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with load torque estimation
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Abstract. This paper describes a study and the experimental verification of sensorless control of permanent magnet synchronous motors

using Kalman filters. There are proposed two structures, extended and unscented Kalman filters, which use only the measurement of the

motor current for on-line estimation of speed, rotor position and load torque reconstruction. The Kalman filter is an optimal state estimator

and is usually applied to a dynamic system that involves a random noise environment. These structures are described in detail, starting with

the selection of the variables state vector, the filters structure, and ending with in-depth laboratory tests. It has become possible, without

using position and torque sensors, to apply these control structures as a cost-effective solution. Experimental results confirm the validity of

the proposed estimation techniques.
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1. Introduction

Permanent magnet synchronous motor drives [1–31] are wide-

ly used in industrial processes, due to their inherent high

torque to inertia ratio (high flux density), small size and en-

hanced dynamic performance [1, 14, 21]. Field oriented con-

trol (FOC) allows obtaining the maximum performance but

requires information about the shaft position [13,30]. The ef-

fects of a sensorless FOC of a PMSM depend strongly on

the quality of estimation of the state variables and distur-

bances.

Systems called sensorless have the potential to get rid of

any mechanical sensors placed on the machine shaft, usually

for position and velocity measurements. This paper presents

some extension of the state vector by adding to it a load

torque, which is estimated. There is a current work on sever-

al methods to find the status of the propulsion system based

on measurement of readily available drive terminal variables

[2, 4, 5, 7, 11, 15, 17, 22, 24, 30]. These methods are called ob-

servers. One of them is the Kalman filter, based on mathe-

matical dependencies formulated by Rudolf Kalman [12]. The

observers use only direct signals – stator voltages, as well as

variables measuring terminal – phase stator currents. Several

method have been developed in order to obtain mechanical

quantities of PMSM which can be used for sensorless con-

trol [3, 6–8, 20, 23, 29, 31].

The proposed playback system allows estimating the state,

all variables occurring in the classical mathematical model of

synchronous motor with permanent magnet and the torque

load brought into the effects on the motor shaft, which is

often treated as a disturbance [6–8, 19, 28].

This paper is organised as follows. First, the design con-

siderations are presented, and some problems in sensorless

control with an extended estimated state vector is indicated.

Next the model of the PMSM is proposed. Then, the theoret-

ical background of Extended and Unscented Kalman filters is

presented. Finally, the effectiveness of the proposed sensorless

control system is verified by experiments.

2. Design considerations

2.1. Sensorless control. Sensorless control is based on elim-

inating the necessity of using a shaft angular position trans-

ducers, in a broad perspective, to eliminate any mechanical

sensors placed on the machine shaft. Elimination of mechan-

ical sensors provides advantages such as: increased reliability

of the drive, the ability to work in adverse environmental con-

ditions, and a decrease in the cost of the drive [8, 13, 30].

Field oriented control is a versatile method of controlling

the PMSM, where the field oriented theory is used to con-

trol space vectors of the magnetic flux, current, and voltage

[16, 18, 30]. The control scheme is relatively simple (Fig. 1),

the excitation flux from permanent magnets is frozen to the

direct d axis of the rotor and thus its position can be obtained

directly from the rotor shaft by measuring the rotor angle. An

optimally efficient operation is achieved by stator current con-

trol which ensures that the stator current phasor contains only

a quadrature q axis component by the PWM voltage convert-

er [13, 18]. It is possible to set up the co-ordinate system to

decompose the vectors into how much electromagnetic field is

generated and how much torque is produced [14]. This control

technique guarantees a good dynamic performance of PMSM.
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Fig. 1. The proposed sensorless drive

2.2. Estimation vector. Some state variables are necessary

during estimation because they are an important part of a state

space model. Additional novel estimated variables such as the

load torque Tl can be added. Their value can be helpful dur-

ing the control of the complex mechanical structures of drives.

The problem of observing which has often been noted in the

literature [3, 27, 31]. It is interesting to extend a observation

vector to the load torque. So the estimation of the state space

vector of the proposed observer is:

x̂ =
[
id iq ωr γ Tl

]T

, (1)

where: id and iq are the dq axis currents, ωr is mechanical

speed,γ is electrical shaft position and Tl is occurred load

torque.

