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FINITE ELEMENT MODEL UPDATING OF REINFORCED CONCRETE BEAMS
WITH HONEYCOMB DAMAGE

Z. ISMAIL1

A method of detecting honeycombing damage in a reinforced concrete beam using the finite
element model updating technique was proposed. A control beam and two finite element models
representing different severity of damage were constructed using available software and the defect
parameters were updated. Analyses were performed on the finite element models to approximate
the modal parameters. A datum and a control finite element model to match the datum test beams
with honeycombs were prepared. Results from the finite element model were corrected by updating
the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case,
and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There
was no significant loss of stiffness by doubling the volume of the honeycombs.
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1. I

Many structures are built with concrete. It is important to be able to monitor the
structural integrity of these structures. Dynamic testing, visual as well as sensors had
been employed for this purpose by several researchers like B [1], C et al.
[2], D et al. [3], F et al. [4], I [5], I et al. [6], I et al. [7],
I et al. [8], I and O [9], R et al. [10], R et al. [11], R

[12]. Mathematical models of structures obtained by many different means had been
developed towards this direction. For structures, which are not too complex, models
using partial differential equations may be developed. For complex structures, methods
such as the transfer matrix and finite element are frequently used. The objective is to
produce a model capable of giving an insight into the behavior of the structure. The
challenge is to find a simple enough model capable of describing the physical structure
while enabling cost effective computational process to achieve as close as possible the
real situation. Several methods had been successfully used to detect general damage in
concrete structures, one of which was the use of thermal imaging as demonstrated by
B et al. [13]. Other methods of detecting general damage had also been suggested
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by using higher order derivatives of mode shapes. One of the more common defects
in concrete is honeycombing. It is the result of improper construction procedures and
chemical attacks. Studies on honeycombing damage are generally limited. Some studies
on the effect of honeycombing in concrete had been carried out by K [14] and
O and C [15] which included work on the load carrying capacity and modal
response of the affected beams. Several approaches towards system identification of
beams with such damage had also been suggested by previous researchers such as
B et al. [16], C [17], D et al. [18] and F et al. [19].

The method using higher order derivatives of mode shapes mentioned above had
been studied and successfully applied for honeycombing damage by G [20],
I et al. [6], W [21] and W et al. [22]. Higher-order derivative discon-
tinuity method for damage identification had also been experimentally validated. This
discontinuity method had been applied to a bridge damage detection problem. Other
methods which had been used for structural damage detection are the linear matrix in-
equality methods as applied by A [23] and the released strain method by C

et al. [24]. Dynamic analysis of generally supported beams using Fourier series was
conducted by Wang and L [25], and free vibrations of beams with general boundary
conditions was conducted by L [26]. The application of Chebyshev’s series to solution
of non-prismatic beam vibration problem had also been employed by R [27, 28] to
detect damage. FEM model updating had been widely used to study damage in concrete
structures. The fundamentals of the FEM method are well documented by G Jr,
[29] in the literature and in the Manual by TNO [30]. W [31] demonstrated that
data could be generated and validated before an actual model is prepared.

Regressed mode shapes using Fourier series and Fourier series plus a polynomial;
the Chebyshev’s series and the Chebyshev’s series rational had also been successful in
detecting damage in beams. The local stiffness indicator (LSI) defined as the absolute
value of λ4 had also been successfully applied to locate damage in RC beams. The
FEM method for model updating had been verified by F and M [32].
The numerical procedures and application aspects of updating analytical models had
been reviewed by C and E [33]; and the FEM model updating using various
modal parameters had also been carried out by several researchers like L [34].
Examples were updating of FEM model by means of normal mode parameters could
be seen through work by N et al. [35]. FEM adjustment using experimental
modal data and updating using FRF data had been conducted by B et al. [36]
and L and E [37]. Other methods of damage assessment that had been used are
damage functions by T et al. [38], eigenstructure assignment and eigenvalue
embedding techniques for vibrating systems by B [39], eigenvalue and strain energy
residuals using multi-objective optimization technique by J and R [40], and
sensitivity-based using constrained optimization with a trust region algorithm by B

et al. [41]. The limitations of the methods had also been pointed out by G et al.
[42] and G et al. [43]. The method had been successfully applied in damage
localization and updating using multi-response NDT data as demonstrated by S
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et al. [44]. Experience with different procedures for updating structural parameters
using test data had also been reported by Link and Z [45]. Updating of existing
steel bridge based on structural health monitoring had also been conducted by H et
al. [46].

