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A TWO-SCALE NUMERICAL APPROACH TO GRANULAR SYSTEMS

M. NITKA1, J. TEJCHMAN2

A two-scale numerical homogenization approach was used for granular materials. At small-scale
level, granular micro-structure was simulated using the discrete element method. At macroscopic
level, the finite element method was applied. An up-scaling technique took into account a discrete
model at each Gauss integration point of the FEM mesh to derive numerically an overall constitutive
response of the material. In this process, a tangent operator was generated with the stress increment
corresponding to the given strain increment at the Gauss point. In order to detect a loss of the
solution uniqueness, a determinant of the acoustic tensor associated with the tangent operator
was calculated. Some elementary geotechnical tests were numerically calculated using a combined
DEM-FEM technique.

Key words: discrete element method, finite element method, granular material, homogenization technique,
two-scale approach.

1. I

Granular materials have a discrete and heterogeneous nature. To realistically captu-
re their behaviour, micro-structure should be taken into account at the micro-scale.
However, when modelling micro-structure using the FEM, a huge number of fini-
te elements and computational effort are needed. To practically solve this problem,
multi-scale computational homogenization approaches are applied (M et al. [1],
F and C [2], T and K [3], G et al. [4], K et al.
[5], G et. al. [6], M et al. [7]) which are aimed at calculations of material
properties at one level using information from different lower levels. In a two-scale
approach, the material behaviour is simultaneously studied at two different scales:
1) at the micro-level, where the material micro-structure is distinguished and 2) at the
macro-level, where the material is treated as a homogeneous one. These two different
scales interact by coupling kinematics, various stresses and forces. Modelling procedu-
res do not lead to closed–form overall constitutive equations but compute a stress–strain
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relationship at every integration point of interest of the macro–component by detailed
modelling of the microstructure attributed to this point. Thus, they do not require any
constitutive assumption at the macro-level by introducing the detailed micro-structure
into a macroscopic level. Different modelling techniques can be used at the micro-level,
e.g. the finite element method (F and C [2], K et al. [5]), the
Voronoi cell method (G et al. [4]), numerical methods based on Fast Fourier
Transforms (M et al. [8]), variational multiscale methods (H and R [9]),
the adaptive heterogeneous multiscale method (E and K̈ [10]), the method
presented by I́ et al. [11], multi-grid methods (K et al. [12])
and finally the so–called coupled volume approach (G et al. [6]) in which the size
of a macro-element is equal to the size of a micro-element to avoid any assumption
of the Representative Volume Element (RVE) which is the most important parameter
in multi-scale approaches, i.e. it denotes the cell size of the micro-level. The con-
cept of RVE was introduced to determine the corresponding effective properties of a
homogenized macroscopic model. The RVE was originally defined by H [13] as
“a sample that is structurally entirely typical of the whole mixture on average and
contains a sufficient number of inclusions for the apparent overall moduli to be ef-
fectively independent of the surface values of traction and displacement, as long as
these values are macroscopically uniform”. Thus, the size of RVE should be large
enough with respect to an individual grain size in order to define overall quantities
such as stress and strain, but this size should also be small enough in order not to hide
macroscopic heterogeneity (E [14]). Recently, G [15] and S̇́ and
T [16], [17] have shown that the representative volume element (RVE) cannot
be defined in softening materials with a standard averaging approach due to occurrence
of localized zones whose width is not scaled with the specimen size (the shape of the
stress-strain curve strongly depends on the specimen size beyond the elastic region).