2.3. Mathematical model of motor directed into observer

The mathematical model of a PMSM has three main parts: the

electrical network, the electromechanical torque production,

and the mechanical subsystem [21]. The stators of a PMSM

and an IM are similar. The rotor consists of permanent mag-

nets, there are modern rare-earth magnets with high strength

of the magnetic field.

In the mathematical model, during examining the prob-

lem, some simplifications are made: saturation is neglected,

induced electromagnetic force is sinusoidal, eddy currents and

hysteresis losses are neglected, no dynamical dependencies

in air-gap, no rotor cage. With these assumptions, the rotor

oriented dq electrical network equations of PMSM can be

described as:

ud = Rsid + Ld

did

dt
− pωrLqiq, (2)

uq = Rsiq + Lq

diq

dt
+ pωrLdid + pωrΨm. (3)

where ud and uq are the dq axis voltages, Ld and Lq are the

dq axis inductances, Rs is the stator resistance, and Ψm is

the flux produced by the permanent magnets on the rotor.

The electric torque is

Te =
3

2
· p [Ψm − (Lq − Ld) id] · iq, (4)

where p is the number of pole pairs, and 3

2
stems from frame

conversion: perpendicular stator αβ into rotor dq.

The drive dynamics can be described as

Te − Tl = J
dωr

dt
, (5)

where Tl is the load torque and J is the summary moment of

inertia of the kinematic chain.

Based on (4) and (5), the movement equation can be writ-

ten:

dωr

dt
=

p

J

[
3

2
(Ψm − (Lq − Ld) id) · iq

]
− Tl

J
. (6)

The position γ can be described by a differential equation:

dγ

dt
= p · ωr. (7)

Many speed observers described in the literature do not

recognise load torque [4, 30]. In these observers, the velocity

is assumed to be constant over short periods of time and the

load torque is treated as an unknown disturbance that is not

observed. In this work the load torque was introduced to the

state vector and can be estimated only with assumption, the

load torque Tl is invariable in a narrow interval:

d

dt
Tl ≈ 0. (8)

This is the main assumption in the work.
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The state space model can be described classically as

x̂k = Fk(x̂k−1
)x̂k−1

+ Bk(x̂k−1
)uk, (9)

zk = Hk(x̂k)x̂k, (10)

The system matrix Fk is

Fk(x̂k) =




1 − Ts ·
Rs

Ld

Ts · ωr

Lq

Ld

0 0 0

−Ts · ωr

Ld

Lq

1 − Ts ·
Rs

Lq

−Ts ·
Ψm

Lq

0 0

0 T1 0 0 −Ts ·
1

J

0 0 Ts 1 0

0 0 0 0 1





,

(11)

where

T1 = Ts ·
3

2

p

J
[Ψf − (Lq − Ld) id]

The output matrix Hk is

Hk(x̂k) =

[
cos γ − sinγ 0 0

sin γ cos γ 0 0

]
, (12)

and the matrix Bk

Bk(x̂k) =





Ts ·
1

Ld

cos γ Ts ·
1

Ld

sinγ

−Ts ·
1

Lq

sinγ Ts ·
1

Lq

cos γ

0 0

0 0

0 0





. (13)

3. The Kalman filter

By definition, the Kalman filter is a recursive filter with infi-

nite impulse response [12]. This means that the derivative of

the known estimate d
dt

x, called the trend, actual output mea-

sure y
k

are sufficient to calculate the estimate of the current

state of the system xk at each time tǫ(0,∞). For the Kalman

filter it is not necessary to know the history of observations.

Kalman filter states can be described by two variables: d
dt

x

– derivative of the current state estimate obtained based on

knowledge of observation and Pk|k – error covariance matrix

(uncertainty of observation) estimation process.

The Kalman filter estimation process is divided into two

separate stages which are cyclical: prediction and correction.

The whole process of calculating the filter is performed recur-

sively to obtain the optimum value of the corrector Kk with

the assumed error ε. A prediction is used to determine the

state estimate x̂ based on the trend and input signal u. Cor-

rection, however, leads to improvements in the new estimate

of the exact value x̂ based on the measured output y
k

and the

value of the corrector Kk.

