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The dynamics of the human arm with an observer

for the capture of body motion parameters
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Abstract. The paper presents an analysis of a mathematical model of the human arm dynamics in terms of observability. The purpose

of the performed experiments is the selection of an observer for the possibility of arm tracking. The arm model is based on the two-link

manipulator moving horizontally and vertically. For the study a model was linearized and the model part responsible for the work of human

muscles was omitted. The experimental part involved simulated measurements of the motion parameters that imitate real-IMU (Inertial

Measurement Unit) measurements. Finally, the simulation results using the observer in the form of a Kalman filter and the particle filter

have been presented.
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1. Introduction

The realistic construction of human body is very important

in terms of medical applications, as well as entertainment.

A very important aspect of the research is to understand the

rules of the complex motion of kinematic links occurring dur-

ing the movement of any part of our body. In the literature

we can find some ways that represent human motion. Some

of them are based on biomechanical information along with a

very accurate representation of the muscles operation [1, 2],

and some apply only to the motion analysis without the dy-

namics of the body [3–5].

A very difficult problem is also the dynamics stability of

the body in combination with complex upper limb movements

[6–8]. To this end, there are attempts to represent kinematic

actuators based on DC motors [6]. The complexity of dynam-

ics description of even a simple human movement determines

the repeatability and accuracy of movement. It is very impor-

tant in terms of application of appropriate constructions in

medicine and in rehabilitation devices.

Papers [9–11] have proposed a human motion control

schemes and proposals of devices supporting motion in dis-

abled people (mainly supporting the movement of the upper

limbs). For medical purposes the EMG signals, which can

mimic an actual signals of a healthy person, to reproduce

body movements [12, 13] are also used.

The author of [14] describes a cooperation of the mobile

robot, which has a motion system similar to the system of

upper parts of the human body, with the real operator. This

paper considers the problems associated with determining the

location of each segment of the robot in outer space. For

this purpose the Inertial Measurement Unit (IMU) sensors

and known methods to obtain information about the human

body motion, such as the Human Motion Capture (Mocap),

are used.

In studies which analyze human movement using the IMU

sensors, obtaining the actual measurements especially of an-

gles is a major problem, since the IMU measures angular

velocity and the actual line speed. However, the appropriate

algorithms allow to obtain measurements of the given an-

gles [15].

The development of IMU measurement systems launched

studies on the use of not one, but a set of such devices to

acquire human motion [16, 17]. This approach allows for un-

limited motion parameter measurements regardless of where

they occur.

Also computer graphics is one of many applications of

information about the parameters of the whole human body

motion. The paper [18] presents the method of modeling al-

most each human muscle in order to represent as realistically

as possible the entire human body in motion, also taking into

account the invisible muscle movements.

Frequently used methods for the tracking of different hu-

man body parts are based on motion parameters or an error

estimation, with the use of quaternion Kalman filters [19].

Such approach is reasonable provided that one knows all sen-

sors technical data and kinematic parameters of observed mo-

tion. In reality, this is seldom the case and problems arise

as which information should be treated as a reference one.

What is more, precise determination of human body motion

is complicated. Because of that, in this article the authors

performed similar research but with the use of a simplified

dynamics model of a human arm using known estimators.

The presented models, having two degrees of freedom, are

frequently applied as the simplest approximation of a human

arm, at the same time they suffice for the proper analysis of

conducted simulation-based experiments [20–23]. At this pre-

liminary stage of research it is not reasonable to apply more

sophisticated mathematical models of human arm [5, 24–26],
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as it may dim the picture and lead to improper corollaries.

This article rather answers the question if it is possible to

determine the state of the object that is the arm model, with-

out the knowledge of kinematics equations. This will allow to

avoid dealing with inverse kinematics, which is a complicated

tasks [27].

In theoretical considerations state space methods and state

space mathematical models are used. Therefore, mathemati-

cal models are in the form of differential state equations and

algebraic output equation. Moreover, two types of models are

considered.

2. Mathematical arm model

First of all, let us introduce two mathematical models of hu-

man arm. The mathematical models presented below are the

literature-available simplest models of human arm. In many

articles devoted to this subject the human arm is modelled as

two-segment manipulator capable of motion in a horizontal

plane [20, 22]. Frequently, however, there are no consequences

of the lack of gravitational force acting in that plane included.

It is showed below that in certain conditions the gravity is an

important factor influencing the dynamics of the object.

The division into two models, each describing a motion in

vertical and horizontal plane respectively, aims into decom-

position of the arm joint movement into two separate ones,

each with one degree of freedom only [20, 21]. Additionally

it is assumed that the shape of each arm segment can be ap-

proximated by cuboids [28–30]. Such approach is frequently

applied in human motion capture methods [28, 29]. It is also

assumed that the arm’s muscles do not influence arm’s hori-

zontal motion. As a result, the inertias about respective axes

are constant and equivalent to the ones of a rotating cuboid,

what is a great simplification of the mathematical model. The

choice of two degrees of freedom only model is motivated also

by the fact, that its behaviour is predictable during operation.

With increasing number of degrees of freedom the behaviour

prediction is greatly complicated and may be inconclusive.