The concept of computational homogenization can be summarized as follows (Git-
man et al. [6]), Fig.1:
a) the material is described as homogeneous with effective properties – it does not

require any constitutive assumption (macro-level),
b) a micro-level unit cell (RVE) is assigned to each integration point of the discreti-

zed macro-level (down-scaling) and the macro-level strain field is translated into
micro-level displacement boundary conditions,

c) the material is described as heterogeneous with micro-structure and a boundary
value problem is solved for each micro-level unit cell with boundary conditions
from the macro-level output (micro-level),

d) homogenization is performed on the micro-level in terms of reaction forces and
stiffness relations which provides in effective properties of a homogeneous material
to be transferred to the macro-level (up-scaling).
Our study considers a two-scale and two-dimensional numerical homogenization

scheme for a description of the behaviour of granular materials (N [18], N et al.
[19]). At the micro-scale level, the granular structure is described by rigid interacting
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Fig. 1. Computational homogenization using discrete element method (DEM) at micro-level and finite
element method (FEM) at macro-level.

Rys. 1. Numeryczna homogenizacja z użyciem metody elementów dyskretnych (MED) na poziomie
mikro i metody elementów skończonych (MES) na poziomie makro

discs modelled by the discrete element method (DEM). At the macro-scale level, a
numerical solution is obtained with the finite element method (FEM) by means of
the tangent stiffness matrix based directly on a discrete behaviour of the granulate.
Using the computational homogenization (which links both scales), the average stress
response of the granular micro-structure is obtained in each macroscopic Gauss point
of the FE mesh as the result of the macroscopic deformation history imposed on REV.
In addition, the acoustic tensor is calculated at the Gauss point, which is the best
indicator for the unstable material behaviour. The influence of different parameters on
the stability of the macroscopic response is presented with numerical tests. Finally, the
two-scale DEM-FEM results are depicted for some elementary geotechnical tests such
as: an oedometer, a shear and a biaxial compression test.

2. M- 

2.1. M  

For a given history of the deformation gradient, a global stress response of REV is first
calculated (Fig.2). The macroscopic stresses from the average formula of inter-granular
forces between discs in contact are

(2.1) σi j =
1
S

Nc∑

c=1

f c
i lcj withi, j ∈ {x, y},
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Fig. 2. Schematic representation of two-scale approach for bodies with granular micro-structure.
Rys. 2. Schematyczny opis podejścia dwuskalowego dla ciał z granulowaną mikro-strukturą

where S is the area of the specimen, f c
i and lcj are respectively the components of forces

acting along the disc contact c and the component j of the branch vector joining the
centres of two discs in contact (L [20]). Next, the Cauchy stress tensor of Eq.2.1
is converted into the Piola-Kirchhoff stress tensor (B and W [21]) which
depends on the history of the deformation gradient

(2.2) P(t) = Γt{F(τ), τ ∈ [0, t]}.

For any history of the tensor F, the tensor P admits the right time derivative tensor
•
P

with respect to time t

(2.3)
•
P = limδt→0

P(t + δt) − P(t)
δt

and for the given history of the tensor F till the time t, the right-sided derivative tensor
•
P depends on the right time derivative tensor

•
F only

(2.4)
•
P = Θ(

•
F),

where the function Θ is generally non-linear with respect to its argument
•
F. The study

is limited to the case, when the history of F is given by the expression F = I + αG0

with G0 being the fixed tensor and α being the time-like loading parameter (which
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changes monotonously from 0 to 1). In this case, the tensor is
•
P = Ξ(α) and after

differentiating with respect to the parameter α, the tensor
•
F = G0. According to the

definition of the function Θ (Eq.2.4), an approximate formula can be used (B et
al. [22])

(2.5) Θ(G0) ≈ Ξ(α + ∆α) − Ξ(α)
∆α

,

which allows one to determine a macroscopic response.

2.2. M 

The loss of uniqueness for rate-type boundary value problems is analyzed by the
standard Rice’s approach (R [23]). Following this analysis, the rate of deformation

gradient
′
F is searched which is discontinuous along the boundary of a localized zone

(2.6)
•

F1
kL =

•
F0

kL +qkNl,

where the vector N is the normal to a localized zone (||N|| = 1), the tensor
•
F1 occurs

on the same side as N and the tensor
•
F0 on the opposite side. The stress vector has to

be continuous across the interface

(2.7)


•

P1
iJ −

•
P0

iJ

 NJ = 0.