Prediction. This is also called time actualisation, and is based

on knowing the derivative of the state d
dt

x̂. It is described as

a dependency in the presence of input u. It can be served as

an expression:
d

dt
x̂ = Fkx̂ + Bku. (14)

Filtering at this stage, it is assumed also update with a vector

of state variables x of the system covariance P, based on state

function (14):

Pk|k−1 = FkPk−1|k−1F
T
k + Q. (15)

Correction. Correction, which is the actualisation of the mea-

surement, involves the introduction of the correction signal

based on the measured output zk. It is defined as the dif-

ference in response values of the observer and the measured

output signal, like a residual:

ỹ
k

= zk − Hkx̂k|k−1
. (16)

Additionally, there is introduced, based on knowledge of the

measurement covariance R, the innovation covariance system:

Sk = HkPk|k−1H
T
k + R. (17)

Based on the above, the corrector can be determined by

Kk = Pk|k−1H
T
kS

−1

k , (18)

which together with the calculated value of the residual (16)

corrects the state vector:

x̂k = x̂k−1
+ Kkỹ

k
. (19)

With this correction of the state vector x̂k, the covariance is

also corrected:

Pk|k = (I − KkHk)Pk|k−1. (20)

The above formula for the Kalman filter is valid only for

linear systems and optimal Kalman gain Kk [12]. Based on

the above assumptions, Pk|k and the Kalman gain Kk are con-

stant, and can be computed once based on constant Fk, Bk,

Hk. The calculation is usually carried out by this procedure

iteratively until there is a certain convergence to a consistent

result.

There are many developments of the procedure gain

Kk calculations which reduce the computational complexi-

ty. There are extended Kalman filters and unscented Kalman

filters, both for nonlinear systems, described below.

3.1. Extended Kalman filter. The extended Kalman filter

(EKF) is de facto an extension of the classical Kalman filter

to the area of nonlinear objects. The calculations are per-

formed periodically, and data from the previous step are used

to calculate and predict the current step, which in turn pre-

dicts the next step. So the whole algorithm described below is

recurrent. The main extension is to introduce a nonlinear state

function F as f(xk−1
, uk)) and output function H as h(xk)

of mathematical model of the object based on the actual state

xk and input uk:

xk = f(xk−1
, uk) + wk, (21)

zk = h(xk) + vk. (22)
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As can be seen by analysing the classical Kalman filter,

functions f and h cannot be used in a natural form or as a

differential. The solution may be applied to the Jacobians in

the working point of state vector xk and input uk.

In the analysis of the EKF it is necessary to calculate the

Jacobian matrix of the discretized state f and output h func-

tions. This process takes the linearisation of nonlinear func-

tions in the neighborhood of the working point x̂k|k−1
where

the state transition Φk and output hk matrices are defined to

be the following:

Φk =
∂f

∂x

∣∣∣∣bx
k−1|k−1

,u
k

, (23)

hk =
∂h

∂x

∣∣∣∣bx
k|k−1

. (24)

It should be noted that Jacobians should be counted in each

step k of prediction. The built up matrices Φk i hk can be

used in prediction and correction equations.

Prediction. Prediction is based on the dependency of the clas-

sical Kalman filter but including Jacobians. For state predic-

tion (14) one has

x̂k|k−1
= f(x̂k−1|k−1

, uk), (25)

and for the covariances (15),

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + Qk. (26)

Correction. The correction in the EKF is based on classical

correction having regard to Jacobians. The residual (16) is

now

ỹ
k

= zk − h(x̂k|k−1
), (27)

covariance (17) is:

Sk = hkPk|k−1h
T
k + Rk. (28)

Based on above equation and defined Jacobian hk can reach

the optimal Kalman gain:

Kk = Pk|k−1h
T
k S−1

k . (29)

The correction is performed as in (19):

x̂k|k = x̂k|k−1
+ Kkỹ

k
. (30)

A simplified form for the correction of the covariance Pk|k is

Pk|k = (I − Kkhk)Pk|k−1. (31)