Model 1

Fig. 1. Two-link arm in vertical plane

The dynamic equation of a two-link arm (Fig. 1) is de-

scribed by nonlinear state equation:

M (q) q̈ + C (q, q̇) q̇ + g (q) = u, (1)

where

M =

[
c1 c2 cos (q1 − q2)

c2 cos (q1 − q2) c3

]
,

n × n inertia matrix is symmetric and positive definite for

each qi,

C =

[
0 c2 sin (q1 − q2) q̇2

−c2 sin (q1 − q2) q̇1 0

]

Coriolis/centrifugal matrix,

g =

[
c4 sin q1

c5 sin q2

]

is the gravitational forces vector,

u =

[
u1

u2

]

is the input vector.

c1 = m1l
2
c1 + m2l

2
1 + I1,

c2 = m2l1lc2,

c3 = m2l
2
c2 + I2,

c4 = − (m1lc1 + m2l1) g,

c5 = −m2lc2g,

m is the mass, l the link length, lc the distance from the joint

to the center of mass, I the moment of inertia.

Model 2

Fig. 2. Two – link arm in horizontal plane [31]

In this case nonlinear state equation has the following

form:

M (q) q̈ + C (q, q̇) q̇ = u (2)
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M =

[
c1 c2 cos (q1 − q2)

c2 cos (q1 − q2) c3

]

is the interia matrix,

C =

[
0 c2 sin (q1 − q2) q̇2

−c2 sin (q1 − q2) q̇1 0

]

is the Coriolis/centrifugal matrix,

u =

[
u1

u2

]

is the input vector.

c1 = m1l
2
c1 + m2l

2
1 + I1

c2 = m2l1lc2

c3 = m2l
2
c2 + I2

m is the mass, l the link length, lc the distance from the joint

to the center of mass, I the moment of inertia.

Parameters are presented in Table 1.

Table 1

Parameters of two-link arm

m1 10 kg

m2 8 kg

l1 0.4 m

l2 0.4 m

lc1 0.2 m

lc2 0.2 m

I1 0.1667 kgm2

I2 0.1333 kgm2

3. State – space model

Now, we transfer second order differential state Eqs. (1)

and (2) into an equivalent set of first order sate equations. The

dynamics of model in terms of the state vector
[
qT , q̇T

]T
can

be expressed as:

Model 1

d

dt

[
q

q̇

]
=

[
q̇

M (q)
−1

[u − C (q, q̇) q̇− g (q)]

]
. (3)

Model 2

d

dt

[
q

q̇

]
=

[
q̇

M (q)
−1

[u − C (q, q̇) q̇]

]
. (4)

Now a new set of variables can be assigned to each of the

derivatives. In accordance with Eq. (3), the new set of state

variables and their equivalences can be drawn as follows:

x1 = q1,

x2 = q2,

x3 = ẋ1 = q̇1,

x4 = ẋ2 = q̇2.

(5)

We can write the general equation of state:

ẋ = Ax + Bu

y = Cx + Du
(6)

where:

ẋ =




q̇1

q̇2

q̈1

q̈2


 , x =




q1

q2

q̇1

q̇2


 , y =

[
q̈1

q̈2

]
, u =

[
u1

u2

]
.

Matrixes A, B, C, and D are computed using the series

expansion linearization method [32]. In accordance with this

method we have:

A =




0 0 1 0

0 0 0 1

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f1

∂x4

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f2

∂x4




x = x0
u = u0

(7)

B =




0 0

0 0

∂f1

∂u1

∂f1

∂u2

∂f2

∂u1

∂f2

∂u2




x = x0
u = u0

(8)

C =




∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f1

∂x4

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f2

∂x4




x = x0
u = u0

(9)

D =




∂f1

∂u1

∂f1

∂u2

∂f2

∂u1

∂f2

∂u2




x = x0
u = u0

(10)

where x0, u0 is the operating point. The elements of A, B, C

and D matrices after linearization are shown in Appendix A.

4. Linear state observer

In practical applications the use of the state feedback is usu-

ally limited by the ability to measure all state variables. In

other words, we say that the state variables are not available

for measurements. In this case, the application of state observ-

er can be considered. The state observer estimates the state

of the process on the grounds of the input and output signal

and knowledge of the process model.

The role of the observer can be formally defined as fol-

lows:

∀bx(0)∈ℜn

lim
t→∞

‖x (t) − x̂ (t)‖ ≤ ε, (11)

where x(t) is the state, x̂(t) is the estimated state, while ε ≥ 0
is the constant (arbitrarily small). This means that the observ-

er should permit to reproduce the state with possibly small
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error. As usually the initial value of the estimated state x̂(0)
is significantly different from the initial value of the unknown

state x(0) the occurrence of transient states should be not-

ed. The duration of transient states depends on the type of

observer and the selected values of observer gain.

In simulation experiments we shall use the Kalman filter

and the particle filter. Therefore, for convenience we recall

the Kalman filter algorithm and the particle filter algorithm.

