm using CUDA-capable GPUs was devel-

oped by Manavski S. et al. [19]. At the time SW-CUDA was

able to achieve up to 3.5 GCUPS on two NVIDIA GeForce

8800GTX graphics cards. Another milestone was reached by

Ligowski L. et al. [6], who employed the shared memory to

attain up to 14.5 GCUPS on two GPUs of the GeForce 9800

GX2. Liu Y. et al. [20], in turn, developed the CUDASW++

algorithm achieving up to 16GCUPS on a dual-GPU GeForce

GTX 295. This approach was further explored by its authors

resulting in an optimized SIMT and partitioned vectorized al-

gorithm CUDASW++ 2.0 [7] with a very good performance

∗e-mail: michal.kierzynka@cs.put.poznan.pl

989



W. Frohmberg, M. Kierzynka, J. Blazewicz, P. Gawron, and P. Wojciechowski

of up to 17 GCUPS on a GeForce GTX 280 and 30 GCUPS

on a dual-GPU GeForce GTX 295. On the CPU side, one

solution that deserves special attention is SWIPE developed

by Rognes [9]. According to the author, the software is able

to run at 106GCUPS on two six-core high-end CPUs, which

is a significant increase compared to the previously known

CPU, GPU, Cell/BE and even FPGA based solutions. How-

ever, all of the aforementioned software tools were designed

to perform well in the database scan scenario only where one

sequence is aligned with all the others. This means that their

performance drops dramatically if applied to the scheme de-

scribed in the introductory section, in which only selected

pairs of sequences are aligned. On the other hand, there are

also some interesting GPU tools on the market that perform

pairwise sequence alignment with the backtracking step [21,

22], sequence mapping [23] or even multiple sequence align-

ment [24]. Yet, none of them has been suitable to be used

effectively in the next-generation de-novo assembly problem.

Therefore, to fill this gap we propose G-DNA, which is a

software tool well-tailored for the outlined problem.

3. Methods and implementation

Our implementation of NW takes a set of nucleotide reads

and a list of previously selected pairs to align as an input.

For each given pair of sequences it computes the overlap pa-

rameters. To achieve satisfactory efficiency of the solution,

i.a. high ratio of computations to data transfer, a number of

coarse and fine grained optimizations has been introduced.

One of them is specially designed bitwise data compression

that enables the algorithm to use packed sequences as they

are, i.e. without expensive decompression phase. In our im-

plementation each residue uses as few bits as it is required by

the cardinality of a given input alphabet. To illustrate, in the

case of four residues (A, C, G, T/U), 16 of them are stored

in one 32-bit word, whereas 10 nucleotides can be packed

within the same space when extra symbols are used, e.g. N

indicating uncertain read.

As the NW algorithm is based on the dynamic program-

ming (DP), an efficient method of processing 2-dimensional

matrices on GPU needed to be developed. We adapted the

idea described in [21], modified, however, in the way that

benefits most from the compression. The previous work has

been mainly optimized to align each possible pair of amino

acid sequences from a given input set and to perform the back-

tracking step. Here, we follow another memory access pattern

as only selected pairs of nucleotide sequences are aligned and

no backtracking is needed. Also the scoring scheme is some-

what different, since the user defines only one gap penal-

ty value and a desired substitution matrix. No affine gap

penalties are computed, because modern sequencers are more

likely to misread individual residues rather than longer seg-

ments.

Moreover, a number of low-level improvements have been

introduced to the software. For example, to minimize the num-

ber of expensive conditional instructions, we placed special

emphasis to unroll each possible loop in the GPU kernel code.

This, in a nutshell, makes the code specific to a given sequence

length. To overcome this problem and handle reads of various

lengths, we prepared a number of template-based kernels. As

a result, we ended up with 28 GPU functions that cover all

possible cases. Other optimizations, despite being interesting,

are out of the scope of this paper.

4. Tests and conclusions

To evaluate the performance of the proposed implementation

we used real biological sequences from a variety of modern

sequencers. In the case of SOLiD, 3.4M reads of the same

length (46bp) representing genome data from Streptococcus

suis bacterium were used. Likewise, Illumina GA IIx produces

reads of equal length, here 34M sequences of 120bp from

Clonorchis sinensis became the second input set. In contrast,

Roche 454 pyrosequencing genome data from E. coli were

of variable length with 235bp on average, 436k reads in to-

tal. The purpose of the last data set, coming from Roche 454

GS FLX Titanium, was to illustrate the peak performance of

the implementation, hence only very long reads were used

(avg. 1020bp). Tests were performed on the following hard-

ware: CPU: Intel Core 2 Quad Q8200, 2.33GHz, GPU: 2

× NVIDIA GeForce GTX 580 with 1.5GB of RAM, main

RAM: 8GB.