3.2. Unscented Kalman filter. The main problem with the

estimation of nonlinear systems is that it is difficult to deter-

mine the probability distribution, nonlinear function of state

and output [9, 10, 25, 26]. It appears that the nonlinear trans-

formation of the deviation and Jacobians needed for an EKF

does not determine the real covariances. An EKF is based

on the classical Kalman filter assumptions about the linearity

of the object and it is in this way that the covariances are

calculated [12,25]. For nonlinear objects, covariances are as-

sociated with the process, but can not be linked to linearised

models of the object. Based on the particular analysis of non-

linear systems where the covariance of the state should not be

associated with a linearised system, and can even be far from

them.

An Unscented Kalman filter is an improvement over the

EKF algorithm. S. Julier and J. Uhlman proposed in [9] a

completely novel solution of the estimation theory problem

based on unscented transformations. These authors found it

easier to approximate the Gaussian distribution associated

with each state vector variable, rather than approximate the

nonlinear transformation function. This made it possible to

simplify the algorithm by eliminating the need for calculating

the Jacobians. This is based on two assumptions: the first is

the determination of the non-linear transform of the function

at work, and not in the whole range of the probability density

distribution function. The second point concerns the search for

work in which this density corresponds to the actual decom-

position of the nonlinear system. This filter, like its classical

form, is based on two cycles of procedures: prediction and

correction.

Prediction. Prediction can be used independently the UKF

update, in combination with a linear update. As assumed in

the classical Kalman filter approach, and as it is the case for

extended filter prediction, one proceeds in a similar way for

each solution. In this case, however, the extend estimation

state vector of the value of disturbances. Such a procedure

makes it possible to estimate the state vector and its environ-

ment. Strictly, this surround will transform non-linear distur-

bances [9].

A new xa
k−1|k−1

vector is defined:

xa
k−1|k−1

= [x̂T
k−1|k−1

E〈wT
k 〉 E〈vT

k 〉 ]T . (32)

So it is natural to define its covariances, which are formed

by taking the covariances of the state vector Pk−1|k−1, the

known process noise covariance Qk, and the distortion mea-

surement Rk. It therefore assumes the form

Pa
k−1|k−1

=




Pk−1|k−1 0 0

0 Qk 0

0 0 Rk



 . (33)

A set of 2L + 1 sigma points, χk−1|k−1, is derived from

the augmented state and covariance where L is the dimension

of the augmented state:

χ0

k−1|k−1
= xa

k−1|k−1
, (34)

χi
k−1|k−1

= xa
k−1|k−1

+
(√

(L + λ)Pa
k−1|k−1

)

i
,

for i = 1..L,
(35)

χi
k−1|k−1

= xa
k−1|k−1

−
(√

(L + λ)Pa
k−1|k−1

)

i−L
,

for i = L + 1, . . . 2L,

(36)

The matrix square root
(√

nPk

)
should be calculated

using numerically efficient and stable methods such as the
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Cholesky decomposition. The sigma points χi
k|k−1

are prop-

agated through the state space transition function (14):

χi
k|k−1

= Fkχi
k−1|k−1

+ Bkuk, i = 0..2L. (37)

The weighted sigma points χi
k|k−1

are recombined to produce

the predicted state x̂k|k−1
and covariance Pk|k−1:

x̂k|k−1
=

2L∑

i=0

W i
sχ

i
k|k−1

, (38)

Pk|k−1 =

2L∑

i=0

W i
c [χi

k|k−1
− x̂k|k−1

][χi
k|k−1

− x̂k|k−1
]T ,

(39)

where the weights Ws and Wc for the state and covariance

are given by

W 0

s =
λ

L + λ
, (40)

W 0

c =
λ

L + λ
+ (1 − α2 + β), (41)

W i
s = W i

c =
1

2(L + λ)
, (42)

where α, β, κ are noise distribution parameters, and λ is

chosen arbitrarily. They are helpful during filter tuning [10].

Typical values for α, β and κ for the majority of applications

in which the disturbance is located in the Gaussian noise as-

sumptions, are, respectively, 10−3, 2 and 0. Any differences

from these values can only lead to more easy tuning of the

filter, because they add additional degrees of freedom.