5. Kalman filter

The Kalman filter is a type of the recursive estimation method

designed for linear discrete stochastic processes described by

the following equations [33–36]:

xk = Fxk−1 + Guk−1 + V νk−1,

yk = Hxk + Wwk,
(12)

where xk ∈ ℜn, uk ∈ ℜl, yk ∈ ℜm denote respectively the

state, input and output (or measurement signal) at the time k,

while νk and wk indicate noise (distortion) of the process and

measurement noise [37–39].

F , G, V , H , W are given constant matrices of appropriate

dimensions.

The first differential equation is the process model, which

is partially deterministic and partially random. This a con-

nection between previous state and present state through the

matrix. The G matrix is the extortion of state (control), v is

the so called process noise (random part). The second equa-

tion is the measurement model, where H is a matrix binding

the state with the measurement (filter output), and is the mea-

surement noise.

We assume that the noise signals ν and w are uncorrelated

sequence of samples with zero expected value:

E [ν] = E [w] = 0. (13)

Such signal is defined as a white noise. Dispersion of

vector random variables and describes the process covariance

matrix Q and the covariance matrix of the measurement R.

Hence, we have

Q = E
[
νT ν

]
,

R = E
[
wT w

]
.

(14)

The purpose of the Kalman filter is to obtain optimal es-

timate of the process state in terms of minimizing the covari-

ance matrix:

E
[
(x − x̂)

T
(x − x̂)

]
(15)

Kalman filter algorithm. The Kalman filter algorithm

can be presented as follows:

– prediction stage – state and covariance matrix estimation

based on the model of the process:

x̂k|k−1 = F x̂k−1|k−1 + Guk−1,

Pk|k−1 = FPk−1|k−1F
T + V QV T ,

(16)

– correction stage (innovation) – state estimate and co-

variance matrix correction on the basis of the measurement:

Kk = Pk|k−1H
T

(
HPk|k−1H

T + WRWT
)−1

,

x̂k|k = x̂k|k−1 + Kk

(
yk − Hx̂k|k−1

)
,

Pk|k = (I − KkH)Pk|k−1.

(17)

Presenting the model of Klaman filter with the use of the

probabilistic description, it might be written that both ν and w

represent Gaussian white noise. Thus, the probability density

of these signals can be described by the following relations:

p (ν) ∼ N (ν| 0, Q) ,

p (w) ∼ N (w| 0, R) ,
(18)

where ∼ denotes random variable with the conditional prob-

ability distribution, N (z|µ,
∑

) is the density function of

normal distribution with the variable z, the expected value µ

and covariance
∑

.

Similarly, the description of conditional probabilities al-

lows to define the above model and respectively the probabil-

ity of state change and the appearance of the given signal is

presented in the following way:

p (xk|xk−1) ∼ N (xk|Fxk−1 + Guk−1, Q)

p (yk|xk) ∼ N (yk|Hxk, R) .
(19)

Covariance matrices (depending on the variance of the state

vector components) are:

Pk|k−1 = E
[
eT

k|k−1ek|k−1

]
,

Pk|k = E
[
eT

k|kek|k

]
,

(20)

where Pk|k−1 is the a priori covariance matrix, and Pk|k is

the a posteriori covariance matrix. Whereas, ek|k−1 is the a

priori error, and ek|k is the a posteriori error:

ek|k−1 = xk − x̂k|k−1,

ek|k = xk − x̂k|k.
(21)

It should be pointed out, that these are the differences between

the actual state and the estimated value. In practice, the actual

state values of xk are unknown and the covariance matrix is

estimated using only the filtration process.

It is also possible to define the density function of condi-

tional probability which constitutes the filtering result and

determines the probability of occurrence of the particular

process state provided the measurement sequence (output sig-

nal) occurs:

p (xk|Y1:k) ∼ N
(
xk| x̂k, Pk|k

)
, (22)

where Y1:k = {y1, y2, · · · , yk} is the set of observations

(measurements) in the next moments.

6. The particle filter

Thus, in Kalman filter, taking into account the probability of

error (noise measurement, measurement system errors), the

state variable vector xk is estimated on the basis of the sys-

tem measurement vector yk in the presence of disturbances.
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It could be said, that the system state and the probability

of its occurrence are estimated. Simultaneously, it is assumed

that the density of the conditional probability density for these

systems is subjected to Gaussian white noise.

However, systems models that describe the system prop-

erties are often non-linear, and the distribution of noise de-

viates from Gaussian distribution. Applying the probabilis-

tic approach it can be said that the solution to the filtering

problem is determining the conditional probability density

p (X1:k|Y1:k) a posteriori (called posterior density), where

X1:k = {x1, x2, · · · , xk} is the set of the state values in sub-

sequent moments, and Y1:k = {y1, y2, · · · , yk} is the set of

system observations. In order to make the proposed solution

independent from the full history of the state variables X1:k,

the recursive calculation of the conditional filtered probability

density a posteriori p (xk|Y1:k) (called filtered density) can

be used.