In the current study, finite element models specifically for honeycombs were con-
structed and simply updated by means of varying the Young’s modulus and damage
parameters to match the experimental results. Linear static, nonlinear, and eigenvalue
analyses were also performed on the finite element models so that modal parameters
could be approximated.

2. M  

2.1. F E M

General-purpose finite element software, based on the displacement method, was uti-
lized to model the reinforced concrete beams in two dimensions. This software was
able to investigate the physical and mechanical behavior of the beams. A feature of
this software was that reinforcing bars were modeled as special bar elements [30].

Two-dimensional finite elements models, 2.2 meters long, 250 mm deep, and di-
vided into fifty-five divisions along the length, were constructed to represent control,
datum, and defect beams with honeycombs. A typical model that was constructed using
the software had the line elements (L1 – L10), the surface element (S1), and meshing
division (55 along the x axis, 4 along the y axis, 1 for the constraints, and 1 for the
reinforcement). This is shown in Fig. 1a-Fig. 1d. It is further described below and used
to verify the algorithm proposed in determining the location of the defect.

Fig. 1a. Location of reduced Young’s modulus at mid-span position: a) FE-L5
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Fig. 1b. Location of reduced Young’s modulus at mid-span position: b) FE-L5x2

Fig. 1c. Cross-section of test beam

Experimental verification was conducted by preparing test beams with the same
dimensions and also with honeycombs of the same dimensions. Load tests and modal
testing were conducted on these beams. The dimensions of the honeycomb are given
in Table 1, and the modal testing set-up is given in Fig. 2.

2.2. M 

Quadrilateral plane stress elements with four nodes and linear in behavior were chosen
for the concrete. The reinforcement was considered as a line element type with two
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Fig. 1d. (i) Cross section: Defect beam L5 and Defect beam L5x2
(ii) Side section: Defect beam L5 and Defect beam L5x2

Fig. 2a. Mortar blocks representing honeycombs
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Fig. 2b. Modal Testing set-up

nodes and was referred to as a special bar element. The physical and material pro-
perties of the concrete were isotropic linear elastic with a Poisson’s ratio of 0.2, mass
density of 2400 kg/m3, and Young’s modulus on a case-to-case basis. The models
had a constant thickness of 0.15 m. The reinforcement bars were embedded in the
quadrilateral elements and had a cross-sectional area of 15.708×10−5 m2 (2 bars),
Young’s modulus of 200×109 N/m2, and von Mises yield value of 440×106 N/m2.
Experimentally the beams were supported by rollers. For model updating purposes
these conditions were modeled as a single point elastic spring with stiffness 108 N/m2

in the x and y direction at the left support, and in the y direction at the right support.
The self-weight was computed by taking gravitational acceleration as 9.81 m/s2 in the
– y direction. The summary of the general characteristics of the finite element models
is shown in Table 1.
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A section of the typical finite element model showing its general characteristics
had the structural element types Q8MEM (quadrilateral plane stress, 4 nodes, linear),
REIBAR (embedded reinforcement), and SP2TR (orthotropic geometry, translation
spring, 2 nodes), the material and physical properties MA1 and PH1 (for concrete) and
PH2 and MA2 (for reinforcement), respectively, and the constraints CO1 (for supports).
The element numbering and the loads (self-weight) were also shown. Bond slip was
not modeled since there was no such failure.

A main model with no defect and its variation with a segment of the quadrila-
teral elements having a reduced Young’s modulus was considered. The model was
constructed using three layers of surface with thickness 30 mm, 90 mm, and 30 mm
consecutively to accommodate the thickness of the segment with a reduced Young’s
modulus of 90 mm. This segment was located at the mid-span section to represent the
honeycombing region, with varying overall height about the neutral axis of the model.
Two mortar blocks FE-L5 and FE-L5×2 with different volumes to reflect different
severity of honeycomb damage were constructed. The dimensions of the honeycombs
are given in Table 1.

Table 1
Characteristics of the finite element models.

Concrete Reinforcement
Element Types Quadrilateral plane stress Line element

4-nodes 2-nodes
Linear Reinforcement bars

Physical properties Isotropic Reinforcement bars
Uniform thickness = 0.15 m Cross-sect area = 15.708×10−5m2 (2 bars)

Material properties Isotropic linear elasticity Embedded reinforcement
Poisson’s ratio = 0.2 Young’s modulus = 200×109N/m2

Mass density = 2400 kg/m3 Yield = von Mises
E = case to case basis Yield value = 440×106N/m2

Support conditions
Single point elastic springs in the xand ydirection at the
left and right supports, resting on fixed constraints in the x and y direction
at the right support and in the y direction at the left support.