Correction. Correction is adapted strictly from the classical

form. The sigma points χi
k|k−1

are projected through the ob-

servation function Hk:

Υi
k = Hkχi

k|k−1
, i = 0..2L. (43)

Based on weight W i
s and W i

c from (42) and observation ma-

trix Υi
k it is possible to obtain the output signal:

ẑk =

2L∑

i=0

W i
sΥi

k, (44)

and also the output covariance:

Pzkzk
=

2L∑

i=0

W i
c [Υi

k − ẑk][Υi
k − ẑk]T . (45)

The correction Kk depends directly on the state covari-

ances Pk|k−1 and innovation of system covariances Sk, and

so is similar to (45). Based on the Kalman correction defini-

tion,

Kk = Pxkzk
P−1

zkzk
, (46)

where Pxkzk
is

Pxkzk
=

2L∑

i=0

W i
c [χi

k|k−1
− x̂k|k−1

][γi
k − ẑk]T . (47)

As in the classical Kalman filter, the output residual is

ỹ
k

= zk − h(x̂k|k−1
). (48)

The correction of the state is done by

x̂k|k = x̂k|k−1
+ Kk(zk − ẑk). (49)

The adjusted covariance matrix Pk|k is a prediction of Pk|k−1

corrected by weighted values:

Pk|k = Pk|k−1 − KkPzkzk
KT

k . (50)

The algorithm is cyclic. Data from the actual step are the

input data for the next.

4. Experimental results

For experimental verification of the proposed estimation

method, a laboratory setup has been constructed. It consists of

the surface mounted magnets PMSM, supplied from a three

phase power IGBT inverter. The mechanical part of labora-

tory setup is presented in Fig. 2, consisting of two similar

motors coupled by a stiff shaft. The load twin motor sup-

plied from industrial controller. The voltage and currents sig-

nals are adjusted and sampled simultaneously with 12-bit A/D

converters. The real rotor position is measured by a precision

incremental encoder.

Fig. 2. Mechanical setup – twin PMSM with stiff shaft

This algorithm was implemented on an Analog Devices

Sharc 21369 Digital Signal Processor. The code has been

mainly written in C language, except for low-level procedures

in DPS Assembler. However the PWM generator was realised

with additional Altera Flex FPGA used for independent fast

hardware pulses generating. A real position is also comput-

ed using FPGA and sent to DSP by parallel memory fields.

The execution time of the EKF and UKF algorithms is about

22 µs and 38 µs, respectively, while the control loop with

acquisition takes 20 µs. The sampling time was chosen as

Ts = 100 µs and it is the main superloop for current and

speed control.

4.1. Extended Kalman filter

Speed demand. To test the behaviour of observers with a

varying conditions of work it was decided to use tests in-

volving a change of referenced speed ω∗
r . The first investiga-

tion was performed like a speed reference in stages: start,

working set, reverse and braking. The maximum modulus

of reference speed in this case was 1

3
of maximum speed:

1000 rev
min

= 104.72 rad
s

.

The results are presented in Fig. 3. Errors are plotted in

detail in Fig. 4.
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Fig. 3. EKF: reference speed ω
∗

r = 104.72
rad
s

Fig. 4. EKF: reference speed ω
∗

r = 104.72
rad
s

– estimation errors

Fig. 5. EKF: reference speed ω
∗

r = 5.28
rad
s

A very interesting point of the works control system with

an observer is the work during small speeds near zero. The

same shape as above is presented in Fig. 5, but the maximum

modulus is ω∗
r = 5.28 rad

s
. Experiment errors are presented in

Fig. 6.

Fig. 6. EKF: reference speed ω
∗

r = 5.28
rad
s

– estimation errors

This type of a reference signal has significant stages for an

observer behaviour such as: zero signal with no initial values

in an estimation vector, and few steps of the demand speed.