Having some a priori knowledge of the studied system, we

can describe its dynamics with two equations (just like in case

of Kalman filter (Eq. (19)). Equation of state is determined

by the a priori distribution of the hidden Markov process

{xk}k∈N
, and the equation of observation (output) {yk}k∈N

by the conditional distribution of observations p (yk|xk):

xk ∼ p (xk|xk−1) ,

yk ∼ p (yk|xk) .
(23)

The knowledge of the above distributions allows to use Bayes’

rule which combines a priori distributions of unknown states

with the probability of a given baseline (follow-up) system.

All relevant information concerning the state variable X01:k

with the assumption that the observations are known up to

the moment k Y1:k of are included in the total a poste-

riori distribution p (X01:k|Y1:k). The idea of the filtration

method involves the estimation of the mentioned distribution

p (X01:k|Y1:k), its characteristics and boundary distribution

p (xk|Y1:k).
If the filtered probability density has already been defined,

by using it the state variables estimates of the observed system

can be determined:

x̂k = E [xk|Y1:k] =

∫
xkp (xk|Y1:k) dxk. (24)

It turns out, however, that as far as the Bayesian inference

principles are simple, in practice there occur problems of nu-

merical nature. Only in a few exceptional cases, such as linear

Gaussian models and hidden Markov chains defined in a finite

state space, a posteriori distribution has analytical form.

In case of multidimensional spaces of hidden variables

subjected to disturbances, Monte Carlo methods are the only

analytical methods.

The idea of particle filter is based on the presentation of

the estimated state variables through a set of random samples

(particles) and their assigned weights. The particle filter can

be seen as a method of simulation involving the simulation of

a large number of potential state variables trajectories. Each

of these trajectories is represented at a given discrete time

using a single number (particles). Using information obtained

from consecutive measurements of each trajectory a weight is

assigned, which determines the probability that a given tra-

jectory represents the actual trajectory [40–45].

The function of a particle filter is to generate the possible

implementation of the state vector at a given moment, and

then assign appropriate weights to these realizations. These

realizations together with their assigned weights create the

probability density approximations of marginal distribution

p (xk|Y1:k), which is a searched solution to the filtration prob-

lem.

Particle filter algorithm. In order to determine the mar-

ginal distribution p (xk|Y1:k) approximation particle filters

use recursive Bayesian estimation:

– prediction stage:

p (xk|Y1:k−1) =

∫
p (xk|xk−1) p (xk−1|Y1:k−1) dxk−1,

(25)

where p (xk|xk−1) is determined by the transfer function of

the model;

– correction stage:

p (xk|Y1:k) =
p (yk|xk) p (xk|Y1:k−1)

p (yk|Y1:k−1)
, (26)

where p (yk|xk) is the output equation (measurement) of the

system model and

p (yk|Y1:k) =

∫
p (y k|xk) p (xk|Y1:k−1) dxk. (27)

The searched marginal distribution p (xk|Y1:k) contains

all available information at the time k on the hidden state

variable.

In general case, due to the lack of the analytical form

of the considered density distribution it is necessary to use

numerical methods.

In the presented approach for molecular filter design the

simulation Monte Carlo method was chosen. This idea is

based on the distribution theory. If the random variable x

has density distribution p and when for the considered distri-

bution there is a pseudo-random number generator, then the

estimator of the probability measurement p is the empirical

distribution in form:

p̂ (x) =
1

M

M∑

i=1

δ
(
x − xi

)
, (28)

where δ (z) is the Dirac delta, and the sequence
{
xi

}M

i=1
is a

sequence of independent samples generated from the distrib-

ution p (called perfect Monte Carlo sampling).

If the studied distribution is complex, highly dimensional,

non-standard and moreover it is known to an accuracy of the

normalization constant, the direct generating of the samples is

complex or even impossible. As a result, the method of gen-

erating the sample on the basis of the empirical distribution

uses the function validity method.

The idea of the particle filter method is to replace the

analyzed distribution p with the distribution q (with possibly

similar properties), for which there is a pseudo-random num-

ber generator. Using q introduced distribution a sample of
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independent, random, weighted variables
{
xi, wi

}M

i=1
is gen-

erated. In the case of M independent random variables with

the density the estimator q probability measure is defined:

p̂ (x) =
M∑

i=1

wiδ
(
x − xi

)
, (29)

where
N∑

i=1

wi = 1, ∀i = 1, 2, . . . , N wi ≥ 0.

In practice, a direct sampling from the distribution bound-

ary p (xk|Y1:k) is not often an easy task, therefore, samples

are drawn from the cumulative distribution p (X 1:k|Y1:k),
and then values x1:k−1 are eliminated. The idea of sequen-

tial estimation of distribution p (X 1:k|Y1:k) on the basis of

Sequential Importance Sampling, (SIS) is to recursively esti-

mate the p̂ (X 1:k|Y1:k) without changing the history of states{
xi

1:k

}M

i=1
. Then the approximation p (xk|Y1:k) is expressed

by the following equation:

p (xk|Y1:k) =

M∑

i=1

w̃i

k
δ
(
xk − xi

k

)
. (30)

Taking into consideration the above dependence in a re-

cursive Bayesian algorithm (Eq. (25)–(27)) we get:

p (xk|Y1:k) = p (yk|xk)