Spring stiffness = 108N/m2

Acce. due to gravity = 9.81 m/s2 in the –y direction
Honeycomb dimensions FE-Control FE-L5 FE-L5×2

Length (L) mm 0 440 440
Width (W) mm 0 90 90
Depth (H) mm 0 90 180

Beams’ updated Young modulus N/A 26×109 25×109

Honeycombed updated Young modulus N/A 27×109 7×106
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2.3. F E A

Linear static analysis was first performed on the finite element models. This involved
the evaluation and assembly of the finite element model, and setting up the element
stiffness matrices and the load vectors. A direct Gauss decomposition method using
the sparse Cholesky routine was used to produce displacements, reactions, strains and
stresses for the various cases.

Only eigenvalue analysis was performed on the control finite element model and
finite element model with a section of reduced Young’s modulus. The natural frequ-
encies and corresponding mode shapes needed for further processing were calculated.
The solution method to solve the generalized or the standard eigenproblem used was
the subspace iteration method. This method required a symmetric and positive definite
system matrix. Consistent element mass matrices were utilized for the free vibration
frequency analysis.

2.4. U P

A datum and a control finite element model to match the datum test beams with honey-
combing were prepared. Since results from the FE model frequently show discrepancies
in both natural frequencies and mode shapes due to discretization and configuration
errors respectively, updating or correcting of the data was required. In this study the
discrepancies were found to be about ten percent on first natural frequency. Necessary
adjustments on the Young’s modulus and support conditions for the datum beam were
done in order to obtain similar values of natural frequencies and similar profile of
the mode shapes between the finite element models and the test beams. Two types of
updating were done: the first one was by updating the Young’s modulus, E. The second
was by updating the Young’s modulus for the segment of the quadrilateral elements
representing honeycombed concrete.

2.4.1. Updating the Young’s modulus
To update the Young’s modulus, the first step was to adjust the support conditions in

order to get the modal assurance criterion, [MAC x̃x]ii =

(
{ϕ̃x

i }T {ϕx
i }
)2

(
{ϕ̃x

i }T {ϕ̃x
i }
) (
{ϕx

i }T {ϕx
i }
) , values

to within 75% of the mode shapes of the test beam. Next, the natural frequencies and
mode shapes for different Young’s modulus were generated. Two criteria were used
to determine which value of Young’s modulus was to be chosen for the datum finite
element beam. They were, that the first natural frequency of the finite element model
was within 10% difference of the first natural frequency of the datum test beam; and∣∣∣∣∣
∂E
E

∣∣∣∣∣ =
2
m

m∑

i=1

(
∂ωi

ω̄i

)

(m = the first m modes) was also within 10%.
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The Young’s modulus for the models with honeycombs adjusted to 27×109 N/m2

as shown also in Table 1. The Young’s modulus from the finite element models chosen
to match the damaged test beams followed the same criteria. The Young’s modulus
for beam L5 and L5×2 were chosen as 26×109 N/m2 and 25×109 N/m2, respectively
as shown in Table 1. These guidelines follow the procedure proposed by previous
researchers [25].

2.4.2. Updating damage parameters
Trials runs were made with reduced Young’s modulus ranging from 27×108 N/m2

to 27×105 N/m2. Two criteria were also used to determine which value of Young’s
modulus was to be chosen for the segment of the quadrilateral elements representing
honeycombed concrete. The percentage difference of natural frequencies for all modes
was within 10%, and |∂E/E| was the smallest, which was within 2.5%.

The updated value of the Young’s modulus for the honeycombed concrete was
7.0×106 N/m2 as shown in Table 1.

3. R  

The following are results of EI and detection of damage locations for the finite element
models of the beams with honeycombs represented by FE-L5 and FE-L5×2. EI’s for
the models were derived by using the E values obtained from two different methods
of updating. For detecting the damage locations, the values of λ were plotted in Fig.
5d as bar charts.