Since
•

P̄1
iJ and

•
P0

iJ are linked to
•

F1
iJ and, respectively,

•
F1

iJ by Eq.2.3, the unknowns q
and N have to satisfy the equation

(2.8)
ΘiJ


•
F0 +q ⊗ N

 − ΘiJ


•
F0


 NJ = 0

for the given tensor
•
F0.

In the considered macroscopic quasi-static deformation process, the question of the
ellipticity loss therefore reduces to the determination of the value α for which Eq.2.8
has a non-trivial solution q , 0. The search of a non-trivial solution is restricted to the

case with the tensor
•
F1 closed to

•
F0. By assuming that the function Θ is differentiable

at
•
F0, Eq.2.8 yields after linearization

(2.8) DiJkL


•
F0

 qkNLNJ = 0,
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where

(2.10) DiJkL


•
F0

 =
∂ΘiJ

∂
•

Fkl

| •
F=

•
F0
.

A non-trivial solution exists only if the acoustic tensor Q defined by Qik = DiJkLNLNJ
is singular

(2.11) det Q = 0

For this particular process considered here (given by F = I + αG0),
•
F is constant

and equal to G0 and the function Θ(G0) can be approximated by Eq.5. The tangent
stiffness matrix D can be numerically approximated by finite differences and becomes
(B et al. [22])

(2.12) DiJkL =
ΘiJ(G0 + ε∆kL) − θiJ(G0)

ε
,

(2.13) DiJkL =
PiJ(αn+1 + δ f ∆α + ε∆kL) − PiJ(αn+1 + δ f ∆α)

δ f ε∆kL ,

where ∆kL is a second-order tensor such that all its components are equal to 0 except
the kL one which is equal to 1, δ f ∆α is a small variation step in the main direction and
ε∆kL is a small perturbation in the direction kL. In Fig. 3, the stress at the point δ f ∆α
(in the same linear direction as the point n) and stresses in points with perturbations
ε∆kL are shown.

Fig. 3. Schematic computation representation of tangent stiffness matrix.
Rys. 3. Schemat obliczenia stycznej macierzy sztywności
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3. D   -

At the macro-scale, the granular system consists for the sake of simplicity of N po-
lydisperse discs with random radii homogeneously distributed between Rmax = 5 mm
and Rmin = 2 mm. This system is simulated using a discrete element method with a
third-order predictor-corrector scheme (A and T [24]). All discs interact
via a linear elastic law and Coulomb friction in contact (C and S [25]).
The normal contact force fn is related to the normal displacement δ of the contact as
fn = knδ, where kn is the normal stiffness coefficient (δ > 0 if a contact is present,
δ = 0 if there is no contact). The tangential component ft of the contact force is
proportional to the tangential elastic relative displacement with the tangential stiffness
coefficient kt . The Coulomb condition | ft | 6 µ fn requires an incremental evaluation of
ft in each time step leading to some amount of slip each time if one of the equalities
ft = ±µ fn is imposed (µ=0.5 – inter-particle friction coefficient). A normal viscous
component opposing the relative normal motion of any pair of grains in contact is
also added to the elastic force fn to obtain a critical damping of the dynamics. The
contact normal stiffness kn is calculated according to the dimensionless 2D stiffness
parameter κ = kn/σ0=1000 denoting the level of the contact deformation κ = a/ < δ >,
where a is the mean diameter of discs and < δ > is the mean overlap of all grains
(C and R [26], R and C [27], R and C [28]). The assumption
κ=1000 implies that grains can be considered as rigid ones. This value corresponds to
the granular material used in experimental tests at Grenoble University (C et
al. [29], C et al. [30]). The tangential stiffness kt can be expressed as a
fraction of the normal stiffness k̄ = kt/kn with the stiffness ratio k̄ > 0 (the ratio k̄ > 1
produces the negative Poisson’s ratio of grain assemblies, B and R

[31], C et al. [32], E et al. [33]). After several numerical simulations
with the different ratios k̄ ∈ (0, 1 >, the macroscopic behaviour remains similar if
0.5 6 k̄ 6 1. In this work the ratio k̄ was taken as 1.