M∑

i=1

w̃i

k−1p
(
xk|x

i

k−1

)
. (31)

From the above formula it follows that the set of samples

representing approximation p (xk|Y1:k) is generated by the

samples p
(
xk|x

i

k−1

)
, that is:

xi

k
∼ p

(
xk|x

i

k−1

)
, i = 1, 2, . . . , M. (32)

The particle filter – SIS algorithm

1. For k = 0 (initialization):

xi

0 ∼ q (x0) , w̃i

0 =
1

M
, i = 1, 2, . . . , M

2. For k = 1, 2, . . . , N

– generate (prediction):

xi

k ∼ p
(
xk|x

i

k−1

)
, i = 1, 2, . . . , M

– we set the weight of particles (correction):

wi

k
= p

(
y k|x

i

k−1

)
w̃i

k−1, i = 1, 2, . . . , M

– we normalize the importance weights of particles:

w̃i

k
=

wi

k

M∑
i=1

wi

k

, i = 1, 2, . . . , M

– we determine an estimate of the system:

x̂k =

M∑

i=1

w̃i

k
xi

k
.

In practice, after several iterations of the SIS algorithm

it turns out that all validity coefficients except one receive

the values negligibly low (close to zero) – the so called de-

generacy phenomenon of the sample appears. This phenom-

enon causes that the significant computational effort is spent

on the molecules, whose contribution to the approximation

p (xk|Y1:k) is almost equal to zero. Therefore, the additional

sampling in order to “renew” trajectory (called resampling) is

introduced to the algorithm. The basic resampling procedure

consists of sampling value M from the available population

of molecules. Sampling takes place in accordance with stan-

dardized weights determined during the algorithm and gen-

erally involves mapping a set of molecules M with different

weights into the new set of particles M with equal weights{
xi

k
, w̃i

k

}M

i=1
→

{
x̃i

k
, 1

M

}M

i=1
.

In the literature there are at least a few methods known

for resampling: multinomial resampling, residual resampling,

systematic resampling.

7. The simulation experiments

In this section we present results of simulation experiments.

In simulation experiments model 1 was linearized at four op-

erating points
(
xi

0,u
i
0

)
=

([
xi

10; x
i
20; x

i
30; x

i
40

]
,
[
ui

10, u
i
20

])
,

i = 1, 2, 3, 4. Therefore, operating points are of the following

form:
(
x1

0,u
1
0

)
= ([0; 0; 0; 0] , [0; 0]) ,

(
x2

0,u
2
0

)
= ([0, 768; 0, 785; 0; 0] , [0; 0]) ,

(
x3

0,u
3
0

)
= ([0, 785; 0, 785; 0; 0] , [0; 0]) ,

(
x4

0,u
4
0

)
= ([0, 017; 0, 017; 0; 0] , [0; 0]) .

The operating point
(
x1

0,u
1
0

)
is an equilibrium point. The

remaining operating points are arbitrarily selected ones.

The state variables x1, x2 are expressed in radians [rad],
x3, x4 are expressed in

[
rad
s

]
and control are in Newton-meters

[Nm].

In order to observe the state vector two estimates methods

are used: the Kalman filter and the particle filter.

Kalman filter parameters are as follows: the starting point

x (0) =

[
0.5 rad; 0.5 rad; 0

rad

s
; 0

rad

s

]
, matrices Q =

diag (0.00001), R = diag (0.01). Whereas, the particle fil-

ter works with the following parameters: number of particles

200, starting point x (0) =

[
0.5 rad; 0.5 rad; 0

rad

s
; 0

rad

s

]
,

generation of particles – uniform distribution on the interval

[x (0) − 0.5; x (0) + 0.5].

For all simulation experiments the discretization step dt =
0.001s and number of samples T = 10000 were assumed.

The operating point
(
x1

0,u
1
0

)

Matrices A and C obtained by linearization around the

operating point
(
x1

0,u
1
0

)
= ([0; 0; 0; 0] , [0; 0]) have the fol-

lowing form:

A =




0 0 1 0

0 0 0 1

54, 09 23, 50 0 0

76, 36 −67, 79 0 0
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C =

[
54, 09 23, 50 0 0

76, 36 −67, 79 0 0

]

It can be easly computed that since n = 4:

rank




C

CA
...

CAn−1




= rank




C

CA

CA2

CA3


 = 4.

Hence, object with matrices A, C is observable.

Only these two matrices are important due to the observ-

ability of the dynamical system. Of course, the arm at such

operating point is observable.

The Figs. 3–5 present the q1, q̇1, q̈1 simulated waveforms

and their estimation.

The Figs. 6–8 present the q2, q̇2, q̈2 simulated waveforms

and their estimation.