3.1. U Y’ M

Several values of Young’s modulus were tried for the undamaged finite element model
in order to obtain a set of results as close as possible to the set of results for the
datum and honeycombed test beams by comparing their natural frequencies and mode
shapes. Frequency shifts and Modal Assurance Criterion (MAC) were utilized as the
methods of comparison. The following are results for all test beams based on their
frequency shifts and MAC values. Fig. 3b shows the MAC values for the datum beams
and control beams. For other cases, the comparison made was between finite element
model with no defects and test beams with defects.

The values for mode 5 and mode 6 were omitted in the calculation of the percentage

difference compared to the mean
δω

ω̄
because mode 5 and mode 6 were not available

from the experiment with the control beam and beam L5x2.
Table 2 shows the percentage difference in the natural frequencies of an updated

finite element model using E = 27×109 N/m2 compared to the control beam, with the

corresponding MAC for mode 1 to 10. The percentage
δω

ω
ranged from – 14.95% for
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mode 2 to 4.25% for mode 10. Compared to the mean frequency
δω

ω̄
the percentage

ranges from 3.41% for mode 2 to 8.67% for mode 10 with the
∣∣∣∣∣
∂E
E

∣∣∣∣∣ of 5.28%. There

were no values obtained for mode 5. The MAC ranged from 0.9772 for mode 1 to
0.7297 for mode 9.

The percentage differences in the natural frequencies of two updated finite element
models; one using E = 26×109 N/m2 (Case 1) and the other using E = 25×109 N/m2

(Case 2) compared to the values for beam L5 and L5×2, respectively were obtained.

The percentage difference
δω

ω
ranged from – 8.04% for mode 1 to 15.33% for mode

2 for the first case and – 14.89% for mode 2 to 4.62% for mode 10 for the second
case. The percentage difference compared to the mean frequency

δω

ω̄
ranged from –

3.52% for mode 2 to 7.71% for mode 10 with the
∣∣∣∣∣
∂E
E

∣∣∣∣∣ of 4.48% for the first case and

– 3.41% for mode 2 to 9.39% for mode 10 with the
∣∣∣∣∣
∂E
E

∣∣∣∣∣ of 6.52% for the second
case.

Comparison between the finite element beam and the test beam showed that the
first natural frequency of the finite element model chosen was within 10% difference

of the first natural frequency of the datum test beam and
∣∣∣∣∣
∂E
E

∣∣∣∣∣ chosen was also within

10%.

3.2. EI  U Y’ M

This section presents the results of EI after updating the Young’s modulus. After finding
the matching results for all test beams based on their frequency shifts and MAC values,
the global EI values were obtained by multiplying the respective E values with the
moment of inertia, I .

Table 3 shows the EI values for the control model with E = 27×109 N/m2 and
model FE-L5 and FE-L5×2 obtained with values used in the updating process. The
EI for the control model was 5.8409×106 Nm2. The relative stiffness for FE-L5 as
compared to the control was 0.96 or a loss of 4%, and the relative stiffness for FE-L5×2
as compared to the control beam was 0.93 or a loss of 7%. It was seen that beam
FE-L5×2, which represented a higher proportion of damage exhibits a higher drop of
global flexural stiffness.

The flexural stiffness was obtained for each case using the E values from the
up-dating process. It was seen that there was a loss of stiffness of 3% for the case of
FE-L5, and a loss of 7% for the case of FE-L5×2. The more severe the damage, as
evidenced by the higher volume of honeycombs, the higher the loss of stiffness.
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3.3. U D P

Fig. 3 and Fig. 4 show the natural frequencies for the control model, FE-L5 and
FE-L5×2 with an updated Young’s modulus for the honeycombed concrete of 7.0×106

N/m2 for mode 1 to 10. The percentage difference in natural frequency for FE-L5

ranged from 0.01% for mode 3 to 7.85% for mode 7 with
2
10

Σ
δω

ω
value of 9.58%. For

beam FE-L5×2 the percentage difference in natural frequency ranged from – 1.75%

for mode 3 to 7.76% for mode 7 with
2
10

Σ
δω

ω
value of 7.97%.

Fig. 3. Data for control and updated model

The percentage differences in the natural frequencies of two updated finite element
models using E = 27×109 N/m2 and E = 7.0×106 N/m2 for the honeycombed concrete;
one was FE-L5 (Case 1) and the other was FE-L5×2 (Case 2) compared to test beam
L5 and L5×2, respectively were obtained. The percentage difference in the natural
frequency ranged from – 13.63% for mode 2 to 10.22% for mode 7 for the first case
and – 14.94% for mode 2 to 9.48% for mode 7 for the second case. The MAC values
for the first case ranged from 0.9387 for mode 1 to 0.5213 for mode 9 and for the
second case the values ranged from 0.9491 for mode 1 to 0.7160 for mode 7.
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Fig. 4. Natural frequency (Hz)

For both honeycombed beams, the values of
2
10

Σ
δω

ω
were within 10%, and that for

mode 1 the percentage drop of natural frequency for beam FE-L5×2 which represented
a higher proportion of damage was higher compared to the value for beam FE-L5.