A periodic limit condition (PLC) scheme is considered (Fig. 4), where each disc
is in contact with neighbours in the simulated cell (primary box) and with some discs
in the ’image cell’ which are replicated to infinity by rigid translations in 2D Cartesian
directions. These replicas contain the same sets of discs as the primary cell (E

[34]). Finally, if one disc moves out of the primary cell, it appears on the opposite side
of the cell with the same velocity and opposite momentum.

4. M- 

Some simple tests for checking the solution stability at the macro-level by checking
the acoustic tensor (Eq.11) were performed with 400, 1024, 3025 and 4900 grains,
respectively (biaxial test with and without volume changes, oedometer test and shear
test). All specimens were initially loaded by the 2D isotropic stress σ0.
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Fig. 4. Shape of periodic limit condition (PLC) specimen with normal contact forces.
Rys. 4. Kształt próbki dla periodycznych warunków brzegowych (PWB) z normalnymi siłami

kontaktowymi

Fig. 5. Influence of specimen size on macroscopic stability during biaxial test (σyy – vertical normal
stress, Eyy – vertical normal strain, ‘-‘ - compression).

Rys. 5. Wpływ wielkości próbki na makroskopową stabilność podczas testu dwuosiowego
(σyy – pionowe naprężenie normalne, Eyy – pionowe odkształcenie normalne, ‘-‘ – ściskanie)
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The influence of the specimen size on the vertical normal stress σyy is presented
in Fig. 5 during biaxial compression (black points (*) represent instability zones that
correspond to detQ < 0). This test was carried out for the small variation step δ f = 0.01

and perturbation ε∆kL = 2 · 10−5. The inertial number was I = ε̇

√
< m >

σ0
and was

assumed between 1.2 · 10−3 and 2.1 · 10−3 for iterations, and between 1.2 · 10−4 and
2.1 · 10−4 for variation steps δ f δα. If both the specimen size increases and the grain
number increases, more stable zones are obtained (the number of instabilities decreases)
(Fig. 6). More stable zones (less bifurcation points) denote obviously a more stable
computation at the macroscopic level.

Fig. 6. Influence of specimen size on instabilities during shear test (the instability number versus
function of the inverse of the square root of the grain number at strain smaller than 10%).

Rys. 6. Wpływ wielkości próbki na niestabilności podczas testu ścinania (liczba punktów niestabilnych
w funkcji odwrotności pierwiastka liczby ziaren w próbce dla odkształcenia mniejszego niż 10%)

Figures 7 and 8 show the influence of the variation step δ f δα and perturbation
ε∆kL during a biaxial test with 3025 discs. First, the perturbation was taken as 2 · 10−6

and the variation step δ f varied between 0.05 and 1 (Fig. 7). Next, the variation step
was equal to 0.01 and the perturbation step changed between 2·10−6 and 2·10−3 (Fig. 8).
The larger numbers of stability zones for smaller variation steps and perturbation values
were obtained. It is also important to assume a realistic value of δ f δα to be still in an
elasto-plastic regime (not only in an elastic one).
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Fig. 7. Influence of variation step on macroscopic stability (σyy – vertical normal stress, Eyy – vertical
normal strain).

Rys. 7. Wpływ kroku zmienności na makroskopową stabilność (σyy – pionowe naprężenie pionowe,
Eyy – pionowe odkształcenie normalne)

e

e e

e

Fig. 8. Influence of perturbation on macroscopic stability (σyy – vertical normal stress, Eyy – vertical
normal strain).