Fig. 3. The q1 angle for the point
�
x

1

0,u
1

0

�

Fig. 4. The q̇1 angular velocity for a point
�
x

1

0,u
1

0

�

Fig. 5. The q̈1 angular acceleration for a point
�
x

1

0,u
1

0

�

Fig. 6. The q2 angle for the point
�
x

1

0,u
1

0

�

Fig. 7. The q̇2 angular velocity for a point
�
x

1

0,u
1

0

�
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Fig. 8. The q̈2 angular acceleration for a point
�
x

1

0,u
1

0

�
The operating point

(
x2

0,u
2
0

)

Matrices A and C obtained by linearization around the

operating point
(
x2

0,u
2
0

)
= ([0, 768; 0, 785; 0; 0] , [0; 0]) have

the following form

A =




0 0 1 0

0 0 0 1

−39, 31 17, 02 0 0

56, 00 −49, 02 0 0




C =

[
−39, 31 17, 02 0 0

56, 00 −49, 02 0 0

]

It can be easly computed that since n = 4:

rank




C

CA
...

CAn−1




= rank




C

CA

CA2

CA3


 = 4.

Hence, object with matrices A, C is observable.

Comparisons of the simulated measurements and obtained

estimates q1, q̇1, q̈1 are presented in Figs. 9–11.

Comparing the accuracy of the angular velocity wave-

forms q̇1 and q̇2, it can be concluded that here occur are the

most major errors (Figs. 10 and 13). The remaining values

are almost identical (Figs. 12 and 14).

Fig. 9. The q1 angle for the point
�
x

2

0,u
2

0

�

Fig. 10. The q̇1 angular velocity for a point
�
x

2

0, u
2

0

�

Fig. 11. The q̈1 angular acceleration for a point
�
x

2

0,u
2

0

�
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Fig. 12. The q2 angle for the point
�
x

2

0,u
2

0

�

Fig. 13. The q̇2 angular velocity for a point
�
x

2

0,u
2

0

�

Fig. 14. The q̈2 angular acceleration for a point
�
x

2

0,u
2

0

�

The operating point
(
x3

0,u
3
0

)

Matrices A and C obtained by linearization around the

operating point
(
x3

0,u
3
0

)
= ([0, 785; 0, 785; 0; 0] , [0; 0]) have

the following form

A =




0 0 1 0

0 0 0 1

−38, 25 16, 61 0 0

53, 99 −47, 94 0 0




C =

[
−38, 25 16, 61 0 0

53, 99 −47, 94 0 0

]

It can be easly computed that since n = 4:

rank




C

CA
...

CAn−1




= rank




C

CA

CA2

CA3


 = 4.

Hence, object with matrices A, C is observable.

Figures 15–17 show the q1, q̇1, q̈1 simulated waveforms

and their estimation.

Fig. 15. The q1 angle for the point
�
x

3

0,u
3

0

�

Fig. 16. The q̇1 angular velocity for a point
�
x

3

0, u
3

0

�
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Fig. 17. The q̈1 angular acceleration for a point
�
x

3

0,u
3

0

�
Figures 18–20 present the q2, q̇2, q̈2 simulated waveforms

and their estimation.

Fig. 18. The q2 angle for the point
�
x

3

0,u
3

0

�

Fig. 19. The q̇2 angular velocity for a point
�
x

3

0,u
3

0

�

Fig. 20. The q̈2 angular acceleration for a point
�
x

3

0,u
3

0

�
In Fig. 18 a totally inaccurate q2 angle estimation can be

observed. Probably due to the selected operating point, be-

cause in the dynamics model there are differences in angles.

This can cause unpredictable behavior of the simulated object.

The operating point
(
x4

0,u
4
0

)

Matrices A and C obtained by linearization around the

operating point
(
x4

0,u
4
0

)
= ([0, 017; 0, 017; 0; 0] , [0; 0]) have

the following form

A =




0 0 1 0

0 0 0 1

−46, 84 20, 35 0 0

66, 13 −58, 71 0 0




C =

[
−46, 84 20, 35 0 0

66, 13 −58, 71 0 0

]

It can be easly computed that since n = 4:

rank




C

CA
...

CAn−1




= rank




C

CA

CA2

CA3


 = 4

Hence, object with matrices A, C is observable.

The last operating point was selected in a way so that

there are no singularities associated with the trigonometric

functions, and thus with the dynamic model of the object.

Graphs of q1 angles, q̇1 velocities and q̈1 accelerations are

illustrated in the Figs. 21–23.

As for the second operating point also here are the most

major inaccurate angular velocities (Figs. 22 and 25). For oth-

er motion parameters highly accurate results from the Kalman

filter and the particle filter (Figs. 24 and 26) were obtained.
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Fig. 21. The q1 angle for the point
�
x

4

0,u
4

0

�

Fig. 22. The q̇1 angular velocity for a point
�
x

4

0,u
4

0

�

Fig. 23. The q̈1 angular acceleration for a point
�
x

4

0,u
4

0

�

Fig. 24. The q2 angle for the point
�
x

4

0,u
4

0

�

Fig. 25. The q̇2 angular velocity for a point
�
x

4

0, u
4

0

�

Fig. 26. The q̈2 angular acceleration for a point
�
x

4

0,u
4

0

�
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Finally, it should be pointed out that unfortunately, the

linearized model 2 at the same operating points as model 1

is a non-observable object.

Matrices A and C obtained by linearization around the all

operating point, every time, have the following form

A =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


 , C =

[
0 0 0 0

0 0 0 0

]
.