3.4. EI  U D P

The global EI values from updating parameters were derived by regressing the eige-
nvectors with the general solution to obtain the parameter λ, and rearranging the

equation λ4 =
ρAω2

EI
.

Fig. 5d shows the λ values obtained from non-linear regression for the control
model and model FE-L5 and model FE-L5×2 for mode 2. Mode 2 was used instead
of mode 1 since the R2 values for mode 2 were better than those for mode 1. The
value for the control was 4.0060, for FE-L5 the value was 3.9957 and for FE-L5×2 the
value was 4.0484 with the corresponding values of R2 of 0.9999, 0.9999 and 0.9994
respectively.
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Fig. 5. Global EI values

The global EI for the control model and model FE-L5 and model FE-L5×2 were
obtained from the Young’s modulus used in the updating process. The global EI for
the control model was 4.2456×106 Nm2 as shown in the table. The relative stiffness
for FE-L5 as compared to the control model was 0.97 or a percentage loss of 3%,
and the relative stiffness for FE-L5×2 as compared to the control model was 0.93 or
a percentage loss of 7%. It was seen that beam FE-L5×2 which represented a higher
damage exhibited a higher drop of global EI.

Updating the damage parameters confirmed the results from updating using Young’s
modulus alone. The test results also confirmed that there was no significant loss of
stiffness by doubling the volume of the honeycombs. It was seen here that there was
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a stiffness loss of 3% for the case of the FE-L5 beam, and 7% loss for the FE-L5×2
beam.

3.5. C  G EI’

This section compares the results of global EI obtained from modal testing, static
loading test, and finite element modeling and updating. The comparison of global EI
from four previously discussed procedures for beam with honeycombed concrete can
be seen from Table 3. Fig. 1 shows the relative stiffness at various severity of damage
for the beams with honeycombs L5 and L5×2 using the different procedures of modal
testing and static load test.

Fig. 5 shows the relative stiffness using the various procedures at different severity
of damage as represented by L5 and L5×2. For the datum case, all procedures produce
similar results. In both cases of L5 and L5×2 there was a general trend of increasing
drop of relative stiffness as the severity increased, and the biggest drop in relative
stiffness was shown by the procedure using modal testing. It was seen that there was a
loss of stiffness of 3% for the case of FE-L5, and a loss of 7% for the case of FE-L5×2.
The more severe the damage, as evidenced by the higher volume of honeycombs, the
higher the loss of stiffness, but it was also confirmed that there was no significant loss
of stiffness by doubling the volume of the honeycombs. The finite element analysis
indicated the general region of the honeycombs, the exact location of the honeycombs
being about the centre of the affected region.

4. C

A simple method of updating the Young’s modulus and the honeycombing damage
parameters was able to represent the loss of flexural stiffness in the RC beams. The
loss of stiffness increased as the as the severity of damage represented by a higher
volume of honeycombing increased. It was noted, however, that the effect was less
than proportionate. Doubling the volume did not bring about a doubling of loss in
stiffness. This is in general agreement with previous work.
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Extended Abstract

Honeycombing is one of the common damage that can occur in concrete structures. Literature and studies
on this phenomenon are, however, limited. The objective of this study was to propose a method of
detecting honeycombing damage in a reinforced concrete beam using the finite element model updating
technique. A control beam and two finite element models representing different severity of honeycombing
damage were constructed using available software and the defect parameters were updated. Analyses were
performed on the finite element models to approximate the modal parameters. A datum and a control finite
element model to match the datum test beams with honeycombs were also prepared. Results from the
finite element model were corrected by updating the Young’s modulus and the damage parameters. There
was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage,
as evidenced by the higher volume of honeycombs, the higher the loss of stiffness. The test results also
confirmed that there was no significant loss of stiffness by doubling the volume of the honeycombs. The
finite element analyses indicated the general region of the honeycombs and showed abnormalities with
the mode shapes at the ends of the beams.
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