Rys. 8. Wpływ perturbacji na makroskopową stabilność (σyy – pionowe naprężenie normalne,
Eyy – pionowe odkształcenie normalne)
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5. N    DEM-FEM 

The DEM-FEM method is implemented in the FEM code FlagsHyp (B and W

[21]) what involved significant modifications. A driver routine allows one for genera-
ting both the stress response and tangent stiffness operator from discrete simulations
(according to Section 2). The 2D quadratic element with four Gauss points is chosen.
A very simple mesh with 4 elements is used. On the micro level, in DEM calculations,
the grain number of in the REV cell is 400. The equilibrium condition is satisfied when
the residual R < 10−5 to avoid numerical noises. In DEM calculations, based on our
instability study, the variation step δ f and perturbation ε are chosen as 0.01 and 2·10−5,
respectively. Initially, REV is assigned an isotropic stress state by compression at the
microscopic scale under a kinematic control up to a certain stress. Accordingly, the
stress state in each integration point of FE elements is equal to the microscopic stress
and the boundary stress is equal to the stress controlled boundaries. The macroscopic
stress in each Gauss point equals the microscopic response Σi j = σi j, where Σi j is the
macroscopic stress and σi j is the microscopic stress. Along the macroscopic boundary,
the isotropic compression is applied to balance the microscopic stresses.

Different numerical tests are performed with a two-scale technique by modelling
typical laboratory geotechnical experiments like an oedometric, a biaxial tests and a
shear test. All macroscopic results are compared to direct DEM computations on one
periodic assemblage of 2D disks (specimen with 400 and 4900 discs).

First, an oedometric test is considered (Fig. 9). The lateral boundaries are fixed and
frictionless and the top is displaced downward. The vertical stress increases indefinitely
since this path does not lead to plastic flow and the grain degradation is not taken
into account. For the isotropic case, the earth pressure ratio K0 = σxx/σyy can be
related to the Poisson ratio ν through K0 = v/(1 − v). The calculated Ko-value of
0.40-0.50 corresponds well to cohesionless soils (W [35], C et al. [36]).
The agreement between macroscopic results by DEM and two-scale ones by DEM-FEM
is perfect.

Next, a biaxial test under drained conditions is considered. A constant pressure σ0
is applied to lateral sides, while the top is displaced downward. Using the symmetry
of the problem, only the upper left quarter of the specimen is taken into account. The
bottom is ideally smooth or has friction. The case with a smooth bottom in Fig. 10
shows typical a biaxial compression response with hardening, peak and softening on the
stress-strain curve and volumetric strain curve exhibiting initially small contractancy
and then strong dilatancy. The calculated values from the two-scale DEM-FEM analysis
are again similar to discrete ones. In turn, the response of the specimen in the case with
friction is significantly perturbated on the specimen ends (the lower and earlier peak
stress and delayed dilatancy) and departs evidently from the pure discrete response.
This was expected, since the latter belongs definitely to a heterogeneous boundary
value problem at the macroscopic scale and differs essentially from the elementary
response given by the DEM.
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Fig. 9. Two-scale computations of oedometric test for granular materials (σyy – vertical normal stress,
σxx – horizontal normal stress, Eyy – vertical normal strain, K0 = σxx/σyy – the lateral earth pressure

coefficient).
Rys. 9. Dwuskalowe obliczenia testu edometrycznego dla materiałów granulowanych (σyy – pionowe
naprężenie normalne, σxx – poziome naprężenie normalne, Eyy – pionowe odkształcenie normalne,

K0 = σxx/σyy – współczynnik parcia bocznego gruntu)
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Fig. 10. Two-scale computations of usual biaxial test for granular materials (σyy – vertical normal stress,
Eyy – vertical normal strain, Ev – volumetric strain).

Rys. 10. Dwuskalowe obliczenia konwencjonalnego testu dwuosiowego dla materiałów granulowanych
(σyy – pionowe naprężenie normalne, Eyy – pionowe odkształcenie normalne, Ev – odkształcenie

objętościowe)
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Fig. 11. Two-scale computations of biaxial test without volume changes for granular materials
(σyy – vertical normal stress, σxx – horizontal normal stress, Eyy – vertical normal strain,

q – deviatoric stress, p’ – mean effective stress).
Rys. 11. Dwuskalowe obliczenia testu dwuosiowego bez zmian objętości dla materiałów granulowanych
(σyy – pionowe naprężenie normalne, σxx – poziome naprężenie normalne, Eyy – pionowe odkształcenie

normalne, q – naprężenie dewiatorowe, p’ – średnie naprężenie efektywne)
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Next, the calculations are carried out with biaxial compression without volume
changes (Fig. 11). The specimen is subjected to compression from the top and extension
from both sides. In the calculations, the stress path reaches shortly a straight line, and
then goes up along this line due to the constrained dilatancy that strongly increases
the mean effective stress.