It can be easly computed that since n = 4:

rank




C

CA
...

CAn−1




= rank




C

CA

CA2

CA3


 6= 4

Therefore, an object with matrices A, C is non-observable.

As a consequence of this fact it was impossible to generate

the simulation data and its estimation or the proposed estima-

tors did not comply with their role. That is why no results of

simulation experiments have been presented. Unobservabili-

ty of a model, follows from mechanical interpretation of the

arm.

8. Summary

The basic premise of simulations results was to obtain infor-

mation about the values of the angles of rotation and angular

velocity based only on simulated (measured) angular acceler-

ation. The results of simulation experiments are presented for

the characteristic operating points, in which a human hand,

without any signals from the muscles, is located in the sin-

gular points arising from the dynamics model. On the other

hand, the zero control signals were assumed, due to the fact

that the measurement of human muscle power for any type

of movement is rather a difficult matter. The simulations al-

low deducing the following conclusion. To measure the actual

movement of the object should suffice only accelerometers,

not IMU sensors [46].

Moreover, it should be stressed that a very simple model

of human arm was used. However, on this stage it could be

concluded that singularities occur in a very small environ-

ment of a given point, where estimation is inaccurate. That

is why the construction of the arm state vector, which has

seven degrees of freedom should allow to avoid these points.

On the other hand, the accurate reproduction of a real human

movement is rather very difficult, because unlike the sensors

we are not able to detect these peculiarities.

In terms of future research authors aim to analyze models

with more degrees of freedom.

Appendix A

The elements of A, B, C and D matrices for Model 1.

q̈1 (q, q̇, u) = f1 (q, q̇, u) =
u1

c1
−

d1 cos (q1 − q2)u2

c3 − c2d1 cos2 (q1 − q2)

+
d2
1 cos2 (q1 − q2)u1

c3 − c2d1 cos2 (q1 − q2)
−

d1d2c2 sin (q1) cos (q1 − q2)

c3 − c2d1 cos2 (q1 − q2)
−

d1c2 sin (q1 − q2) cos (q1 − q2) q̇2
1

c3 − c2d1 cos2 (q1 − q2)

+
d1c5 sin (q2) cos (q1 − q2)

c3 − c2d1 cos2 (q1 − q2)
−

d2
1c2 sin (q1 − q2) cos2 (q1 − q2) q̇2

2

c3 − c2d1 cos2 (q1 − q2)
− d1 sin (q1 − q2) q̇2

2 − d2 sin (q1) ,

q̈2 (q, q̇, u) = f2 (q, q̇, u) =
u2

c3 − c2d1 cos2 (q1 − q2)
−

d1 cos (q1 − q2)u1

c3 − c2d1 cos2 (q1 − q2)

+
d2c2 sin (q1)

c3 − c2d1 cos2 (q1 − q2)
+

c2 sin (q1 − q2) q̇2
1

c3 − c2d1 cos2 (q1 − q2)
−

c5 sin (q2)

c3 − c2d1 cos2 (q1 − q2)

+
d1c2 sin (q1 − q2) cos (q1 − q2) q̇2

2

c3 − c2d1 cos2 (q1 − q2)
,

d1 =
c2

c1
,

d2 =
c4

c1
,
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∂f1

∂q1
=

d1c3u2 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2u2 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c3u1 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1d2c2c3 cos (q1) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1d2c

2
2 cos (q1) cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1d2c2c3 sin (q1) sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d2
1d2c

2
2 sin (q1) sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c2c3q̇
2
1 cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c

2
2q̇

2
1 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d1c2c3q̇

2
1 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c

2
2q̇

2
1 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c3c5 sin (q2) sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
2d2

1c2c5 sin (q2) cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2c5 sin (q2) sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2c3q̇

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d3
1c

2
2q̇

2
2 cos5 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

2d2
1c2c3q̇

2
2 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 − d1q̇

2
2 cos (q1 − q2) − d2 cos (q1)

∂f1

∂q2
=

−d1u2c3 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2u2 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c2c3u1 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
4d3

1c2u1 sin (q1 − q2) cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1d2c2c3 sin (q1) sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1d2c

2
2 sin (q1) sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d1c2c3q̇

2
1 cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c

2
2q̇

2
1 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c2c3q̇
2
1 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d2
1c

2
2q̇

2
1 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c3c5 cos (q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2c5 cos (q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d1c3c5 sin (q2) sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2c5 sin (q2) sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2c5q̇

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d3
1c

2
2q̇

2
2 cos5 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c2c3q̇

2
2 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 + d1q̇

2
2 cos (q1 − q2) ,

∂f1

∂q̇1
=

−2d1c2q̇1 sin (q1 − q2) cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f1

∂q̇2
=

−2d2
1c2q̇2 sin (q1 − q2) cos2 (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
− 2d1q̇2 sin (q1 − q2) ,

∂f1

∂u1
=

1

c1
+

d2
1 cos2 (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f1

∂u2
=

−d1 cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,
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∂f2

∂q1
= −

2d1c2 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c3u1 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2u1 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d2c2c3 cos (q1) − d1d2c