Figure 1 shows that the efficiency of the software grows

with increasing sequence length, and thus G-DNA performs

best for Roche/454 data. Yet, even for relatively short se-

quences, e.g. from Illumina, the algorithm achieves very good

performance. Also the multiple GPUs support works very well

thanks to our load balancer, resulting in nearly 2-fold speedup

when 2 GPUs are in use. To illustrate, the results of 112, 160,

165 and 177 GCUPS translate into 53M, 11M, 3M and 170K

sequence pairs aligned per second for data from SOLiD, Il-

lumina, 454 and 454 Titanium, respectively. However, one

should bear in mind that the latter measure might be confus-

ing as it depends heavily on the length of sequences favoring

the short ones. Hence, in further comparisons we will use

more intuitive measure of GCUPS.

Fig. 1. The performance of the algorithm (in GCUPS) for input sets

coming from different sequencing machines. ∗ refers to long reads

only

To our best knowledge G-DNA is the fastest implementa-

tion of NW for nucleotide reads. To compare, state-of-the-art

CUDASW++2.0 [7] reaches up to 48 and 83 GCUPS on the

990 Bull. Pol. Ac.: Tech. 61(4) 2013



G-DNA – a highly efficient multi-GPU/MPI tool for aligning nucleotide reads

same hardware using one and two GPUs, respectively. An-

other well-established solution is Farrar’s implementation [8],

which achieves 20 GCUPS on 8 CPU cores and 16 GCUPS

on the Cell B.E. processor. Yet, both of them have recently

been outperformed by SWIPE [9] attaining up to 106 GCUPS

on 12 SSSE3-compliant CPU cores. Although these methods

do not address exactly the same problem as we do (Smith-

Watermann instead of NW, database scan rather than align-

ment of selected pairs), performance-wise they seem to be the

right applications to compare with. To give the reader a brief

idea, simple, not optimized CPU versions of NW, e.g. needle

from the Emboss package [25], implementation of Siriwarde-

na et al. [26] or our own, achieve some 0.02 to 0.03 GCUPS.

Therefore, it might be essential to choose a high performance

software as the differences in terms of speed are of the order

of several thousand.

Additionally, Fig. 2 presents good scalability of our algo-

rithm on a computational cluster. The maximum performance

of 1014 GCUPS was achieved in the weak scaling test in

which the problem size grows proportionally to the number

of GPUs (here 110M alignments for 32 GPUs). 929 GCUPS

was the highest result in the case of the strong scaling test,

where the problem size was fixed at 55M alignments. The

measurements include both computation and inter-node com-

munication times.

Fig. 2. The efficiency of the MPI version of the algorithm depending

on the number of GPUs used (Tesla M2050). Reads were from the

454 sequencer

To conclude, G-DNA is an extremely efficient software

tool that performs pairwise sequence alignment for selected

pairs from a given set of nucleotide reads. It is therefore per-

fectly suited to be used e.g. in the DNA assembly problem.

The software is freely available and may be run on commod-

ity hardware which makes it a perfect tool for the everyday

scientific use.

Availability and requirements

• Project home page: http://gpualign.cs.put.poznan.pl,

• Requirements: Linux OS, CUDA >= 4.0, CUDA com-

pliant GPU, make, g++, bison, flex, MPI (for multi-node

setup),

• License: GNU GPLv3.

Acknowledgements. This research project was sup-

ported by the grants DEC-2011/01/B/ST6/07021 and

2012/05/B/ST6/03026 from the National Science Centre

(Poland) and also by the PL-Grid Infrastructure.

REFERENCES

[1] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M.

Kasprzak, E. Kirton, D. Platt, J. Przybytek, A. Swiercz, and

L. Szajkowski, “Whole genome assembly from 454 sequenc-

ing output via modified DNA graph concept”, Comput. Biol.

Chem. 33 (3), 224–230 (2009).

[2] J. Blazewicz, W. Frohmberg, P. Gawron, M. Kasprzak, M.

Kierzynka, A. Swiercz, and P. Wojciechowski, “DNA sequence

assembly involving an acyclic graph model”, FCDS 38, 25–34,

doi: 10.2478/v10209-011-0019-4 (2013).

[3] Forge Genome Assembler http://combiol.org/forge/ (2012).

[4] J. Blazewicz, P. Formanowicz, F. Guinand, and M. Kasprzak,

“A heuristic managing errors for DNA sequencing”, Bioinfor-

matics 18, 652–660 (2002).

[5] S.B. Needleman and C.D. Wunsch, “A general method applica-

ble to the search for similarities in the amino acid sequence of

two proteins”, J. Mol. Biol. 48 (3), 443–53 (1970).

[6] L. Ligowski and W. Rudnicki, “An efficient implementation of

Smith Waterman algorithm on GPU using CUDA, for massive-

ly parallel scanning of sequence databases”, IPDPS 2009, IEEE

Computer Society, doi:10.1109/IPDPS.2009.5160931 (2009).

[7] Y. Liu, D.L. Maskell, and B. Schmidt, “CUDASW++2.0: en-

hanced Smith-Waterman protein database search on CUDA-

enabled GPUs based on SIMT and virtualized SIMD abstrac-

tions”, BMC Research Notes 3, 93 (2010).