Load torque. At this part of the investigation, the controlled

system behaviour by the reference speed excitation and next

stepped load torque was focussed on. This type of the refer-

ence signal has significant stages for its estimator behaviour

such as: zero signal with no initial values in estimation vec-

tor, a step demand speed signal and an external load step. The

constant reference speed is 104.72 rad/s and additional load

torque is 3 Nm. A torque is applied and next removed. Results

of the working are presented in Fig. 7, with errors in Fig. 8.

Fig. 7. EKF: load torque Tl = 3Nm response

798 Bull. Pol. Ac.: Tech. 61(4) 2013
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Fig. 8. EKF: load torque Tl = 3 Nm response – estimation errors

This result shows good performance of the load torque

estimation. In the case of a load torque variation, which was

assumed nearly constant, it appears that the observer can cope

with this problem at a level which is almost good.

4.2. Unscented Kalman filter

Speed demand. The idea of loading was presented in Sub-

sec. “Speed demand”. The results of working are presented

in Fig. 9. Each investigation was performed in the same way.

The experimental results for low speed are presented in

Fig. 11, and in Fig. 12 are the errors.

Fig. 9. UKF: reference speed ω
∗

r = 104.72
rad
s

Fig. 10. UKF: reference speed ω
∗

r = 104.72
rad
s

– estimation errors

Fig. 11. UKF: reference speed ω
∗

r = 5.28
rad
s

Fig. 12. UKF: reference speed ω
∗

r = 5.28
rad
s

– estimation errors
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Load torque. The idea of loading was presented in Sub-

sec. “Load torque”. The results of working are presented in

Fig. 13. Each investigation was performed in the same way,

the first non zero startup state vector during zero real speed,

but the differences are additional load torque values.

Fig. 13. UKF: load torque Tl = 3 Nm response

Fig. 14. UKF: load torque Tl = 3Nm response – estimation errors

From this investigation it can be concluded that the system

values are estimated consistently regardless of the load torque

conditions. In the steady state, the error of the state estimation

is not great. Its maximum values depend on the dynamics of

the state changes. The avoidance of the principle of constan-

cy of load torque causes the appearance of significant errors

in dynamic states. These appeared errors can be eliminated

by changing the sensitivity of the observer, but changing the

sensitivity causes a gain in the system and output noises. So

in the case of cancelling dynamical errors we can expect to

strengthen the unknown disturbance, in most cases nonlinear.

To compare the practical properties, two figures are pre-

sented here: the first is the average estimation error ǫ (Fig. 15),

and second is the maximum error in a speed steady state

(Fig. 16) in relation to the motor speed ωr. Both observers

give good steady-state performance.

Fig. 15. Average estimation error of EKF and UKF

Fig. 16. Maximum of estimation error in speed steady state of EKF

and UKF

Analysing the whole process of estimating the load torque

and with those obtained from errors, it can be concluded that

the observer reproduces all natural quantities of PMSM and

disturbance as load torque is, with small trip-up.

5. Conclusions

The paper presents a design and laboratory verification of an

observer based on two different Kalman filter techniques: the

unscented Kalman filter and the extended Kalman filter. The

state variable estimation of a non-linear object, which is a per-

manent magnet synchronous motor, was successfully accom-

plished. The estimated state variables were used as variables

in a sub-cascade control system of currents and speed.

A control system with a UKF has better properties in the

low speed range than the EKF. Also its starting procedure is

safer, in that there are no situations with wrong starting direc-

tion. There are small errors during dynamical working caused

by inaccurate modelling of the inverter, which is non-linear.
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It can been seen during a start-up that the UKF performs

better than the EKF. The drive is able to start from an un-

known rotor position in all cases, unlike the EKF observer,

where sometimes the speeds ωr and ω̂r directions are differ-

ent. During the rush speed changes, for example reversing,

UKF performs better, with smaller errors.

The unscented transformation approach has many advan-

tages over the extended Kalman filter, namely, hassle-free tun-

ing and finding the initial value. The UKF has an analytical

derivative free structure and does not involves any linearisa-

tion steps–no Jacobian function is needed. But the EKF has

a simpler matrix mathematical structure, so it was simpler to

implement on DSP using special embedded matrix functions.

UKF needs to calculate the sigma points during every time

step. It may be noted based on compared execution times on

DSP that the calculation time of UKF is larger than EKF.
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