2
2 cos (q1) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d1d2c
2
2 sin (q1) sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
c2c3q̇

2
1 cos (q1 − q2) − d1c

2
2q̇

2
1 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d1c
2
2q̇

2
1 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
2d1c2c3 sin (q2) sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c2c3q̇
2
2 cos2 (q1 − q2) − d2

1c
2
2q̇

2
2 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1c2c3q̇

2
2 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c

2
2q̇

2
2 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 ,

∂f2

∂q2
=

2d1c2u2 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c3u1 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2u1 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
2d1d2c

2
2 sin (q1) sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

c2c3q̇
2
1 cos (q1 − q2) + d1c

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

2d1c
2
2q̇

2
1 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
c3c5 cos (q2) + d1c2c5 cos (q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d1c2c5 sin (q2) sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1c2c3q̇

2
2 cos2 (q1 − q2) + d2

1c
2
2q̇

2
2 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c2c3q̇
2
2 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d2
1c

2
2q̇

2
2 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 ,

∂f2

∂q̇1
=

2c2q̇1 sin (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂q̇2
=

2d1c2q̇2 sin (q1 − q2) cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂u1
=

−d1 cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂u2
=

1

c3 − d1c2 cos2 (q1 − q2)
.

The elements of A, B, C and D matrices for Model 2.

q̈1 (q, q̇, u) = f1 (q, q̇, u) =
u1

c1
−

d1 cos (q1 − q2)u2

c3 − d1c2 cos2 (q1 − q2)
+

d2
1 cos2 (q1 − q2)u1

c3 − d1c2 cos2 (q1 − q2)

−
d2
1c2 cos2 (q1 − q2) sin (q1 − q2) q̇2

2

c3 − d1c2 cos2 (q1 − q2)
−

d1c2 cos (q1 − q2) sin (q1 − q2) q̇2
1

c3 − d1c2 cos2 (q1 − q2)
− d1 sin (q1 − q2) q̇2

2 ,

q̈2 (q, q̇, u) = f2 (q, q̇, u) =
u2

c3 − d1c2 cos2 (q1 − q2)
−

d1 cos (q1 − q2)u1

c3 − d1c2 cos2 (q1 − q2)

+
d1c2 cos (q1 − q2) sin (q1 − q2) q̇2

2

c3 − d1c2 cos2 (q1 − q2)
+

c2 sin (q1 − q2) q̇2
1

c3 − d1c2 cos2 (q1 − q2)
,
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∂f1

∂q1
=

d1c3u2 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2u2 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c3u1 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1c2c3q̇

2
1 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c

2
2q̇

2
1 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c2c3q̇
2
1 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d2
1c

2
2q̇

2
1 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2c3q̇

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d3
1c

2
2q̇

2
2 cos5 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
2d2

1c2c3q̇
2
2 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 − d1q̇

2
2 cos (q1 − q2) ,

∂f2

∂q̇2
=

2d1c2q̇2 sin (q1 − q2) cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂u1
=

−d1 cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f1

∂q2
=

−d1u2c3 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2u2 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c2c3u1 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
4d3

1c2u1 sin (q1 − q2) cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c2c3q̇
2
1 cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c

2
2q̇

2
1 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1c2c3q̇

2
1 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c

2
2q̇

2
1 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2c3q̇

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d3
1c

2
2q̇

2
2 cos5 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d2
1c2c3q̇

2
2 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 + d1q̇

2
2 cos (q1 − q2) ,

∂f1

∂q̇1
=

−2d1c2q̇1 sin (q1 − q2) cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f1

∂q̇2
=

−2d2
1c2q̇2 sin (q1 − q2) cos2 (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
− 2d1q̇2 sin (q1 − q2) ,

∂f1

∂u1
=

1

c1
+

d2
1 cos2 (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f1

∂u2
=

−d1 cos (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂q1
= −

2d1c2 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c3u1 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c2u1 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
c2c3q̇

2
1 cos (q1 − q2) − d1c

2
2q̇

2
1 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

2d1c
2
2q̇

2
1 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

+
d1c2c3q̇

2
2 cos2 (q1 − q2) − d2

1c
2
2q̇

2
2 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c2c3q̇
2
2 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2−

−
d2
1c

2
2q̇

2
2 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 ,
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∂f2

∂q2
=

2d1c2u2 sin (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d1c3u1 sin (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 −

d2
1c2u1 sin (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
c2c3q̇

2
1 cos (q1 − q2) + d1c

2
2 cos3 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

2d1c
2
2q̇

2
1 sin2 (q1 − q2) cos (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2

−
d1c2c3q̇

2
2 cos2 (q1 − q2) + d2

1c
2
2q̇

2
2 cos4 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d1c2c3q̇
2
2 sin2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 +

d2
1c

2
2q̇

2
2 sin2 (q1 − q2) cos2 (q1 − q2)

(c3 − d1c2 cos2 (q1 − q2))
2 ,

∂f2

∂q̇1
=

2c2q̇1 sin (q1 − q2)

c3 − d1c2 cos2 (q1 − q2)
,

∂f2

∂u2
=

1

c3 − d1c2 cos2 (q1 − q2)
.
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