[8] M.S. Farrar, “Optimizing Smith-Waterman for the cell broad-

band engine”, Bioinformatics 23, 156–161 (2008).

[9] T. Rognes, “Faster Smith-Waterman database searches with

inter-sequence SIMD parallelisation”, BMC Bioinformatics 12,

221 (2011).

[10] J. Blazewicz, P.L. Hammer, and P. Lukasiak, “Predicting sec-

ondary structures of proteins. Recognizing properties of amino

acids with the logical analysis of data algorithm”, IEEE Eng.

Med. Biol. Mag. 24 (3), 88–94 (2005).

[11] P. Lukasiak, J. Blazewicz, and M. Milostan, “Some operations

research methods for analyzing protein sequences and struc-

tures”, Annals OR 175 (1), 9–35 (2010).

[12] P. Lukasiak, M. Antczak, T. Ratajczak, J.M. Bujnicki, M.

Szachniuk, R.W. Adamiak, M. Popenda, and J. Blazewicz,

“RNAlyzer novel approach for quality analysis of RNA

structural models”, Nucleic Acids Res 41 (12), 5978–5990,

doi:10.1093/nar/gkt318 (2013).

[13] W. Hwu, GPU Computing Gems Emerald Edition, Morgan

Kaufman, Berlin, 2011.

[14] M. Blazewicz, S.R. Brandt, M. Kierzynka, K. Kurowski, B.

Ludwiczak, J. Tao, and J. Weglarz, “CaKernel – a parallel

application programming framework for heterogenous com-

puting architectures”, Scientific Programming 19 (4), 185–197

(2011).

[15] M. Blazewicz, I. Hinder, D.M. Koppelman, S.R. Brandt, M.

Ciznicki, M. Kierzynka, F. Loffler, E. Schnetter, and J. Tao,

‘From physics model to results: An optimizing framework for

cross-architecture code generation”, Scientific Programming 21

(1–2), 1–16 (2013).

[16] W. Andrzejewski, A. Gramacki, and J. Gramacki, “Graphics

processing units in acceleration of bandwidth selection for Ker-

nel density estimation”, AMCS 23 (4) (2013).

Bull. Pol. Ac.: Tech. 61(4) 2013 991



W. Frohmberg, M. Kierzynka, J. Blazewicz, P. Gawron, and P. Wojciechowski

[17] W. Andrzejewski and R. Wrembel, “GPU-PLWAH: GPU-based

implementation of the PLWAH algorithm for compressing

bitmaps”, Control and Cybernetics 40 (3), 627–650 (2011).

[18] R. Nowotniak and J. Kucharski, “GPU-based tuning of

quantum-inspired genetic algorithm for a combinatorial opti-

mization problem”, Bull. Pol. Ac.: Tech. 60 (2), 323–330, doi:

10.2478/v10175-012-0043-4 (2012).

[19] S. Manavski and G. Valle, “CUDA compatible GPU cards as

efficient hardware accelerators for Smith-Waterman sequence

alignment”, BMC Bioinformatics 9 (2), S10 (2008).

[20] Y. Liu, D.L. Maskell, and B. Schmidt, “CUDASW++: optimiz-

ing Smith-Waterman sequence database searches for CUDA-

enabled graphics processing units”, BMC Research Notes 2

(2009).

[21] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, and P.

Wojciechowski, “Protein alignment algorithms with an efficient

backtracking routine on multiple GPUs”, BMC Bioinformatics

12, 181 (2011).

[22] J. Blazewicz, W. Frohmberg, M. Kierzynka, and P. Woj-

ciechowski, “G-PAS 2.0 – an improved version of protein

alignment tool with an efficient backtracking routine on mul-

tiple GPUs”, Bull. Pol. Ac.: Tech. 60 (3), 491–494, doi:

10.2478/v10175-012-0062-1 (2012).

[23] C. Liu, T. Wong, E. Wu, R. Luo, S. Yiu, Y. Li, B. Wang, C. Yu,

X. Chu, K. Zhao, R. Li, and T. Lam, “SOAP3: ultra-fast GPU-

based parallel alignment tool for short reads”, Bioinformatics

28 (6), 878–879, doi: 10.1093/bioinformatics/bts061 (2012).

[24] J. Blazewicz, W. Frohmberg, M. Kierzynka, and P. Wo-

jciechowski, “G-MSA – A GPU-based, fast and accu-

rate algorithm for multiple sequence alignment”, JPDC,

doi:10.1016/j.jpdc.2012.04.004 (2012).

[25] EMBOSS Package, http://emboss.sourceforge.net/ (2012).

[26] T.R.P. Siriwardena and D.N. Ranasinghe, “Accelerating global

sequence alignment using CUDA compatible multi-core GPU”,

ICIAFs 2010 1, CD-ROM (2010).

992 Bull. Pol. Ac.: Tech. 61(4) 2013