Finally, the results for a shear test are presented (Fig. 12). The top wall is moved
into the X-axis direction with the isotropic pressure σ0 applied to the boundary. First,
the ratio between the deviatoric stress and mean effective stress q/p

′
rapidly increases

and then reaches an asymptote. In combined DEM-FEM calculations, the ratio q/p
′
is

slightly smaller than in pure DEM ones.

Fig. 12. Two-scale computations of shear test for granular materials (q – deviatoric stress, p’ – mean
effective stress, σ12 – shear stress, E12 – shear strain).

Rys. 12. Dwuskalowe obliczenia testu ścinania dla materiałów granulowanych (q – naprężenie
dewiatorowe, p’ – średnie naprężenie efektywne, σ12 – naprężenie styczne, E12 – odkształcenie styczne

6. C

A two-scale numerical approach for granular materials was proposed combining the
DEM simulation of the granular micro-structure at the micro-level with the FEM
modelling of the overall material response at the macro-level.

The results show that the continuum tangent matrix at the macroscopic may provide
an unstable solution if the REV sample at the microscopic level behaves as a discrete
medium. Thus, a correct choice for the specimen size, grain number, variation step
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and perturbation value is of major importance to reduce numerical instabilities at
the micro-scale level and to ensure a stable solution at the macro-level. The solution
stability increases with increasing specimen size and number of discs. In an unstable
regime, some grains lose their contacts for different variation steps and perturbations.
Such microscopic behaviour may be truly physical linked to shear banding. However,
the occurrence of such instabilities far from the failure regime in numerous points of
the load-displacement diagram may indicate a non-relevant numerical behaviour and
therefore has to be minimized.

The combined DEM-FEM computations with a numerically calculated tangent
stiffness matrix work well for simple loading cases in spite of the occurrence of unsta-
ble points. The results are similar to those obtained from DEM computations and
qualitatively similar to the corresponding laboratory tests. They give a faster response
for large geotechnical problems than DEM. However, for more complex BV problems,
the proposed two-scale approach may fail.

Our research will be continued for granular materials by including strain locali-
zation. To model the grain roughness, contact moments will be used at discs at the
micro-level (Widuliński et al. [37]). To obtain a stable solution at the macro-level
and to eliminate unstable points, a non-local approach will be used at the micro-level
for calculating the tangent stiffness matrix (Tejchman [38]). The results will be again
checked by pure discrete simulations.
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DWUSKALOWE NUMERYCZNE PODEJŚCIE DO SYSTEMÓW GRANULOWANYCH

S t r e s z c z e n i e

Zastosowano dwuskalowe numeryczne podejście homogenizacyjne do materiałów granulowanych. Na po-
ziomie małej skali symulowano granulowaną mikrostrukturę przy zastosowaniu metody elementów dys-
kretnych. Na poziome dużej skali zastosowano metodę elementów skończonych. Technika przechodzenia
do wyższej skali uwzględniła dyskretny model w każdym punkcie całkowania Gaussa siatki MES w ce-
lu wyprowadzenia numerycznego obliczenia wynikowej konstytutywnej odpowiedzi materiału. W tym
procesie, operator styczny został obliczony za pomocą przyrostu naprężenia odpowiadającego danemu
przyrostowi odkształcenia w punkcie Gaussa. W celu wykrycia utraty jednoznaczności rozwiązania, okre-
ślono wyznacznik tensor akustycznego związanego z operatorem stycznym. Obliczono numerycznie kilka
podstawowych testów geotechnicznych stosując połączoną technikę MED-MES.
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